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Abstract—We introduce a novel tensor contraction processor
(TCP) architecture that offers a paradigm shift from traditional
architectures that rely on fixed-size matrix multiplications. TCP
aims at exploiting the rich parallelism and data locality inherent
in tensor contractions, thereby enhancing both efficiency and
performance of AI workloads.

TCP is composed of coarse-grained processing elements (PEs)
to simplify software development. In order to efficiently process
operations with diverse tensor shapes, the PEs are designed to
be flexible enough to be utilized as a large-scale single unit or a
set of small independent compute units.

We aim at maximizing data reuse on both levels of inter
and intra compute units. To do that, we propose a circuit
switch-based fetch network to flexibly connect compute units
to enable inter-compute unit data reuse. We also exploit input
broadcast to multiple contraction engines and input buffer based
reuse to further exploit reuse behavior in tensor contraction.
Our compiler explores the design space of tensor contractions
considering tensor shapes and the order of their associated loop
operations as well as the underlying accelerator architecture.

A TCP chip was designed and fabricated in 5nm technol-
ogy as the second-generation product of Furiosa AI, offering
256/512/1024 TOPS (BF16/FP8 or INT8/INT4) with 256 MB
SRAM and 1.5 TB/s 48 GB HBM3 under 150 W TDP. Com-
mercialization will start in August 2024.

We performed an extensive case study of running the LLaMA-
2 7B model and evaluated its performance and power efficiency
on various configurations of sequence length and batch size. For
this model, TCP is 2.7× and 4.1× better than H100 and L40s,
respectively, in terms of performance per watt.

I. INTRODUCTION

Most major commercial AI accelerators primarily focus
on integrating matrix multiplication as a basic operation of
hardware acceleration [2], [9], [10], [12]. Fundamentally,
however, the core operation of machine learning models is
tensor contraction. Tensor contraction involves summing the

*This paper is part of the Industry Track of ISCA 2024’s program.

elements of certain axes of a tensor. Matrix multiplication is
a representative example of tensor contraction. For example, a
multiplication of matrices with dimensions m×k and k×n can
be expressed as a tensor contraction mk,kn→mn. Contraction
is done over the (common) k axis. Tensor contraction forms
the backbone of machine learning models, handling computa-
tions over multi-dimensional data.

Traditional computational architectures often map or divide
tensor contractions into matrix multiplication units. This ap-
proach may fail to fully utilize the rich parallelism and data
locality inherent in tensor contractions themselves. When the
unit size of the accelerator (e.g., matrix or tile size) is small,
the scope for data reuse is limited, hurting efficiency [7]. In
addition, in many spatial accelerators, where a large num-
ber of small processing elements (PEs) are equipped with
local memory and connected via a network-on-chip (NoC),
there is inherently high complexity in parallelizing operations
while being NoC-aware. Moreover, generating programs for
numerous wimpy cores is known to be more challenging than
for a few brawny cores [7]. Except for GPUs, there are few
successful commercial chips with a large number of small PEs
that provide a software stack capable of compiling arbitrary
tensor-manipulating programs into efficient executables.

Inference is often characterized by diverse tensor shapes
and thus it is essential to exploit the parallelism and data reuse
derived from the tensor shapes as well as the batch size. Thus,
in the case of chips with large matrix units, it is challenging
to fully utilize the large units across various shapes and types
of tensor operations [3], [23], [25].

Instead of matrix multiplications, we use tensor contraction
as a primitive. This approach not only enables massively
parallel operations but also incorporates pipelining over the
time axis, similar to vector processors. We have designed
large coarse-grained processing elements (PEs) which can be
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split into smaller compute units called slices, as illustrated in
Fig. 3, allowing for more flexible configurations for diverse
tensor shapes. Depending on the setup of the fetch network
connecting the slices, the entire set of slices can function as
one large processing element or individual slices can operate
as small, independent, and parallel compute units.

For instance, in the case of the attention layer of transformer
models [21], a PE’s slices can be configured to operate in
parallel for each head, e.g., 16 slices per head (see Fig. 10).
The data, continuously fetched in a pipelined manner through
the fetch network, allows the operation units to be utilized at
high throughput. This enables us to adopt various data reuse
strategies that efficiently utilize the limited input/weight/output
buffers of slices as demonstrated in the case study of the
LLaMA-2 7B model execution (Section VI).

Since the operation units perform computations determinis-
tically (as defined by the software), TCP achieves predictable
performance. This enables us to develop accurate cost models
for performance and energy consumption. Our compiler lever-
ages these models when exploring possible configurations of
lowered tensor shapes and their contraction orders.

In the remainder of the paper, we first explain our low-level
representations of tensors and operations in Section II. Then,
we describe the chip-level architecture and micro-architecture
in Sections III and IV. We explain our programming interface
and software stack in Section V. Finally, we show how a
popular machine learning model such as LLaMA-2 7B can
be executed on our chip, discuss the performance results
in Section VI, and share our lessons learned during the
development of the chip in Section VII.

