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Abstract—Modern AI workloads require architectures capable of efficiently
managing diverse tensor contraction patterns. Traditional approaches based
on fixed-size matrix multiplications often fall short in scalability and flexibility.
RNGD (pronounced “Renegade”), a second-generation tensor contraction
processor (TCP), introduces an innovative architecture designed to exploit the
parallelism and data locality inherent in tensor computations. Its coarse-grained
processing elements (PEs) can operate as a unified large-scale unit or as multiple
independent units, providing flexibility for various tensor shapes. Key innovations,
such as a circuit switch-based fetch network, input broadcasting, and buffer-based
reuse mechanisms, further enhance computational efficiency.
RNGD represents a significant advancement in processor architecture, delivering
optimized performance and energy efficiency for sustainable computation of
next-generation AI workloads.

T he escalating energy demands of AI comput-
ing, exacerbated by the significant cooling re-
quirements of kilowatt-consuming GPUs, are

steering us towards an unsustainable future. There
is an urgent need for a revolutionary AI accelerator
tailored to the rigorous demands of large language
models (LLMs)—one that provides high memory band-
width, substantial capacity, and dense compute power,
yet dramatically reduces power consumption to allow
for cost-effective air-cooling solutions.

Most major commercial AI accelerators, includ-
ing GPUs, are primarily based on matrix multipli-
cation as the fundamental operation for hardware
acceleration.1,2,3,4 However, tensor contraction is the
fundamental operation in machine learning models.
Matrix multiplication is just a particular instance of
contraction.

Traditional computational architectures implement
tensor contraction by mapping or decomposing it into
fixed-size matrix multiplication units. This method, how-
ever, may not fully leverage the inherent parallelism
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and data locality specific to tensor contractions. In-
ference tasks typically involve diverse tensor shapes,
necessitating the exploitation of parallelism and data
reuse across both tensor shapes and batch sizes.
However, chips based on large matrix units face chal-
lenges in fully utilizing these units across varied tensor
operations due to their fixed sizes.5,6 Additionally, when
the unit size of an accelerator, such as matrix or
tile size, is small, the opportunities for data reuse
are limited.2 Spatial accelerators, which consist of
numerous small PEs, each with a local memory and
interconnected by a network-on-chip (NoC), suffer from
a high complexity of parallelizing operations in a NoC-
aware manner.

Instead of relying on fixed-size matrix multiplication
units, we use tensor contraction as the fundamental
computational primitive. Our architecture not only fa-
cilitates massively parallel operations but also incorpo-
rates temporal pipelining, similar to vector processors.
We have engineered large coarse-grained PEs that
can be divided into smaller units called slices. This
design allows for highly flexible configurations to ac-
commodate a variety of tensor shapes. The fetch net-
work, which connects these slices, determines whether
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the slices function as a single large PE or as multiple
small, independent, and parallel compute units.

The computational units in the tensor contrac-
tion processor (TCP)7 run deterministically, as defined
by the software, ensuring performance predictability,
which allows us to develop precise cost models for both
performance and energy consumption. These cost
models allow our compiler to explore the most effective
configurations of tensor shapes and contractions.

We propose a domain-specific architecture for AI
workloads that elevates the hardware-software inter-
face by treating tensor contractions as a primitive.
This approach not only streamlines hardware design
for higher performance and energy efficiency, but also
provides the flexibility to support a wide variety of AI
models. Compared to power-hungry GPUs that target
general parallel processing, TCP provides abstractions
that target the computing space of deep learning.
By integrating various compiler optimizations, while
minimizing the complexity of the hardware, TCP makes
AI more energy efficient and sustainable.

TENSOR CONTRACTION AS A
PRIMITIVE

Tensor contractions, fundamentally reducible to high-
dimensional matrix operations, are compute and mem-
ory intensive. Executing tensor contractions efficiently
requires optimal scheduling of operations across com-
pute units, as well as careful management of data
movement and reuse. The performance and energy
efficiency of these operations are directly influenced
by how the computation of individual units is temporally
and spatially scheduled.

The scheduling of operations across multiple com-
pute units determines not only the temporal locality
of data but also the overall computational efficiency.
Temporal locality, dictated by the sequence in which
operations are scheduled, impacts how much data is
reused. High data reuse improves energy efficiency.
Conversely, the spatial distribution of computations
across compute units affects the cost of data move-
ment and the utilization of compute units. Poor spatial
scheduling leads to increased data transfers and un-
derutilized compute resources, diminishing both per-
formance and energy efficiency.

