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Abstract
Machine learning (ML) models keep getting larger and more
complex. Whereas before models used to be represented
by static data-flow graphs, they are now implemented via
arbitrary Python code. Eager-mode frameworks, such as Py-
Torch, are now the standard for developing new ML models.
The semantics of eager-mode frameworks is that operations
are computed straight away. This greatly simplifies the de-
velopment process, and it enables more dynamic ML models.

Although eager-mode frameworks are more convenient,
they are less efficient today as operations are dispatched
to the hardware one at a time. This execution model pre-
cludes, for example, operation fusion, which is essential for
executing ML workloads efficiently.

In this paper we present Torchy, a tracing JIT compiler for
PyTorch. Torchy achieves similar performance as data-flow
frameworks, while providing the same semantics of straight-
away execution. Moreover, Torchy works with any PyTorch
program unmodified. Torchy outperforms PyTorch by up
to 12x in microbenchmarks, and PyTorch’s static compiler
(TorchScript) by up to 5x.

CCS Concepts: • Software and its engineering→ Just-
in-time compilers; Dynamic compilers.
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1 Introduction
Machine learning (ML) models have grown significantly and
have become more complex in the past few years. For exam-
ple, text models have gone from 0.1 billion parameters in 2018
(ELMo [31]) to 175 billion in 2020 (GPT-3 [6]). Similarly, im-
age classification models went from 0.3 million parameters in
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2015 (ResNet-18 [17]) to 46 million in 2020 (RegNetX-12 [34]),
with a roughly 7x increase in FLOPS.

It is not only that ML models are getting larger in terms
of memory consumption, but they are also getting more
dynamic and complex, e.g., using data-dependent control-
flow [40]. Together with the increase in the size of training
data, ML model training and inference is increasingly requir-
ing more computing power.

Most MLmodels are developed in an ML framework, often
a Python library. The first generation frameworks, such as
TensorFlow [1], exposed a development model based on data-
flow graphs. Executing a tensor operation only created a new
node in the graph. Thus, an ML program consisted in code
to first create a data-flow graph and then execute it many
times over the training/inference data.
The data-flow graph abstraction is efficient for static ML

models: the compiler gets to see the whole program ahead
of time and thus can do whole-program optimizations. How-
ever, it is not an easy abstraction for users as there is a gap
between what it seems to be executing an operation but
which only creates a graph node. It is also hard to imple-
ment more dynamic ML models in these frameworks, as e.g.,
control-flow has to be emulated with multiplexers and/or
algebraic operations such as matrix multiplications.

The second generation of frameworks expose the so-called
eager-mode or imperative execution model, where the se-
mantics is that operations are executed straight away. Thus,
operations return their result rather than a graph node. This
model is much simpler and obvious to users, and therefore
these frameworks such as PyTorch [30] are now mainstream.

The main disadvantage of eager-mode frameworks is per-
formance. Consider the following example PyTorch program
where x and y are tensors and c is some constant:

1 w = y.mul(c)
2 z = x.add(w)
3 print(z)

Figure 1 shows how this program is executed. Firstly,
Python reads the file and starts executing it (note that Py-
Torch is merely a Python library). Secondly, Python encoun-
ters the call to the mul function, which it dispatches to Py-
Torch. Thirdly, PyTorch checks in which device the tensors
are placed (CPU or GPU) and calls the respective library
function that implements element-wise multiplication. Fi-
nally, PyTorch gets the results from the underlying algebra
library and returns a new tensor to Python. The same steps
are repeated for the addition and print operations.

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.
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3: mul(y, c)

7/8: add(x, w)

4: mul result

w = y.mul(c)
z = x.add(w)
print(z)
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Figure 1. Execution of an example PyTorch program.

This example shows the immense overhead that each op-
eration goes through in PyTorch. To offset this overhead,
several “hacks” emerged. The first is to offer larger opera-
tions that take more time to execute and therefore hide better
the overhead. For example, the code above can be written
with a single operation:

1 z = x.add(y, alpha=c)

With this change we reduced the overhead by half. How-
ever, this comes at the cognitive expense of developers: Py-
Torch 1.10 has more than 2,000 operations, and this keeps
increasing with every release [16]! How can developers re-
member all operations and keep up-to-date?
PyTorch also offers a compiler named TorchScript. It of-

fers two modes: compilation of (a subset of) Python code
and tracing. Our previous example can be compiled with
TorchScript as follows:
1 @torch.jit.script
2 def fn(x : Tensor, y : Tensor, c : int):
3 w = y.mul(c)
4 return x.add(w)
5 z = fn(x, y, c)

The @torch annotation instructs TorchScript to compile
the function and replace the definition of fn to hold a Torch-
Script function instead of a Python one. The advantage of this
compilation step is that TorchScript translates the code into
its own IR, which is then optimized. In particular, the two
operations get fused into a single one without the developer
having to remember to call the fused operation directly.

The disadvantage of TorchScript compilation mode is that
it only supports a limited subset of Python. This is by design
as TorchScript is a compiler for tensor operations, not a
generic Python compiler. Thus, developers have to manually
split up the code and create functions consisting of mostly
tensor operations so they can be compiled with TorchScript.