II. PRELIMINARIES

There are several ways to describe tensor contractions,
such as PyTorch [16] or Tensorflow [1]’s matmul function or
simply using ‘for’ loops. In this paper, we use the einsum [4]
notation. Supported by frameworks like NumPy and PyTorch,
it originates from the Einstein notation used to describe tensor
equations. It represents each dimension of a tensor with
indices, and tensor contractions are indicated by the common
indices in the two input tensors. For example, consider the
feed-forward layer of a Transformer model [21]. Assume that
the dimensions of the input tensor (in0) for the feed-forward
layer are b × l × e, and for the weight (in1) are e × f ,
where b stands for the batch size, l the sequence length, e the
embedding size of input, and f the embedding size of feed-
forward network. A contraction over the e axis is represented
as ble,ef → blf .

The einsum notation is declarative. Thus, it does not desig-
nate how tensors are physically stored in memory or how the
computation is performed. We extend this notation to addi-
tionally represent the key aspects of the TCP architecture. We
call our newly augmented notation low-level einsum notation.
It features the notions of lowered shape and tactic as explained
below.

S0 S1 S2 S3

𝑒!/# 4 	|	𝑏$ 4 	𝑙$ 4 	𝑒$[𝐸/4]
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Fig. 1: Examples of lowered shapes of a tensor (b× l × e).

A. Lowered Shape

For describing the complete lowered shape of a given tensor,
we use the notation “inter-slice partitioning shape | intra-slice
shape”. In this section, we use the term slice to represent
a basic compute unit which contains memory for inputs and
outputs and a datapath for computation. In Section III, we will
give a more concrete description of a slice in our proposed
architecture. Fig. 1 exemplifies three different partitions of a
tensor with dimensions b× l × e, where b = 4, l = 4, e = E,
into four slices. In Fig. 1 (a), we partition the tensor along the
b and e axes. The partitioning along the b axis has a step size
or stride of two, thus it is denoted as b2. The partitioning is
done across two slices, thus denoted as [2]. The same applies
to the e axis. Thus, the e axis has a stride of E/2 over two
slices thereby having eE/2[2]. Each slice stores a quarter of
the tensor, and they all have the same shape of 2× 4× E/2
and each axis has a stride of one. Thus, the intra-slice shape
is b1[2]l1[4]e1[E/2].

B. Tactics

A tactic for contraction describes the order of computing
axes, from the outermost to the innermost. As an example,
assume that the lowered shape in Fig. 1 (c) is used for the
input tensors in the contraction ble,ef→blf . The first tensor
is assumed to be lowered to eE/s[s] | b1[B] l1[L] e1[E/s] and
the second one to eE/s[s] | f1[F ] e1[E/s], respectively, where
B,L,E, F stand for the tensor dimensions, and s the number
of slices (s = 4 in the figure). We assume the output tensor
is lowered to fF/s[s] | b1[B] l1[L] f1[F/s]. In this case, one
possible tactic is eE/s[s] | b1[B] l1[L] f1[F ] e1[E/s]. The first
term of the tactic, eE/s[s] represents that the outermost loop
is on the e axis with a stride of E/s across s slices (s = 4 in
this case), which means we perform s outermost sub-loops in
parallel.

The second group of terms on the tactic (called slice tactic),
b1[B] l1[L] f1[F ] e1[E/s], describes how each slice processes
the remaining loops. In this case, there are four loops on b,
l, f , and e (innermost) axes. The last term, e1[E/s], which
is the innermost loop, represents the contraction. Thus, in the
innermost loop, each slice performs the contraction, i.e., dot
product between two vectors of E/s dimension along the e
axis. The second innermost term, f1[F ] is for the f axis, and
it means the fetched data, before the f axis loop, can be reused
F times, by using the internal input buffer of the slice (see
Section IV). The f axis loop is repeated B × L times on the
two outermost loops.
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Fig. 2: Block diagram and die plot of the SoC.

Given a pair of input tensors and a tensor operation, there
can be multiple choices of tactics depending on the lowered
shapes of input and output tensors and the availability of
compute units (e.g., the number of available slices). When
the compute units are allocated, the compiler needs to explore
the candidate lowered shapes to select the tactic satisfying the
given requirement of performance and power consumption. If
the lowered shapes between neighboring operations (i.e., the
lowered shape of the output of a layer and that of the input
of the subsequent layer) do not match, the compiler adds a
bridge operator to transform the lowered shape of tensor.

TCP accelerates low-level einsum operations as a primitive,
and also supports dynamic tensor shapes through the control
registers (to be explained in the following sections) that
describe the tensor’s shape. In the current example, the b
and l axes can be dynamically determined, e.g., depending
on the number of new requests and the token generation
length of each request, which are dynamically determined
when executing large language model (LLM). When a tensor
exceeds the memory capacity (of PE or chip), it must be split
and the tactic needs to be determined according to the split.