Our architecture addresses these challenges by
integrating tensor computations and scheduling into
a unified approach. Temporal scheduling determines
the order of sequential data processing to reuse local
data. Spatial scheduling distributes operations across
compute units to ensure balanced workloads. It also
contributes to reducing memory traffic via multicast

capabilities, which distribute data across multiple com-
pute units, while temporal pipelining enables the con-
tinuous utilization of spatially distributed compute units.

Figure 1 illustrates a simple example of a tensor
contraction operation, where matrices A and B are mul-
tiplied to produce C. This operation can be represented
as a nested for-loop, as shown in the middle. On actual
hardware, this computation is executed in parallel using
multiple compute units and SRAM memories.

For simplicity, consider a chip with 4 SRAM blocks
and 4 compute units. The outermost loop corresponds
to parallel execution along specific axes, the innermost
loops represent unit computations performed every
cycle, and the intermediate loops handle scheduling
across time and space. This unified approach treats
tensor contraction as a single primitive, with ten-
sors being distributed across SRAM and computations
scheduled spatially and temporally.

We organize compute units into fetch-operation-
commit stages, with each compute unit being paired
with an SRAM block, forming a slice (Figure 2). Tem-
poral pipelining enables these slices to process ten-
sor data continuously, with the fetch stage retrieving
tensors in a defined order and the fetch network dy-
namically configured to distribute data to the operation
unit.

Note that the dataflow in our architecture is fully
streamlined by the compiler. All datapaths, whether
fetching multi-dimensional data, supplying inputs to the
dot product engine, or routing data through the fetch
network, are orchestrated to ensure a unified and well-
integrated flow of operations. The fetch unit reads data
from SRAM continuously, in an order determined by the
compiler. The fetched data is multicast, via the fetch
network configured by the compiler, and selectively
processed by the contraction, vector, or transpose en-
gines. Finally, the commit unit stores the computation
results back to local SRAM in a memory layout that is
optimized by the compiler for the following operation.

The operation unit, shown in Figure 2, is designed
to maximize data reuse and thus it is equipped with
a feed (input) buffer, a register file, and an accumula-
tor. The compiler establishes the streamlined dataflow
encompassing local SRAM, the fetch network, and the
buffer/register of the operation unit.

The fetch network provides the operation units
with a steady, sequential supply of data. The network
adopts circuit switching to perform multiple multicasts
along fixed routes, e.g., multiple ring connections, dur-
ing tensor operations.

The reconfigurability of the fetch network is crucial
in supporting diverse models and inference scenarios.
Figure 3 illustrates how our architecture supports dif-
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for (n in 0..N) {
for (m in 0..M) {

for (k in 0..K) {
C[m][n] += A[m][k] x B[k][n]
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for (w in 0..W) {
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k = k_index_of(k_blk, w)
C[m][n] += A[m][k]xB[k][n]

} } } } } } }

Multicast

(a) Conceptual computation (b) Compiled intermediate representation (c) Hardware mapped operation

FIGURE 1. A simple tensor contraction example, consisting of multiplying matrices A and B to produce C.
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FIGURE 4. Aspects that the compiler must consider when lay-
ing out a tensor in memory for a low-level einsum computation:
(1) SRAM access performance (e.g., row/column major), (2)
data movement of input tensors to compute units for a single
low-level operation, (3) data movement across operators.

ferent tensor contractions by reconfiguring the fetch
network. When the input data can be heavily reused,
the fetch network is configured as a large multicast net-
work. For example, to mimic the behavior of a systolic
array as in Figure 3(a), the network can be set to 4
slices (4H), as shown in Figure 3(b). However, when
handling large input dimensions in tensor contraction,
the fetch network can be dynamically reconfigured to
compute a large contraction with multiple contraction
engines, for example, through 2 slices (2W), as shown
in Figure 3(c). Such reconfigurability is particularly
advantageous for inference tasks, where batch sizes
can vary significantly. Unlike large matrix multiplica-
tion units optimized for static, large batch sizes, our
architecture aims at making the best use of the par-
allelism and data reuse inherent in diverse tensor
shapes through optimal scheduling of computations
and reconfiguration of the fetch network.

DATA MOVEMENT OPTIMIZATION
BY THE COMPILER

Besides scheduling computations, deciding how ten-
sors are laid out in memory is also extremely impor-
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tant, as it directly impacts performance and efficiency.
Therefore, when the compiler lowers the input com-
putational graph into primitives, it also optimizes the
mapping of tensors to on-chip memory.