The second mode supported by TorchScript is tracing. The
function must be first called with a set of “representative”
inputs. TorchScript records all PyTorch operations executed
by the function (tracing) and creates the same TorchScript IR
as before, which then gets optimized. The main advantage is
that it supports all of Python features, as it operates below
Python. The disadvantage is that it only supports functions

with a single path. The following example traces function
fn using tensors x and y as representative inputs:
1 def fn(a, b):
2 if torch.argmax(a) == 42:
3 return a.add(b)
4 else:
5 return a.mul(b)
6 fn = torch.jit.trace(fn, (x,y))

TorchScript generates a trace with either the addition or
the multiplication operations, depending on the contents of
x. All future invocations of fnwill follow the same branch as
the tracing for x did, regardless of the result of argmax. Thus,
the function may return the wrong result when invoked with
arguments that would go to the other branch. Moreover,
TorchScript does not produce any error in this case. This
makes TorchScript’s tracing mode very error-prone.

As a recap, we mentioned three methods that are available
today to improve the performance of PyTorch programs that
involve some manual work: 1) use larger operations instead
of multiple small ones whenever possible, 2) hoist consec-
utive tensor operations into functions and annotate them
so they are compiled with TorchScript, and 3) use Torch-
Script tracing on existing functions where we are sure the
execution will always follow the same path for every call.

Themain technical difficulty in improving the status quo is
that of code discoverability. Since calls to PyTorch operations
are intermingled with arbitrary Python, it is hard to extract
the relevant tensor operations and compile them. Even if one
was to add full Python support to TorchScript’s compiler,
there are fundamental theoretical limits on how much of the
tensor operations could be lifted.
In this paper, we present Torchy, a tracing JIT compiler

for PyTorch. Torchy addresses and solves the issue of code
discoverability at run-time. Tensor operations are delayed
and written down on a trace rather than executed straight
away. This gives the same eager-mode semantics that users
expect, but enables optimizations.
The key observation that makes Torchy possible is that

the result of most PyTorch operations is not observed by
programs: they are merely temporaries. Our study shows
that this assumption holds in practice and that ML models
execute many operations before observing their result.
Torchy achieves speedups of up to 12x in microbench-

marks when compared with plain PyTorch. For benchmarks
with control-flow, Torchy outperforms TorchScript by up
to 5x. Torchy offers performance that is comparable with
that of static compilation, while offering the usability of
eager-model frameworks.

The main contributions of this paper are as follows:
• Identification of the sources of inefficiencies in ML
workloads and shortcomings of the current solutions.
• The design and implementation of a tracing JIT for an
ML eager-mode framework (PyTorch). It requires zero
program changes, unlike other solutions.
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Figure 2. Executing a PyTorch program with Torchy.

• Techniques to increase the size of traces in ML work-
loads to increase optimization opportunities.
• Evaluation: we show that the presented solution out-
performs baseline by up to 12x in microbenchmarks
and that it shows promising results in ML workloads.
We also quantify the impact of type/shape inference.

Given the achieved results, we believe that tracing JIT
compilers will become standard in ML frameworks in the
future, enabling research on dynamic models and models
using operations not yet supported natively by frameworks.

2 Overview
In this section, we present by example how Torchy works.
Consider the following example that creates two random
4x3 matrices, computes (𝑥 + 𝑦) · 𝑦, and prints the result:
1 x = torch.rand(4, 3)
2 y = torch.rand_like(x)
3 z = x.add(y)
4 z.mul_(y)
5 print(z)

Operation rand_like(x) creates a new random tensor
with the same shape as x. The in-place operation mul_ over-
rides 𝑧 with the result of the multiplication. In-place oper-
ations not only save temporary memory (useful to reduce
memory peaks), but also potentially improve cache locality.
When running the above program with vanilla PyTorch,

execution is done line-by-line as we have seen before. Re-
member that PyTorch is just a Python library. PyTorch es-
sentially acts as an interpreter and therefore cannot do any
optimization across operations.

Torchy is a PyTorch extension, and hence it also depends
on Python to discover operations over tensors. But instead
of executing operations straight away, these are delayed and
“shallow” tensors are returned instead. The returned tensors
look and act as normal PyTorch tensors would, even if they
may not have any content.

Figure 2 shows howTorchy executes our example program.
When Python reaches the call to rand, it calls into PyTorch,
which then generates an event that is intercepted by Torchy.
Usually it would be handled by PyTorch itself, which would

execute the operation and return the resulting tensor. Torchy,
however, stores the event in the trace and returns a “shallow”
tensor instead, which contains only the data type and shape
information. No memory is allocated for the result.
Our trace IR syntax loosely follows that of LLVM. The

first line of the trace indicates that register %0 contains the
result of executing the operation rand. Note that we treat
all operations, in place or not, uniformly: they all return a
tensor even if it is just an alias to one of the input tensors.
For example, mul_ returns an alias to the first argument.

Python then moves to the rand_like call. PyTorch needs
the shape information of the input to create a tensor with the
same shape. Since we do type and shape inference, our “shal-
low” tensors contain this information and thus rand_like
can be executed straight away.

When Python reaches the print statement, PyTorch gen-
erates an event requesting the contents of tensor z. Torchy
gets this event and realizes the tensor is not up-to-date, i.e.,
there are operations pending in the trace that can potentially
change the contents of the tensor. The trace must, therefore,
be flushed. Note that the trace can be safely flushed at any
time; for correctness purposes Torchy only needs to compute
an over-approximation of tensors that are impacted by the
operations pending in the trace.
Flushing the trace consists in executing every operation

on the trace and updating the corresponding tensors appro-
priately. We employ a cache to store compiled programs for
frequent traces.