The low-level einsum notation is utilized in our compiler
to facilitate the design space exploration of contraction and
expose low-level API to the designer (Section V). We will
use the low-level einsum notation to describe the execution
strategy for LLaMA-2 7B model on the TCP chip in Section
VI.

III. SYSTEM-ON-CHIP (SOC)

In this section, we describe the overall architecture of the
SoC and the PE. TCP consists of eight PEs, as shown in
Fig. 2. Each PE can function as an independent device from
the host, similar to the multi-instance capabilities of some
GPUs [14]. Additionally, up to four PEs can be fused to form
a single, larger PE. The SoC also supports SR-IOV, allowing it
to be used by multiple virtual machines with separate address
spaces. This design allows TCP to provide multi-tenancy in
cloud servers, enabling high utilization by multiple users.

Table I shows the chip characteristics. Since inference
requires low latency and low power with air cooling [8],
TCP was designed from the outset with a TDP of 150 W,
enabling dense and scalable use at maximum performance in
most existing data centers.

Technology TSMC 5nm
Frequency 1 GHz
Dimensions 24.59 × 25.71 mm (632.1 mm2)
TDP 150 W
DRAM 2x HBM3 stack, 48GB, 1.5 TB/s
On-Chip SRAM 256 MB, 384 TB/s
Host Connectivity PCIe Gen5 x16 (128 GB/s)

MACs 512 TOPS (INT8), 1024 TOPS (INT4)
256 TFLOPS (BF16), 512 TFLOPS (FP8)

Vector Engine 512 ways per PE
transcendental functions (exp, cos, tanh, etc)

TABLE I: Characteristics of TCP.
Tensor Unit

Contraction
Engine

Vector
Engine

Transpose
Engine

Commit 
Unit

Fetch Unit

Contraction
Engine

Vector
Engine

Transpose
Engine

Commit 
Unit

Fetch Unit

Contraction
Engine

Vector
Engine

Transpose
Engine

Commit 
Unit

Fetch Unit

Contraction
Engine

Vector
Engine

Transpose
Engine

Commit 
Unit

Fetch Unit

Contraction
Engine

Vector
Engine

Transpose
Engine

Commit 
Unit

Fetch Unit

Contraction
Engine

Vector
Engine

Transpose
Engine

Commit 
Unit

Fetch Unit

Contraction
Engine

Vector
Engine

Transpose
Engine

Commit 
Unit

Fetch Unit

Contraction
Engine

Vector
Engine

Transpose
Engine

Commit 
Unit

Fetch Unit
F

Core

SRAM

Fetch Unit

Operation Unit

Commit Unit

time

space

Tensor
DMA

Engine

Scratch
Pad

Memory

input tensor

fetch 
sequencer

commit
sequencer

Fig. 3: A processing element of TCP with eight slices.

Each TCP chip is equipped with two stacks of HBM3 [15],
the highest bandwidth memory available at the time. The two
stacks of HBM3 provide up to 1.5 TB/s of memory bandwidth,
and the eight PEs can fully utilize the memory bandwidth,
with each PE having a maximum transfer rate of 256 GB/s.
Additionally, the NoC supports data transfers between PEs
without contention. A PE can transfer data to HBM or another
PE on the same chip at up to 256 GB/s.

Large language models (LLMs) exceeding the memory size
of one TCP require processing by multiple chips, necessitating
inter-chip communication between PEs. TCP is connected via
PCIe Gen5 and supports peer-to-peer (or P2P) communication,
allowing PEs across multiple chips to transfer data at up to 64
GB/s in each direction.

Each PE has an independent address space and operates in-
dependently. Access to unauthorized addresses is restricted by
the address translation unit. Address translation abstracts the
PE’s address space, allowing dynamic allocation of memory
space and PE usage at run time. This abstraction forms the
basis for inter-PE communication and, combined with P2P
capabilities, enables PEs across multiple chips to exchange
data using the same abstraction. This design allows for scalable
compilation and dynamic resource scheduling.

A. Processing Element

Fig. 3 illustrates the PE, which consists of a CPU core, a
tensor unit (TU) for executing large-scale tensor operations,
and a tensor DMA engine (TDMA) for transfers of tensors.
The TU is a substantial entity, equipped with 32 MB of SRAM
and is capable of 64 TOPS. It accelerates tensor operations by
continuously fetching the input tensor from SRAM, processing
the operations, and committing the results back to SRAM.

The CPU core handles scalar processing, control flow, sim-
ple vector processing, and controls the TU (as a co-processor
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via a command queue) and the TDMA engine. It includes 64
KB of L1 I/D caches and 256 KB of L2 cache. In order to
provide more predictable performance for the accelerator and
reduce penalties from cache misses, the CPU core is equipped
with a 3.5 MB scratch pad memory. Having a large scratchpad
memory space allows all code to be run from scratchpad
memory, simplifying the programming model.