There are multiple factors to consider when laying
out a tensor in memory, as shown in Figure 4. Firstly,
the last axis of memory layout impacts memory access
performance. For example, whether the stored layout
is row-major or column-major and whether it aligns
with the way you read it impacts SRAM bandwidth.
Secondly, since data is often used across multiple
compute units, the memory layout impacts data move-
ment, thereby influencing the performance and energy
consumption of the NoC. Finally, the output tensor of
one operator is often the input for another operator.
If the memory layouts between operators are incom-
patible, additional data movement may occur. We can
eliminate unnecessary data shuffling if we manage to
align the memory layouts of the input/output tensors of
consecutive operators.

The compiler optimizes code for end-to-end effi-
ciency by extensively exploring a carefully designed
space of tactics. For each operator’s lowered shape,
it searches a tactic space composed of axis permuta-
tions to determine the most efficient execution strategy.
To maximize effective SRAM utilization, the compiler
minimizes redundant data storage across slices and
orchestrates data movement through the slice-level
network, directing it to compute engines while track-
ing data lifetimes. By precisely managing when and
where data is accessed, the compiler enables a static
scheduling approach that ensures efficient execution
and resource utilization, allowing multiple operators to
be optimally mapped to hardware. Due to the deter-
ministic nature of the hardware, the compiler can accu-
rately predict performance and power consumption for
each possible configuration. This predictability allows
the compiler to explore the design space effectively,
balancing data lifetimes, execution times, and power
budgets to select the most efficient execution plan.

Compiling a model involves optimizations across
multiple levels of intermediate representation (IR). This
optimization process includes operator fusion at the
graph level, memory allocation, tensor splitting, merg-
ing, and scheduling.

MICROARCHITECTURE
Our processor performs tensor contraction as its core
abstraction. The entire SoC was designed to realize
tensor contraction for flexibility, to adapt to various
tensor shapes, as well as high performance. Each
RNGD chip has eight PEs, as illustrated in Figure 5.

Each PE can operate independently, much like multi-
instance capabilities found in GPUs. Furthermore, up
to four PEs can be combined into a larger, unified PE
for handling tasks requiring greater computational re-
sources. This modular and dynamic structure ensures
adaptability to diverse workloads.

RNGD supports single root I/O virtualization (SR-
IOV), enabling multiple virtual machines (VMs) to utilize
the chip while maintaining separate address spaces.
This makes it particularly effective for multi-tenancy in
cloud server environments, where secure and efficient
resource sharing is essential.

Processing Element
The processing element (PE) is the foundational build-
ing block of RNGD. In order to minimize the operational
complexity of the entire chip, we maximized the size
of the PE, the unit for programming computations,
within the limits of our design flow. Each PE integrates
three key components: a CPU core, a tensor DMA
engine (TDMA), and a tensor unit (TU). This architec-
ture provides a balance of flexibility, performance, and
energy efficiency, making it adaptable to a wide range
of computational tasks.

The CPU core supports the TU by managing scalar
operations, control flow, and simple vector operations.
It acts as the controller for the TU, issuing commands
through a queue and managing tensor data movement
via the TDMA to ensure efficient data transfers.

As shown in Figure 6, the CPU core initiates PE
operations by pushing commands into the tensor unit’s
command queue, operating asynchronously to drive
both the TU and the TDMA. It operates through the
PE firmware stored in the scratchpad memory, which
also contains the tensor unit commands. The CPU core
continuously pushes commands to prevent the com-
mand queue from going idle. These commands include
load commands to set control registers of the tensor
unit, execute commands to perform tensor operations
with the loaded registers, DMA commands to drive
the TDMA, and wait commands for synchronization.
Except for the wait command, all the commands op-
erate asynchronously, enabling the overlap of TDMA
and TU operations. TDMA transfers the necessary
tensors for the next operation from DRAM to SRAM
in an optimized memory layout as determined by the
compiler.

The TU serves as the main compute engine of the
PE, delivering up to 64 TOPS and 32 MB of SRAM. To
enhance scalability and efficiency, the TU’s compute
pipeline is divided into multiple slices, with each slice
functioning as an independent unit. Each slice has
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tion of tensor operations and DMA transfers) to be processed
asynchronously.

its own SRAM, fetch unit, operation unit, and com-
mit unit, enabling them to handle tensor operations
autonomously. This modular design allows slices to
operate individually for small-sized tasks like contrac-
tions on small tensors or collaborate with each other
for larger tasks.