Currently, Torchy supports only one backend, TorchScript,
which is part of PyTorch and supports both CPUs and GPUs.

One feature not shown in our example trace is the tracking
of externally observable tensors. Since Python is a reference-
counted language, once a tensor goes out of scope in the
user’s program, PyTorch gets a notification. We track which
tensors are just temporaries and not observable by the pro-
gram anymore using this mechanism. Information about
temporaries enables further optimizations, including opera-
tion fusion. We also detect which operations are not needed
anymore so they can be removed from the trace.

After executing the trace, control returns back to PyTorch
that can then print the tensor. Torchy delayed the execu-
tion of operations but still provided the same eager-mode
semantics of PyTorch transparently.

3 Torchy
In this section we explain how Torchy works in more detail.
We start by formalizing our slightly modified version of
PyTorch tensors, as well as traces. We then describe how
operations are intercepted and how the trace is managed.

3.1 Tensors
Let 𝑡 = (dtype×shape×strides×traceidx×dataID?×refs) be
a tensor, where dtype is the tensor’s data type (float, bool, . . .).
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Let 𝑑 = (device×bytes×materialized×refs) be the raw data
of a tensor. A tensor is a view over the raw data, which can
be shared across several tensors. Without loss of generality,
we only describe dense tensors.

List shape contains the tensor’s dimensions. For example,
a 3x2 matrix has shape = (3, 2). List strides determines how
the data is stored, e.g., row- or column-major order. In row-
major order (like C’s arrays), a 3x2 matrix has strides =

(2, 1), meaning that to access the next element in a row we
need to increment the pointer by one, while to access the
same element in the following row we need to increment
the pointer by two.

As an example, the matrix transpose operation in PyTorch
is implemented as a view. Concretely, for an input tensor 𝑡 , it
returns a new tensor 𝑡 ′ with the same data but flipped shape,
i.e.: 𝑡 ′ = (dtype, rev(shape), rev(strides), traceidx′, dataID, 1),
with rev being a function that reverses the input list. Because
𝑡 ′ is just a view, changing an element of tensor 𝑡 changes the
corresponding transposed element of 𝑡 ′ and vice versa.

Torchy tensors also contain a traceidx field that indicates
the location in the trace if this tensor was the result of an
operation that was delayed and not executed yet. We discuss
the role of this field in the next section.
Each tensor optionally contains a pointer to a raw data

tuple (dataID), which stores the data associated with the
tensor in some device (CPU or GPU).
Raw data contains a materialized bit to indicate whether

the data is up-to-date or if some operation possibly impacting
this data has been delayed and not executed yet. This bit is
an addition of Torchy.

Both tensors and raw data are referenced counted and au-
tomatically destroyed when the counter reaches zero. Torchy
intercepts these destruction events.

3.2 Trace
Let trace = (ops × optensors × inputs) be a trace, which
contains 1) a list of operations (in-place or otherwise) that
have been delayed, 2) a list of tensor ids corresponding to the
tensors affected by each of the operations (listeners), and 3)
a list of inputs to the trace. The length of ops and optensors
is equal.

Each operation consists of an opid that indicates the oper-
ation. Operations then have a list of arguments. PyTorch has
about 30 types of arguments (traceidx∪ inputidx∪ device∪
dtype ∪ scalar ∪ . . .). Constant arguments, such as scalars,
are baked into the trace and included directly in the args
list. As these are fixed, backends can take advantage of these
when generating code.

Three types of arguments are not constant: tensors, pseudo-
random number generators, and storage buffers. Traces have
a separate list of non-constant inputs (the last element of
the triple) to hold these. Tensors are further special cased,
as these may either correspond to the result of a previous

operation in the trace (tracked as traceidx), or a tensor ex-
ternal to the trace (tracked as inputidx, corresponding to the
position in the inputs list).
Operations track one more bit of information: whether

they are externally observable or not. Once a tensor goes out-
of-scope, the program cannot observe it anymore. Torchy
gets a notification when that happens and records that in-
formation. Operations that are not externally observable are
just temporaries that can be deleted or more easily fused with
other operations. Therefore, tracking external observability
is important for optimizations.
We separate ops from optensors in the trace as ops are

used for compilation, while optensors and inputs are used
for trace execution.

3.3 Intercepting Operations via Tracing
Torchy intercepts all operations over tensors. When a pro-
gram performs such an operation, Torchy returns a shallow
tensor without computing its contents. For functional opera-
tions, Torchy returns a fresh tensor:

𝑡 = (dtype, shape, strides, traceidx,None, 1)

where dtype is the inferred data type for the result of the
operation, shape and strides are the inferred shape informa-
tion (computed in a best-effort way as these are optional),
traceidx = |trace.𝑜𝑝𝑠 | the current length of the trace, carry-
ing no data, and with reference count of 1.