Memory transfers are the bottleneck of most of neural
networks, especially LLMs. In TCP, they are done asyn-
chronously through the TDMA engine and can be overlapped
with TU operations. The compiler schedules TU operations
and data transfers in order to maximize the overlap of memory
accesses and computation. In order to realize such a compila-
tion result, the CPU core transmits the next command (for a
DMA or a new TU operation) to the command queue while the
previous tensor operation is underway on the TU, and then the
CPU core continues to perform other tasks in parallel. The TU
takes a new command in the queue and launches its execution
when the required resource, whether memory or compute unit,
is available.

The TDMA can index and transfer tensors in any di-
mension order. This capability allows for optimal lowering
of data stored in HBM to multiple slices by the compiler,
supporting tensor manipulations like reshape and transpose.
It also supports scatter-gather which is useful in improving
effective memory bandwidth for memory access patterns like
embedding lookups.

B. Tensor Unit

Rather than incorporating a single large SRAM and a
massive matrix multiplication unit, in our TU architecture we
divide the compute pipeline, including the SRAM and opera-
tion unit, into multiple slices. Therefore, each slice comprises
of SRAM, fetch, operation, and commit units. Each slice,
configured via control registers, can independently process
(sub-)tensors. Additionally, a fetch network connecting these
slices (to be exact, the fetch units on slices) allows us to
multicast tensors across multiple slices.

Data fetched from SRAM of each slice is sequentially
delivered, via the fetch network, to the operation units, each
of which consists of contraction (CE), vector (VE), and
transpose (TE) engines. These engines can be chained by the
compiler as in a vector processor. The CE includes H (= 8
in the chip design) instances of dot-product engines (DPE),
which perform element-wise multiplications and can produce
a variable number of outputs with reduction trees with W
inputs. The depth of each reduction tree is configurable, and
the output can be temporally accumulated by an accumulation
unit. Each DPE receives two input vectors, one from the CE’s
register file and the other sequentially delivered vector from
the fetch unit.

The architecture supports several data reuse configurations
through software, including weight stationary using the reg-
ister file, input stationary using the input buffer within the
CE, and output stationary using accumulator registers [18].
As data is always streamed and sequentially delivered in a

Red : Main Context Datapath
Blue : Sub Context Datapath
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Fig. 4: Two example slices and their contexts.

multi-dimensional form, the operation unit’s sequencer logic
orchestrates input data feeding and register/accumulator index-
ing according to the control registers initialized before tensor
operations.

While each slice can independently utilize H×W MACs for
contraction, in scenarios where N slices multicast data from N
memory slices through the fetch network, all operation units
in the slices receive data fetched from N slices. This approach
is akin to reading data from N banks of a large SRAM,
reusing fetched data in an H×N format for propagation, and
performing dot products in a W format, similar to operations
in a large systolic array. We describe the micro-architecture in
more detail in Section IV.

The TU includes 64+1 slices, with one reserved as spare to
improve chip yields. To control and monitor the slices, the TU
includes a TU controller (TUC), which accesses control/status
registers on the TU. Control registers of each slice are mapped
in the TU’s address space. The TUC contains a command
queue to which the CPU core writes tensor commands. To
configure a tensor operation, the CPU core can either write, via
the ARM core’s low-latency peripheral port (LLPP), to these
registers directly or send tensor commands via the command
queue so that the TUC sets the registers on its behalf.

The TU is responsible for performing tensor, vector, and
memory operations. While a tensor operation is running,
vector and memory operations can be executed in parallel,
effectively hiding their execution time within that of tensor
operations, which helps improve the utilization of the TU.
In order to realize such parallel operations, each slice has
two execution contexts (Fig. 4), each being described on a
set of control registers. The main context is used for tensor
operations and the sub-context for everything else. Contexts
are launched asynchronously so as to allow them to run in
parallel. For instance, after launching a tensor operation in
the main context, several memory operations can be launched
sequentially in the sub-context.

The TCP architecture is not optimized for fine-grained
sparsity due to its area and power overhead and, instead,
focuses on dense models. Especially, in the case of LLMs,
low precision has proven more effective than pruning. Thus,
our choice of not supporting fine-grained sparsity may not
hamper the advantage of TCP on LLMs.
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IV. MICRO-ARCHITECTURE

The TU slice consists of a data memory slice and a compute
pipeline. The compute pipeline is structured in three stages to
perform operations over tensors:

• Fetch unit (FU), which reads tensors from the data
memory slice sequentially and feeds it to the operation
unit in the required shape.

• Operation unit (OU), which streams and processes data
fed from the fetch unit, comprising the contraction engine
(CE), vector engine (VE), transpose engine (TE), etc.

• Commit unit (CU), which stores the results from the op-
eration unit back into data memory slice in the specified
tensor shape.

A. Data Memory

The data memory (DM) slice functions as a scratch pad
and stores tensors. Tensors are partitioned across DM slices
according to the lowered shapes as exemplified in Fig. 1.
Each DM slice comprises 16 banks, each with an 8B width,
providing a maximum SRAM bandwidth of 128GB/s per slice.
The DM slice is primarily used for fetching input tensors for
operations and committing output tensors after operations. It
supports concurrent data transfers, e.g., data movements for the
sub-context while handling tensor traffics from or to HBM for
the main context in parallel. A DM slice can serve multiple
requests by utilizing the bank level parallelism of 16 banks.