The fetch unit reads data from memory in an N-
dimensional loop style, effectively handling the com-
plex data access patterns required by tensor opera-
tions. It supplies the loaded data to the operation units
by sending and receiving data via the fetch network,
coordinating with the fetch units on the other slices.

The fetch network ensures that data is delivered to
the operation units in the correct sequence needed
for tensor computations, enabling efficient data sharing
and multicast operations across slices.

The commit unit stores results back to the data
memory, also following an N-dimensional loop style.
It ensures that the results are stored in optimal lo-
cations for subsequent operations, as determined by
the compiler, which helps reduce unnecessary data
movements.

Within each slice’s operation unit, there are three
specialized compute engines: the contraction engine
(CE), the vector engine (VE), and the transpose engine
(TE). These engines can be dynamically connected by
the compiler to execute diverse operations in a flexible
and efficient manner.

The CE contains multiple dot-product engines
(DPEs), each capable of high-throughput element-wise
multiplications with configurable reduction trees. To
minimize data movement and improve energy effi-
ciency, the architecture incorporates data reuse strate-
gies tailored to different tensor operation requirements.
Weights are reused through registers (weight station-
ary), input tensors can be reused while being retained
in feed buffers (input stationary), and intermediate
results are stored and reused in accumulators (out-
put stationary). These strategies are optimized by the
compiler to match the given workload demands.

The VE is designed for flexible computations, han-
dling element-wise operations, reductions, and type
conversions. It features multiple functional units ca-
pable of pipelining and executing INT32/FP32 arith-
metic, transcendental functions, and various type con-
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versions. It also supports intra-slice and inter-slice
reductions, achieving 8-way throughput per slice. The
reduction/distribution network between VEs enables
efficient communication for these reductions across
slices. This unit handles arithmetic tasks like softmax
(element-wise exponential and sum reduction) and
layer normalization. Moreover, it can dynamically chain
outputs from the CE, such as fusing expand and
activation steps in feed-forward layers (e.g., SiLU), for
improved performance and energy efficiency.

The TE rearranges data layouts to meet the re-
quirements of complex tensor computations. It handles
data transposition and reshaping operations, which
are critical for optimizing memory access patterns and
computational efficiency in tensor operations.

The coordination of all these operations within the
TU is managed by internal sequencers, which or-
chestrate data flow, register indexing, and accumulator
usage based on control register settings configured
by the CPU core prior to computation. This precise
control ensures efficient execution of tensor operations
across slices, maximizing performance and resource
utilization.

Through the integrated networks—the fetch net-
work and the reduction/distribution network between
VEs—RNGD can efficiently store data in the desired
layout while performing computations expressed in
the abstraction of tensor contraction. The fetch net-
work primarily handles inter-slice data movement with
sufficient flexibility for typical tensor operations, while
the reduction/distribution network allows intermediate
results to be placed in layouts that are advantageous
for subsequent tensor operations. In addition, hard-
ware hierarchy-aware DMA descriptors are used to
manage TDMA transfers, minimizing contention and
enabling arbitrary data movements. Collectively, these
mechanisms provide efficient communication and data
sharing between slices, accommodating the complex
data access patterns and computational dependencies
that arise in tensor operations.

By combining modularity, flexible data handling,
and efficient compute engines, the PE achieves high
performance and adaptability. It is well-suited for a wide
range of AI workloads, from small-scale inference tasks
to large-scale computations.

NoC and Interfaces
RNGD features a hierarchical network-on-chip (NoC)
to manage both internal and external data communi-
cations. Within each PE, the intra-PE NoC connects
its components, including the CPU core, scratchpad
memory, TDMA, and TU. Externally, the inter-PE NoC

TABLE 1. Characteristics of RNGD.
Technology TSMC 5nm

Freq. & TDP 1GHz, 150W TDP

Dimensions 24.77 mm × 26.38 mm (653.4 mm2)

DRAM 2x HBM3 stack, 48GB, 1.5 TB/s

On-Chip SRAM 256 MB, 384 TB/s

Host Connectivity PCIe Gen5 x16 (128 GB/s)

MACs
512 TOPS (INT8), 1024 TOPS (INT4)

256 TFLOPS (BF16), 512 TFLOPS (FP8)

Vector Engine
512 ways per PE

transcendental functions (exp, cos, tanh, etc.)

and memory routers handle data transfers between
PEs and HBM3 stacks.