Furthermore, the tensor is registered in the tensor map T
with a fresh 𝑖𝑑 and the operation is appended to the trace:

T← T[𝑖𝑑 ↦→ 𝑡]
𝑜𝑝 = (𝑜𝑝𝑖𝑑, 𝑎𝑟𝑔𝑠, true)
trace← (trace.ops · 𝑜𝑝, trace.optensors · {𝑖𝑑}, 𝑖𝑛𝑝𝑢𝑡 ′)

where 𝑜𝑝𝑖𝑑 is the intercepted operation’s identifier, 𝑎𝑟𝑔𝑠
its arguments, 𝑓 ′ = 𝑓 [𝑥 ↦→ 𝑦] a function equal to 𝑓 except
that 𝑓 ′ (𝑥) = 𝑦, and 𝑙 · 𝑒 the result of appending 𝑒 to list 𝑙 .
Tensor arguments that were not present in tensor.inputs are
appended to this list, resulting in 𝑖𝑛𝑝𝑢𝑡 ′. That is, we share
trace inputs across operations. Each tensor added to the input
list gets its reference counter incremented.

In-place operations do not create a new tensor; they simply
mark the overridden operand (𝑖𝑑) as not fresh. The operation
is appended to the trace as before (where RD maps dataID
into raw data tuples):

T[𝑖𝑑] .traceidx← |trace.𝑜𝑝𝑠 |
RD[T[𝑖𝑑] .dataID] .materialized← false

Updating the idx makes it easier to compute which oper-
ations are not referenced by other operations and thus can
be removed from the trace. Subsequent operations that take
this tensor as input will reference the last idx, which in turn
references the previous in-place operation on that tensor and
so on, trivially marking all in-place operations as necessary.
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3.4 Accessing Tensor Data
Access to tensor’s data/properties in PyTorch is done through
C++ virtual methods. This indirection allows us to intercept
such calls.
Shape information is inferred during tracing. Therefore,

we can answer those queries without computing the result of
the operation. However, data accesses require computing the
result. Such functions first check if the tensor is fresh (i.e., for
a tensor 𝑡 , 𝑡 .dataID ≠ None ∧ RD[𝑡 .dataID] .materialized is
true). If not, the trace is flushed first so the tensor is updated.

The materialized bit is stored in the raw data rather than
in the tensor directly as tensors can share data. For example,
if two tensors have the same dataID, and the user does an
in-place operation on one of the tensors, printing the other
one must trigger a trace flush. Hence, the condition to detect
whether a tensor is fresh must be derived from the raw data
tuple as that is what is shared amongst tensor views.

3.5 Flushing the Trace
Flushing the trace amounts to computing the result of each of
the operations and updating their respective output tensors
(if any). An operation only needs to be executed if 1) it is
externally observable (i.e., its respective optensors is non-
empty), 2) its result is used by another operation in the trace
that has to be executed, or 3) it has some side effect.
The trace is first compiled using the ops, optensors, and

inputs data. This allows the backend to specialize the code
for the specific tensor shapes of the input. The information
of optensors is only used to determine which operations are
externally observable and that constitute the set of outputs
of the trace. The result of the compilation is stored in a cache.

The compiled function takes inputs and produces a set of
tensors as output. Each tensor in optensors is then overrid-
denwith the output tensor. Note that this is a cheap operation
as raw data (the big chunk) is not copied; it is a mere pointer
copy (the dataID).

4 Implementation
Torchy is implemented in C++14 like PyTorch itself, and
consists of about 3,000 lines of code. We have an additional
35,000 lines of code that are automatically generated by a
Python script. This includes dispatch wrappers, redispatch
handlers for the interpreter backend, and operation names.
Torchy is implemented as a PyTorch extension and can

be installed via, e.g., pip install torchy. To use Torchy,
users only need to write:

1 import torchy
2 torchy.enable()

Torchy is open-source and available at https://github.com/
nunoplopes/torchy.

4.1 Data Structures
For the trace we use a fixed-size buffer with capacity for up
to 64 operations. In all the models we tried, we observed that
traces were usually shorter than 64 operations. By using a
fixed-size buffer we avoid (slow) memory allocations in the
fast path, i.e., when executing a previously seen trace that
we have already compiled and cached.

Similarly, optensors in the trace is a buffer with space for
three tensors only. This data structure records which tensors
share storage with an operation in the trace. In our bench-
mark suite we observed the common case does not have
more than three aliases per tensor, so again we avoid mem-
ory allocations in the common case. When our assumption
is violated, we have to flush the trace.

We add one extra field to both tensors and raw data struc-
tures as mentioned before. For tensors, we created our own
TorchyTensor that inherits from PyTorch’s TensorImpl and
adds the extra traceidx field. For the materialized bit in raw
data, we patched PyTorch’s StorageImpl class to give us
this extra bit for free as there were some bits available in
padding. Therefore, we increase the tensor size by 8 bytes
and do not increase the size of raw data.

4.2 Event Interception
For correctness, Torchy has to intercept all observable events
in a PyTorch program. PyTorch has three types of such
events: dispatched events, C++ virtual methods, and non-
interceptable. Furthermore, we decide to passthrough some
events to keep the design simple.

4.2.1 Dispatched Events. These events are operations
over tensors (e.g., element-wise addition) and they go through
PyTorch’s dispatcher. To intercept these operations, we gen-
erate a function for each of the PyTorch’s tensor operations
(aka ATen). Fortunately, PyTorch’s source code contains a
database with the type signature of all operations.
We have three types of wrappers: 1) in-place operations,

which register the operation on the trace, 2) functional op-
erations, which register the operation on the trace, do type
and shape inference, and return a new TorchyTensor, and 3)
non-supported operations, which redispatch the operation
straight away.