The DM slice supports virtual addressing through a page
table, converting virtual to physical addresses. This feature
allows for dynamic allocation of contiguous large memory
spaces, facilitating tensor management by the compiler.

B. Fetch Unit

The fetch unit (FU) accesses tensors from the DM slice
sequentially and delivers them to the operation unit. To support
concurrent execution of the main and sub-contexts, each slice
contains two FUs: the main fetch unit and the sub-fetch unit.
Each FU consists of a fetch sequencer for generating address
sequences to access the DM slice, a fetch process unit for data
preparation like type conversion and padding. The fetch unit is
connected to a fetch network for transmitting processed data
to operation units on different slices as well as its own slice.

The fetch sequencer generates addresses according to the
given tensor shape and specified order, i.e., tactics (described
in Section II). The fetch sequencer and process unit not
only generate basic N-dimensional loop-style addresses but
also support indirect addresses and table lookups for gathers,
playing a key role in ensuring flexibility for all types of tensor
operations needed by ML models.

Fetched data can be processed in parallel by multiple
operation units. The fetch network (Fig. 5) works like a circuit-
switched network during tensor operations, maintaining a fixed
topology as determined by software based on the lowered
shapes and tactics. It ensures data order between multiple
sources and within packets from a single source and supports
multicast. There is no network congestion since the network
is circuit-switched with strictly ordered arbitration between
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sources and destinations, as determined by the compiler.
The circuit-switched network allows for high throughput and
reduced hardware complexity in routing, ordering, multicast,
and flow control. The fetch network is composed of two
independent networks for each of the main and sub-contexts.

C. Contraction Engine

The contraction engine (CE) performs dot product opera-
tions between two tensors. As Fig. 6 shows, the datapath of
the CE consists of a feed unit, register files (RFs), dot-product
engines (DPEs), and accumulation units. They are controlled
by the operation sequencer.

The CE contains eight DPEs each of which performs dot
products by spatially summing element-wise multiplication
results of two input vectors through a reduction tree. The
DPE takes two input vectors from the feed unit and the RF.
Each input can hold 32 BF16 values, 64 FP8 values, 64 INT8
values, or 128 INT4 values. The number of input elements also
represents the maximum throughput of specified input type.

The eight DPEs share the input from the feed unit (i.e.,
for data reuse by broadcast), but receive separate inputs from
the RFs. The depth of the reduction tree can be configured
through control registers, which in turn determines the number
of outputs from the DPE. Additionally, the DPE supports max-
reduction besides add-reduction to support different types of
computations such as max-pooling.

The feed unit processes the packets delivered through the
fetch network and, as mentioned above, broadcasts the data to
multiple DPEs thereby reusing the fetched data. Controlled
by the operation sequencer, the feed unit enables further
data reuse by providing the same data multiple times to the
eight DPEs in consecutive cycles. As will be exemplified in
Section VI-B, the feed unit can provide the same query vector
repeatedly to the DPE which performs dot product between
the same query vector (from the feed unit) and a key vector
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(newly fetched from the RFs every cycle). The feed unit can
also use shifts for data reuse in operations like convolution,
as well as transpose tensors.

The accumulation unit receives the output of DPEs for tem-
poral accumulation. To temporally reuse input from the feed
unit, multiple accumulators are necessary to maintain various
partial sums. Since increasing the number of accumulators
raises read/write costs proportionally, we try to make the best
use of a small number of accumulators, four per unit.

The accumulation unit contains a total of 1024 accumula-
tors, which can be indexed differently depending on the output
size of the DPE. For example, if 32 BF16 inputs (from the
feed unit) are used, and the depth of the reduction tree is 0,
each DPE will produce 32 multiplication results. Thus, the
total number of outputs on eight DPEs is 256 (= 8 × 32).
Considering that 1024 accumulators are available, each output
of DPEs can be associated with up to four accumulators for
temporal accumulations. However, if the depth of the reduction
tree is three, each DPE will produce four outputs (i.e., partial
sums) and the eight DPEs give 32 outputs. In this case, each
output of the DPEs can be associated with 32 (= 1024/32)
accumulators for temporal accumulations.

The RFs, which are composed of single port SRAMs (total
80 KB per slice) and a small-sized cache, serves as storage
for operands reused in MAC operations. They provide data to
each DPE, requiring as many banks as the number of DPEs.
The RF handles simultaneous read and write accesses for cases
where the next weights have to be loaded by the sub-context
while a tensor contraction is running.

D. Vector Engine

Fig. 7 shows the vector engine (VE) which handles non-
linear functions, element-wise operations, reductions, and type
conversions. It comprises multiple functional units in clusters,
which the compiler can pipeline by forming chains. The
functional units realize various arithmetic and logical opera-
tions on INT32/FP32, transcendental functions like exp or sin,
predicated operations, and all kinds of type conversions and
quantizations for INT4/8/16/32, FP8, FP16/BF16, and FP32.
They also support both intra-slice and inter-slice reductions,
routing, or multicasting reduction results to designated slices.