Each chip integrates two stacks of HBM3, offering
up to 1.5 TB/s of memory bandwidth, ensuring that all
eight PEs can achieve their full bandwidth potential of
256 GB/s. The NoC supports full channel interleaving
for efficient HBM utilization and facilitates contention-
free data transfers between PEs at the same rate.
The signal and power integrity of HBMs has been
verified by extensive simulations including the SoC, the
interposer, the package, and the PCB.

For workloads exceeding the capacity of a sin-
gle chip, inter-chip communication is enabled through
PCIe Gen5 interfaces with peer-to-peer (P2P) commu-
nication, supporting transfer rates of 64 GB/s in each
direction. Each PE operates within an independent
address space, and unauthorized access is restricted
by the address translation unit (ATU). The address
translation mechanism abstracts the PE’s memory and
compute resources, enabling dynamic allocation and
seamless inter-PE communication.

Power Management
Table 1 outlines the specifications of RNGD, which is
tailored to meet the demanding requirements of AI in-
ference tasks requiring low latency and low power con-
sumption. The chip operates within a thermal design
power (TDP) of 150 W, enabling air-cooled deployment
in standard data centers.

The SoC’s computational backbone consists of
CPU cores running at up to 2 GHz with a nominal
voltage of 0.75 V, leveraging dynamic voltage and fre-
quency scaling (DVFS) to balance power efficiency
and performance. To handle peak current demands of
up to 1 kA with significant fluctuation, the design inte-
grates on-die and on-interposer decoupling capacitors
(both metal-insulator-metal and deep-trench types).
For improved reliability in data center environments,
the chip includes timing margin monitors to ensure
robust operation under dynamic workloads. Margin
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monitors enable long term performance drift monitoring
even after deployment. The integrated voltage droop
sensor monitors instantaneous local voltage drop and
generates interrupts. Secure boot capabilities further
enhance data integrity and system security.

EVALUATION
To evaluate the proposed system, we conducted a
performance and efficiency analysis using the MLPerf
benchmark suite.8 The results are shown in Figure 8.
The primary metric for evaluation is performance per
watt (Perf/W), which captures the system’s compu-
tational efficiency. MLPerf was chosen due to its
comprehensive benchmarking capabilities, including a
workload generator that simulates a variety of input
context lengths derived from real-world distributions.
This ensures that the performance measurements are
representative of actual deployment scenarios. For this
study, we used GPT-J, a representative architecture of
large language models (LLMs).

Our chip achieved 12.0 queries per second at a
measured board power consumption of 185 watts,

resulting in a Perf/W improvement of 68.8 % over the
L40S and 46.1 % over the H100.a This result demon-
strates the effectiveness of our approach in enhancing
energy efficiency while maintaining high performance.
Furthermore, it took only three months to achieve the
current level of performance, highlighting the rapid
pace of progress in optimizing internal hardware pa-
rameters to achieve its full specifications, advancing
the compiler’s scheduling of tensor operations, and
enhancing the runtime software stack for improved ef-
ficiency. We anticipate additional improvements in both
performance and power efficiency in future iterations,
as further refinements are underway. In summary, this
result validates the proposed optimizations and their
potential applicability to broader LLM workloads, pro-
viding a robust foundation for continued advancements
in performance per watt efficiency.

In addition to the performance evaluation on the
GPT-J benchmark, we are in the early stages of eval-
uating and improving the performance of the Llama
3.1 8B model. Using the OpenOrca dataset,9 which is
employed by MLCommons for Q&A benchmarking, we
measured the offline throughput of the system. At a
total power consumption of 181 W (159 W for the chip
alone), the system currently delivers 3,265 tokens per
second. When expressed as performance per watt, this
corresponds to an efficiency of 18.0 tokens per joule.
These initial results are very promising and provide a
foundation for further optimizations to enhance both

aThe power consumption of the H100 was assumed to be
equal to its TDP (700W).
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throughput and energy efficiency.

CONCLUSION
We presented RNGD, a novel accelerator for AI work-
loads. Recognizing tensor contraction as a founda-
tional concept in deep learning models, RNGD natively
supports tensor contractions instead of decomposing
them into matrix multiplications. This alignment allows
us to exploit inherent data movements and reuse within
tensor computations, leading to superior efficiency.

As a result, RNGD delivers 68.8% and 46.1% more
performance per watt than L40S and H100, respec-
tively. With a TDP of 150 W, which is compatible
with current air-cooled data centers, RNGD avoids the
need for complex cooling solutions required by the lat-
est GPUs. By natively supporting tensor contractions,
RNGD offers unmatched efficiency and performance
for modern AI applications.
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