The wrappers for in-place operations also perform shape
inference to record whether the shape changes or not. As we
do not store the different shape in case it changes to avoid
additional memory consumption, we have to flush the trace
when this rare case happens.

Operations that return something other than tensors (e.g.,
an integer) cannot be delayed without changes to the Py-
Torch API as it is not possible to overload primitive C++
types. We would need to be able to return a “delayed” inte-
ger object to Python, for example.

The behavior of PyTorch’s dispatcher is influenced by both
a global state and by the tensor arguments of the operation.
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This allows users to, e.g., have parts of their program run
through Torchy and other parts run natively or with other
methods. The easiest way of using Torchy, however, is by
changing the global state using torchy.enable() to force
all operations to be intercepted by Torchy.

4.2.2 C++ Virtual Methods. Internal access to tensors’
properties (e.g., get tensor shape, get tensor raw data, change
strides) is done via C++ virtual methods of the TensorImpl
class. We overload this class via our own TorchyTensor.

When an overloaded method is called there are three cases:
1) the tensor has been already materialized, in which case we
redirect the call to the native method, 2) we have inferred the
information (e.g., the shape) and therefore we can provide
that information ourselves, and 3) the tensor has not been
materialized and we do not know how to reply to the query.
In theory, TorchyTensor could answer all queries on its

own except the request for the raw data, which amounts to
executing the operation. However, to keep the design simple
and the memory overhead low, we give up in some cases
and flush the trace instead. For example, we do not allocate
space in the TorchyTensor for the shape information; we
reuse the space in TensorImpl instead. This solution works
for most cases but breaks for the rare in-place operations
that change the shape. Since we can only keep one shape
at a time and we need to keep the original shape for when
the operation is executed, we use a bit in TorchyTensor to
indicate whether the shape information is fresh or not. We
flush the trace when some data is accessed and is not fresh.

The cases where we give up tracking some of the tensor’s
information are rare, which justifies our tradeoff in saving
memory vs sometimes having to cut a trace short earlier
than needed.

4.2.3 Non-interceptable. Unfortunately PyTorch does not
allow us to intercept all the necessary events. First, we have
non-virtual methods in the TensorImpl class (e.g., data type
and device). These are easy to account for; all we need is to
compute this information during tensor creation.
The second class of events are essentially shortcomings

in PyTorch’s API. These are hard to debug as they usually
only manifest by making a program run with Torchy pro-
duce different results than when run without. One case we
found is when mixing Torchy and non-Torchy tensors, e.g.,
some_tensor.set_(torchy_tensor). This operation over-
rides some_tensor’s data with that of torchy_tensor. The
issue is that we cannot track future events through the C++
virtual methods on the non-Torchy tensor. We have patched
PyTorch to fix the copy operation to go through the virtual
methods, which will then trigger a trace flush.

Another example, also originating when running Torchy
selectively, is when doing an in-place operation on a non-
Torchy tensor. If the tensor’s reference count is one, we re-
place the underlying TensorImplwith our own TorchyTensor.
This allows us to intercept future events on this tensor. If the

tensor is shared, we cannot replace it as we do not know the
other references to patch them. Therefore, we have to flush
the trace straight away as we would not be able to intercept
virtual method events through the other references.

4.2.4 Passthrough Events. A fundamental part of the
design of the trace is what is the language of events. To
keep the design simple and focused on the common case,
we decided to keep the trace’s language over tensor algebra
operations only. Thus, we are unable to delay all events, and
need to pass through some straight away and potentially
flush the trace. We observe that these events are rare.
We passthrough shallow_copy_from, which copies the

properties (shape, etc) from another tensor. This contrasts
with shallow_copy that essentially creates an alias for a
tensor, and we fully support through the optensor set.

When copying from another tensor we may need to flush
the trace straight away rather than keeping an alias. There
are two cases: The first is when the tensor we are overriding
is an input to the trace. We do not copy input tensors; we
merely keep a reference. Therefore, any change in place
that cannot be delayed through the trace mechanism must
trigger a trace flush. The second case is when the tensor
being overridden is not materialized. We must flush the trace
first, as otherwise we would end up undoing the copy when
materializing the tensor.

4.3 Data Type and Shape Inference
In PyTorch, all tensors must have a data type as the access
to this information is not observable. Therefore, we need
to compute the data type for all tensors created for delayed
operations. Shape information, however, is optional as ac-
cesses to it are observable. Nevertheless, we try to infer shape
information whenever possible to increase the size of traces.

For most cases, data type inference is simple: an addition
of two floats yields a float. We have promotion rules for when
the operands have different types. There are also operations
that return a fixed type. For example, argmax always returns
an integer-typed tensor regardless of the type of the input.
To reduce the implementation effort, we implemented a

program that calls all the roughly 2,000 PyTorch operations
with several combinations of parameters. For example, the
program calls the addition operation with two tensors of all
the possible data types and samples of tensor shapes. The
program then selects one of the functionswe hand-wrote that
covers the input/output behavior of each of the functions.

The type inference results are sound, as our program cov-
ers all combinations of input tensor types. However, it is
not for shape inference. As the number of shapes is infinite,
we have to sample the input space. The used shapes were
crafted manually to trigger all the known corner cases, and
therefore we expect the resulting shape inference functions
to be correct in practice. Moreover, when Torchy is run in
debug mode, it checks whether the inferred data is correct.
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We wrote 27 functions for type inference and 29 functions
for shape and strides inference, for a total of about 600 lines
of code.