Each slice’s VE has a throughput of 8-way INT32 and 4-
way FP32. While the CE is in charge of lower precision
dot products (INT4/8, BF16, and FP8) for area and power
efficiency, the VE supports INT32/FP32 dot products as well
as other arithmetic operations for flexibility. These facilitate
rapid processing of key LLM operations like softmax and
layer-norm. For example, the VE handles element-wise exp
in hardware, and computes the sum of exponentials using
reduction for softmax.

The VE can be chained on-the-fly to the results of the CE.
For example, the expand operation of the feed forward layer of
LLaMA-2 can be fused with activation functions such as SiLU
for enhanced performance and energy efficiency. Moreover,
even without contraction, the VE can perform various vector
operations alongside the fetch and commit units, function-
ing like an N-dimensional vector processor. Using multiple
contexts, when the main context performs contraction without
the VE, another context can utilize the VE in parallel, hiding
subsequent element-wise operations following contraction.

E. Transpose Engine

The transpose engine (TE) transposes the last axis of a
tensor with other axes within a slice by pushing data for a
specified set of rows and then popping them for another set of
rows. Note that the fetch/commit sequencers can also be used
to perform transposition between the last axis and other axes.

Together with the VE, the TE and the commit unit handle
tensor manipulations across multiple slices or within a single
slice. Tensor manipulation includes transpose, split, slice,
concat, reshape, etc, both explicitly defined by the model
and for storing tensors in layouts optimized for subsequent
operations as determined by the compiler. Like the VE, these
manipulations can be processed on-the-fly after or in parallel
with dot product operations.

F. Commit Unit

The commit unit comprises a commit sequencer and a
commit process unit. The commit sequencer designates ad-
dresses for sequentially transmitted commit data, allowing for
manipulation of the storage layout of tensors. Using addresses
generated by the commit sequencer, the storage bandwidth
consumption can be adjusted (by selecting one of 8B, 16B,
32B/cycle), if necessary, using the commit size parameter.
Additionally, the commit process unit supports simple type
conversions and can remove padding from data for compaction
during storage.

V. PROGRAMMING INTERFACE AND SOFTWARE STACK

A. Programming Interface

The CPU core controls the TU as a coprocessor through
registers. Since there is latency in accessing the coprocessor
from the core, the TU was designed to operate asynchronously.

The TU has a large set of control registers that describe the
shape of the tensor and tactics. Each slice has its own control
register, allowing for individual control, but typically all the
slices in a TU are controlled with the same configuration.
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The control registers of all the slices can be set at once
via broadcast. As such, the contraction operation is exposed
directly, including chained processing, through the control
register. There is also an enable bit to trigger the execution
once all control registers are configured.

The TU receives register read/write inputs from the CPU
core, controls the slices, and has a controller to manage
its status. We include a simple command processor in the
TU controller, allowing tensor operations and movements
to be performed asynchronously, similar to a typical DMA
Engine, rather than the CPU core directly setting numerous
control registers. The CPU core pushes commands, e.g., tensor
operations or tensor DMA, into the command queue (of 64
entries), and the command processor executes the commands
in the queue sequentially. The most critical role of the CPU
core is to continuously utilize the TU by ensuring that the
command queue does not become empty. Since the command
processor executes commands sequentially, the CPU core is in
charge of dynamic control flow.

Some of the TU commands are as follows:
• dma(addr, id) - transfer a tensor from/to HBM using

DMA based on the id that describes source/destination
tensor information including shapes

• load(addr, csr addr, size) - load from mem-
ory to control registers

• exec(id) - execute a tensor contraction operation
• waitd/e(id) - wait for a DMA or exec command
Most commands, including dma and exec, run

asynchronously, which allows the overlap of data transfers
and computations. When synchronization is needed,
wait is called. A typical sequence of commands is
dma(., 0)-load()-waitd(0)-exec(0)-dma(.,
1)-load()-waite(0)-waitd(1)-exec(1)-...,
which first loads tensors with DMA in context 0 and
configures the control registers (load). After DMA
completes, context 0 is executed while the data for the next
iteration is loaded in parallel (dma). The CPU core can use
polling or an interrupt to check the status of the cmd queue.

PEs communicate with each other and with the host through
message passing. Each PE exposes an IPC memory area and
sets head/tail registers as doorbell registers. We use address
translation, which not only protects accesses to different
process address spaces, but it also allows multiple PEs to share
an address space for communication. PEs on different chips
are also mapped to the PE’s address space, which simplifies
the programming model when using multiple chips.

In multi-node execution, we use communication over TCP
with PCIe P2P. PEs can communicate with other PEs using
tensor DMA (data) and IPC messages. Accessing a PE within a
TCP is identical to accessing a PE in another TCP or memory
from the viewpoint of the initiator. If the target address is
mapped to a different TCP, the transaction initiated by the
PE is transmitted to another TCP via the NoC and PCIe. We
enable the synchronization of tensors and the transfer of IPC
messages after the execution of a layer, allowing multiple PEs
to execute tensor parallel operations.

B. Various Tactics

As will be explained in Section V-C, the compiler explores
possible choices of tactics and tries to select the best one
satisfying the given requirements of performance and power
consumption. In order to help understanding the tactic design
space, in this section, we provide examples of possible tactics
on a given tensor operation.

Fig. 8 shows three examples of lowered shapes and tactics
for a tensor unit with s slices (s = 4 in this case). On the
left, the contraction occurs in eE/2[2] | e1[E/2] across two
slices and parallel contraction occurs along the bB/2[2] axis.
The case in the middle has a tail axis that is not e, resulting
in a DPE depth of 0. Each element of e read from the RFs is
broadcast across W , multiplied, and temporally accumulated
in the accumulation unit. The partition axis of each slice is
either b or l, processed in parallel, and the second operand is
multicast to all slices and loaded into the RFs. TCP supports
two contexts to parallelize data movement for the next layer
while performing tensor operations. It can divide the RFs
to use part of it for tensor operations while simultaneously
loading tensors for the next layer in another part. On the right,
f is partitioned across two slices and loaded into the RFs. The
data is loaded once and it is multicast to two slices, allowing
parallel execution.

When the compiler explores various tactics, the space
also includes tactics where some dimensions of tensor are
unaligned. Specifically, within slices, if the last dimension does
not align with the width of the dot-product engine, utilization
can decrease accordingly. However, the alignment of other
axes accessing the tensor along the time axis does not affect
utilization. For partitioning axes, we generally divide axes by
powers of two for the convenience of setting up the slices. If
a specific dimension needs to be divided among slices and it
is not a power of two, performance can suffer. In this case,
the compiler can choose lowered shapes which assign these
axes to in-slice non-last dimension based on the performance
estimator.

C. End-to-End Compiler

The TCP compiler works by taking the entire model graph
as input. The model is transformed into the compiler’s in-
termediate representation (IR), optimized, and then lowered
into assembly code. The process consists of the following five
stages:

1) Convert the input model into primitive operators.
2) Cluster primitive operators to form kernels that can be

executed efficiently on TUs.
3) Select tactics according to a cost function, and convert

kernels into low-level operators.
4) Transform low-level operators into command lists that

correspond 1:1 to hardware functions.
5) Convert the command lists into an executable binary.
We describe each of the stages in details as follows.
1) Primitive Operator Conversion: ML frameworks like

PyTorch have a huge set of operations [5]. However, many
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of these can be decomposed into a small set of primitive
operators. Examples of primitive operators include element-
wise arithmetic operations, reduction along a specific axis
of a tensor, linear algebra operations, reshape/indexing/slice
operations, type conversion, and comparison operations. The
first stage decomposes the input operators into these primitive
operators.

2) Tensor Kernel Generation: The graph of primitive oper-
ators can be too large and fine-grained for optimization. There-
fore, as exemplified in Fig. 9, we cluster primitive operators
to form kernels, which are units of operation structured in a
sequence of read, contraction, vector operations, and write.
The clustering process aims to maximize data reuse by fusing
operators and eliminating redundant tensor usage.

3) Low-Level Operator Generation: Although kernels are
executable, not all of them utilize the hardware efficiently.
Compiling kernels into low-level operators involves consider-
ing multiple possible options of kernels and potential bridge
operators (due to tensor shape differences between adjacent
layers) and selecting the most cost-effective option. The cost
is determined by considering the input/output shapes of the
kernels and bridges, the lowered axis shapes, and tactics. The
final low-level operators take lowered input/output tensors and
have fixed operation sequences, parallelism, and data reuse
tactics.

4) Command Generation: A command represents a single
tensor unit execution and describes the operations of its
various sub-units (fetch unit, contraction engine, vector engine,

transpose engine, etc). Although low-level operators mostly
correspond to hardware instructions, they are further divided
into several commands considering buffer and RF sizes.

5) Binary Creation through Scheduling & Resource Allo-
cation: Finally, we generate an execution plan for the com-
mands, considering resource limits. We need to decide when
each command executes, when inputs are prepared, where
outputs are stored, and how to operate multiple commands
simultaneously within resource limits. The main strategy is to
reduce memory pressure, schedule commands to hide memory
overhead, and run memory operations concurrently with com-
putations. Our scheduling algorithm uses a mix of heuristics,
ILP (integer linear programming), and genetic algorithms. Re-
source allocation involves mapping tensors to SRAM (i.e., DM
slices) and the RFs. After scheduling and resource allocation,
the best plan is translated into an executable.