4.4 Backends
We implemented two backends: an interpreter and compi-
lation through TorchScript. TorchScript performs several
classic compiler optimizations (dead code elimination, con-
stant propagation, etc), as well as operation fusion.

Traces are compiled the first time they are executed, and
the compiled code is cached for subsequent executions.

5 Evaluation
5.1 Setup
Experiments were run on an Azure NC12s v3 VM, which
provides 12 cores of Intel Xeon E5-2690 v4 (Broadwell) CPUs,
224 GB of RAM, and two nVidia Tesla V100 GPUs.

We used a development version of PyTorch 1.11, git hash
e52d0e77. PyTorch was compiled with Intel MKL 2020.4,
LLVM 10 (for the JIT), and CUDA 11.5. Benchmarks used
torchvision 0.9.1 and Hugging Face’s transformers 4.11.3.

PyTorch was configured to run CPU operations in parallel
across all cores and GPU operations in a single GPU.

5.2 Microbenchmarks
We start by comparing the performance of Torchy in mi-
crobenchmarks against PyTorch and TorchScript on CPUs
and GPUs. The benchmark programs contained a set of ele-
mentwise operations run over square matrices.

Programs run the set of operations in a loop for at least a
thousand times. We force trace flushing between loop itera-
tions, which makes the trace size equal to the number of op-
erations mentioned above. This setup represents a best-case
scenario where we encounter the same trace many times.
We run Torchy with the TorchScript backend twice for

each device: once with the NNC compiler enabled, and an-
other with it disabled. The NNC compiler fuses operations
and JIT compiles the resulting fused operations using LLVM
for CPUs and CUDA’s compiler for GPUs. Both TorchScript
and NNC are part of PyTorch.
Figure 3 shows the speedup for each of the programs.

Firstly, we observe that the overhead of Torchy is low: speedup
varies between 0.75x for the smallest benchmark to 1.5x.
Even when running Torchy without optimizations we ob-
serve performance improvements in some benchmarks. This
is due to cache effects: baseline PyTorch goes back-and-forth
to Python between operations, which makes parts of tensors
to be evicted from the cache. Torchy, on the other hand, exe-
cutes all the operations in sequence thus reducing the cache
trashing effect.

As expected, the longer the traces and the larger the input
the better. Longer traces expose more opportunities for fu-
sion. In fact, NNC fuses our benchmark traces into a single
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Figure 3. Speedup of microbenchmarks with 8, 16, and
32 elementwise operations over square matrices with 𝑛 =

100, 1000, 10000. The last benchmark on the right contains
control-flow (cf); the others are straight-line code.

loop, thus it eliminates the use of temporaries and improves
cache locality. This explains the 12x speedup on the CPU.
Finally, we are interested in comparing the performance

of Torchy and TorchScript. Internally they both use the
same NNC compiler, which explains why they get very sim-
ilar speedups. It is worth noting that Torchy requires zero
changes to the program, while TorchScript requires users to
annotate the code to mark the blocks that should be com-
piled. Torchy hence achieves similar performance without
any user intervention.

Torchy outperforms TorchScript significantly on the right-
most benchmark. While all the other benchmarks consist of
straight-line code, which is the best-case scenario for Torch-
Script, this control-flow (cf) benchmark contains an if state-
ment with different operations in the two branches. The NNC
compiler does not support control-flow, hence TorchScript
gets limited fusion in this benchmark, explaining the poor
performance. Torchy, on the other hand, creates two traces
for the function so that NNC can fuse all operations.

5.3 Machine Learning Models
In the previous section we showed the speedup of Torchy in
an idealized scenario.We now benchmark Torchy by running
inference queries on a set of off-the-shelf machine learning
models. These are popular models which have been exten-
sively optimized by hand already, and thus we do not expect
significant speedups.
We run CNN models from torchvision (ResNet-18 [17],

ResNeXt [39], MobileNetV3-L [18]) and transformer models
from Hugging Face (BERT [11], GPT-2 [33], RoBERTa [26]).

5.3.1 Impact of Shape Inference on Flush Reasons.
First we investigate what is the impact of doing shape in-
ference. We expect traces to get longer as we potentially
reduce the number of flushes when only shape information
is accessed.

Figure 4 shows the frequency of each reason that triggered
a trace flush with and without shape inference. We observe
that for the BERT family our shape inference handles most
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Figure 4. Flush reasons without (left) and with (right) shape inference. The flush reasons are as follows (in order of the legend):
reached maximum trace size, unknown stride, unknown shape, reached limit of tensor aliases, unknown number of elements,
unknown data contiguity, missing storage data (not inferred), unknown number of dimensions, missing gradient (not inferred).

of the queries, and thus the dominant flush reason becomes
access to tensors’ data, which is exactly what we want. Ac-
cess to a tensor’s data requires computing the result of the
operations that impact that tensor, and thus is the only query
that in principle we cannot avoid flushing the trace.
The non-BERT models also show a substantial reduction

in flushes for missing shape information. However, they
miss stride information (required for is_contiguous). The
reason is twofold: we did not implement stride inference
for all operations, and PyTorch has a performance bug in
the arange operation that makes it produce an intermediate
zero-sized tensor regardless of the final shape (which is later
resized). Since we do not keep extra storage for shape/stride
information, we require PyTorch to get this information right
for the intermediate tensors, otherwise we have to give up
shape/stride inference. This behavior is a performance bug
in PyTorch and a fix is underway.
For the GPT2 benchmark, the dominant flush reason is

the lack of gradient information. Our implementation is very
conservative and flushes the trace straight away whenever
any information about a gradient is requested. However, in
most cases, PyTorch is merely accumulating operations on
the gradient tape. These can be delayed and in theory do not
need to trigger a trace flush. We are in contact with PyTorch
developers in order to implement a solution that will allow
us to delay gradient accumulation efficiently.

5.3.2 Impact of Shape Inference on Number of Traces.
Table 1 shows the number of unique traces for our bench-
marks, with and without shape inference. Even if we do not
have complete coverage for shape inference, enabling it gives
a very expressive reduction.
The torchvision benchmarks have a much higher num-

ber of traces. These benchmarks consist in 2,000 inference
queries. For each image, we intercept an operation of the
form select.int %0, 0, 𝑖 , where 𝑖 is the loaded image
number. Thus, the number of traces grows linearly with the
number of inference queries instead of being constant like

Table 1. Number of unique traces, with and without shape
inference. In the rightmost column we show the percentage
of reduction of the number of traces when doing shape in-
ference. In parentheses, we give the percentage ignoring the
2,000 single-use traces that should have been de-optimized.

Benchmark wo/ infer w/ infer Reduction
BERT-B-class 88 33 63%
BERT-B-qa 40 19 53%
BERT-L-class 88 33 63%
BERT-L-qa 40 19 53%
RoBERTa-mask 88 42 52%
GPT2-gen 247 96 61%
MobileNetV3 2124 2092 1.5% (26%)
ResNet-18 2048 2038 0.5% (21%)
ResNeXt 2065 2048 0.8% (26%)

in Hugging Face’s benchmarks. A simple option would be
to special case the handling of select.int to avoid baking
the constant in the trace and rather pass it as an input to the
trace. Another is to implement de-optimization, where simi-
lar traces would be merged and some constants promoted to
inputs. We leave this for future work.

In Table 1 we also give the reduction percentage when ig-
noring the 2,000 single-use traces. This is a more meaningful
number for comparing with the other benchmarks.

5.3.3 Impact of Shape Inference on Trace Size. Fig-
ure 5 shows the impact of shape inference on trace’s sizes.
The percentages given are relative to execution frequency.
For example, about 71% of the traces executed for ResNeXt
without shape inference had a single operation.

We observe that shape inference increases trace size sig-
nificantly. Without inference the maximum size was 10 op-
erations, while with inference it is 38. Traces are longer for
the BERT models, which is consistent with the fact that we
have better inference coverage for these models. For exam-
ple, GPT-2 improves with shape inference, as we can see the
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Figure 6. Speedup of Torchy (with shape inference) in sev-
eral inference tasks on a diverse set of standard machine
learning models.

distribution of trace sizes more towards the right, but the
maximum size is 32, and the most frequent is only of size 4.
Models from torchvision have their most frequent traces

with size 1 only because of the select.int issue.

5.3.4 Performance. We show the speedup of Torchy in
Figure 6, with and without operation fusion (NNC). We do
not show numbers for TorchScript as the model implemen-
tations we used do not natively support it.
Unsurprisingly, Torchy only has a speedup over one in

a single case. There are several reasons for the poor per-
formance, especially when considering the good results in
microbenchmarks.

Firstly, we observe that the performance with torchvision
is lower than with Hugging Face. The main reason is that the
way that torchvision loads the dataset triggers an explosion
in the number of traces (the select.int issue). This induces
a significant overhead in terms of compilation time.

Secondly, the implementation of the models we used has
been heavily optimized by hand over the years. Obviously,
there are few opportunities left for the compiler. Moreover,
PyTorch has already added native implementations for the
most expensive operations in these models. Therefore, the

opportunities left for the compiler to optimize are mostly
in the cheaper parts of the code. Nevertheless, the NNC
compiler improves performance over baseline Torchy.

Finally, the NNC compiler itself is still in early stages. We
observed multiple opportunities for improvement:

• No support for fusing in-place operations. This is fun-
damental as in-place operations reduce peak memory
consumption and improve cache behavior.
• No support for changing functional into in-place op-
erations whenever possible (i.e., when the overridden
tensor is a temporary as it is not used further).
• No support for merging equivalent operations. We
observed equivalent view operations in a trace that, if
canonicalized, would expose opportunities formerging
multiple matrix multiplications.
• No support for fusing operations with operands placed
in different devices, even if the semantics is to tem-
porarily move the operands into a same device.
• The fusion algorithm does not support batched matrix
multiplications (even on the trivial case with a single
batch). These are very common in transformer models.
• TorchScript does not support the equivalent of C++’s
call by r-value reference. If we detect a trace’s input
tensor is not externally observable anymore, we could
mark it as a temporary in the TorchScript function
if it supported such functionality. This would enable
TorchScript to change functional operations over these
tensors to their in-place equivalents.

We are in discussions with the TorchScript team to im-
prove their compiler based on our findings. These improve-
ments are, however, orthogonal to this paper, which focuses
on producing traces and executing them with some backend.
A final positive note is that the overhead of PyTorch is

fairly low. For the Hugging Face models, we see overheads
around 2%. This result is very encouraging as it shows that
a good optimizer will enable Torchy to outperform baseline
easily as there is little overhead to offset.
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6 Related Work
The work closest to ours is LazyTensor [37]. Like Torchy,
it is a tracing compiler for PyTorch and was developed in
parallel to our work. LazyTensor does not support in-place
operations natively (they are converted to functional), unlike
Torchy. This results in LazyTensor consuming more memory
and being slower than Torchy. Furthermore, LazyTensor’s IR
is graph-based, while ours is a simple fixed-size buffer. Thus,
their design incurs in significant overhead from constant
memory allocations and pointer chasing. On the other hand,
LazyTensor natively supports capturing very long traces and
even single-trace models. Combining both approaches is
likely a good idea that we leave for future work.
TeaTorch [21] is a static type checker for PyTorch. Like

Torchy, it infers the shapes of tensors, but it uses an SMT
solver (Z3) to do so. TeaTorch can potentially infer more
shapes than Torchy, specifically those of more dynamic op-
erations. However, SMT solvers are too slow for our use.

BELE [41] is a lazy evaluator for numeric Python packages.
DTR [23] is a dynamic tensor rematerialization library for

PyTorch that uses a greedy algorithm to decide when to keep
temporaries in memory and when to recompute them. Like
Torchy, DTR intercepts all PyTorch operations.

DyNet [29] is an eager-mode framework that support lazy
evaluation. Terra [22] creates a trace DAG and attempts to
synchronize Python programs and traces by finding cut-
points heuristically.

AutoGraph [27] is a compiler for TensorFlow’s eager mode
that rewrites imperative code into data-flow graph creating
code. The goal is the same as TorchScript’s compiler, but
works instead by manipulating Python programs’ ASTs di-
rectly. TorchDynamo [12] works at Python bytecode level
and captures sequences of tensor operations. Janus [20] is
a compiler for TensorFlow’s eager mode but uses profiling
and speculative execution to deal with control flow.

XLA [10] is TensorFlow’swhole-program compiler. Glow [36]
is similar, but targets PyTorch. ORT [9] takes ONNX graphs
as input. All three require the whole ML model’s graph to
be provided (e.g., by hand or through tracing).
There are several DSLs for the implementation of ker-

nels [25]. Schedules for the generated loops are specified
manually or obtained automatically. For example, AKG [42],
Polly [15], Tensor Comprehensions [38] and Tiramisu [2] use
polyhedral compilation techniques. Halide [35] uses a sim-
pler interval analysis to compute the iteration space. taco [24]
supports a variety of sparse tensor formats. AutoTVM [8]
learns how to optimize kernels written in TVM [7] using an
ML model. SDFG [4] exposes a graphical interface for ex-
ploration of the impact of graph transformations on kernels.
Swizzle Inventor [32] synthesizes index expressions for array
indexing, including complex data shuffles. These tools are
orthogonal to Torchy and could be used for generating code
for fused operations from the traces produced by Torchy.

Tracing JIT compilers are used in a variety of contexts. For
example, Dynamo [3] and Valgrind [28] use tracing to dis-
cover binary code and to handle self-modifying code. Several
tracing compilers exist for programming languages, includ-
ing HotpathVM [14] and trace-JIT [19] for Java, TraceMon-
key [13] for JavaScript, and PyPy [5] for Python. These com-
pilers usually trace across function boundaries like Torchy,
but they operate at a much lower level. Torchy traces ten-
sor operations, not individual assembly operations, which
is good as tensor operations take longer to execute, so we
have less overhead. On the other hand, the fact that we do
not have access to the program control-flow makes it harder
to decide when to flush a trace as we cannot rely on the
program’s natural cut-points like branches and loop heads.

7 Discussion
Torchy is a good step for speeding up eager-mode frame-
works such as PyTorch, even if the performance with real
models is not great yet. In the evaluation section we dis-
cussed opportunities for improvement in the backend we
used, which are orthogonal to this paper. Nevertheless, traces
are the holy grail for compilers, even more so for those spe-
cialized in tensor operations, as our traces consist of straight-
line tensor operations only. We should see better perfor-
mance as we plug in more backends to foster competition.

We note that the benchmark models we used are close to
the worst-case scenario. These models have been designed
with the constraints of the current generation of ML frame-
works inmind. Similarly, frameworks like PyTorch have been
extensively optimized for these popular models, leaving us
with few optimization opportunities. Nevertheless, it is im-
portant that we work on a general solution to improve the
performance ofMLworkloads that does not require tweaking
models and frameworks together as this defeats the purpose
of having frameworks altogether.

8 Conclusion
We presented Torchy, a tracing JIT compiler for PyTorch.
Torchy solves the fundamental problem of code discovery
for the compilation of machine learning codebases by tracing
tensor operations at run time. Torchy works transparently
with any codebase unmodified unlike other solutions.

Torchy offers the same eager semantics as PyTorch, while
enabling optimizations such as operation fusion through
type and shape inference. These optimizations are not possi-
ble in PyTorch as it executes one operation at a time.

Torchy outperforms PyTorch by up to 12x in microbench-
marks. We believe tracing JITs will become standard in ML
frameworks and enable the development of a new generation
of models not supported well by current frameworks.
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