D. Low-Level API

Although most users only interact with AI accelerators
through frameworks like PyTorch and TensorFlow, there are
use cases that require a low-level API. For example, the user
may try running a completely new AI operation for which
the compiler may not produce good-enough code. Compiler
and runtime researchers also require low-level access to the
hardware [19]. We observe that in the case of GPUs, academic
researchers have regularly beaten the vendor’s software, which
then incorporates those novelties [6], [11], [22]. Another im-
portant use case is large-scale deployments, where it becomes
financially viable to optimize models by hand. For these use
cases, we offer an API similar to the low-level einsum notation
used in this paper.

VI. CASE STUDY: RUNNING THE LLAMA-2 7B MODEL

In this section, we describe how the LLaMA-2 7B
model [20], a representative language model, can be executed
on the TCP chip. We explain how TCP achieves high utiliza-
tion even with small batch sizes, and how energy efficiency
is improved through data reuse. We also show how batch size
and sequence length impact the choice of the optimal tactic
and how computation and DMA transfers overlap efficiently.
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To achieve high performance, it is essential to efficiently
utilize all PEs as well as HBM bandwidth. In this paper, we
focus on parallelism within a single chip, showing how to run
LLaMA-2 across multiple PEs.

We follow the notation of [17], [24] to express parallelism.
Subscripts are used to describe axes that are divided across
multiple PEs. For example, let B be the batch size, L the
sequence length, and E the embedding size, BLEn indicates
that the E axis is split into n partitions and that each PE stores
a tensor partition with dimensions (B × L× E/n).

Distributing weights equally among n PEs using 1D weight
stationary is the most straightforward and efficient distribution
method for most cases. We use 8-bit weights and activations.
We describe next how we partition and run LLaMA-2 and
report its performance and power consumption on TCP.

A. Embedding Layer

For the embedding lookup before the first layer, a gather
is performed with BL token indices to load a BLE tensor.
With n PEs, dividing BL into BnL or BLn does not make a
significant difference in terms of data movement. After passing
through RMS normalization and before computing Q, K, V
using 1D weight stationary, all PEs must replicate BLE using
an all-gather. Thus, how it is divided and processed before that
is irrelevant.

Each PE drives a tensor DMA to perform a gather from
the embedding table located in HBM. The DMA unit al-
lows indirect access to specific dimensions of the tensor in
HBM, enabling full bandwidth embedding lookups and placing
the data on memory in an optimal layout for subsequent
layer operations. For example, the data can be stored as
Ee/s[s] | L[l]E[e/s] or Ll/s[s] | L[l/s]E[e].

During the decode phase, since the previous output token
becomes the next input token, the embedding lookup is per-
formed only for the last generated token, and thus the table
lookup is done for B tokens only. Instead of dividing B across
multiple PEs, each PE performs the same embedding lookup
and proceeds to the attention layer, which is more efficient
than an all-gather in this case.

B. Attention Layer

In order to explain how the attention layer can be executed
on the TU, we use a specific example. We assume H = 4
(number of heads), L = 256 (sequence length), and D =
128 (per-head hidden dimension). In this example, we allocate
16 slices to each head. Fig. 10 illustrates how the attention
layer can be executed on multiple slices in parallel. Fig. 10 (a)
depicts the multiplication of query (in0 = Q[0:256][0:128])
and key (in1 = K[0:256][0:128]) matrices for a head. Fig.
10 (b) illustrates how matrix Q is stored across 16 slices and
Fig. 10 (c) shows the complete picture for four heads. Next,
we give a detailed description of how the attention layer is
executed, focusing on lowered shapes and tactics.

Fig. 10 (a) shows the Q matrix (in0), Q[0:256][0:128]. As
Fig. 10 (a) and (b) show, we allocate a sub-matrix on a slice.
Specifically, the sub-matrix Q[0:16][0:128] is allocated on the

DM of slice 0, the next sub-matrix Q[16:32][0:128] on slice 1,
and so on. We allocate the K matrix in a similar manner across
slices. As Fig. 10 (a) shows, we allocate K[0:128][0:16] on
the RFs of slice 0, K[0:128][16:32] on slice 1, and so on. The
16 key vectors on each slice are distributed across the eight
RFs of the slice.

After allocating the Q and K matrices across 16 slices, we
multiply them on the slices. As shown in Fig. 10 (a), we fetch
the first query vector, Q[0][0:128] from the DM of slice 0. The
input vector fetched from the DM slice can go through the feed
unit and be broadcast to eight DPEs. The query vector is first
broadcast to the DPEs of slice 0 to produce eight dot products,
i.e., the first eight elements of output matrix QK (out), i.e.,
QK[0][0:8]. The same query vector can be provided to the
same DPEs in the subsequent cycle while fetching new key
vectors from the RF. Thus, in the next cycle, we obtain the
next eight elements of output matrix QK, i.e., QK[0][8:16] on
slice 0. Fig. 10 (a) illustrates slice 0 produces a sub-row of
output matrix, QK[0][0:16]. In the same manner, each slice
produces its own sub-row of the output matrix in parallel.

The query vector fetched from a DM slice needs to be
maximally reused. To do that, we multicast the query vector
over all the slices. Fig. 10 (b) illustrates how the multicast
is performed by the fetch network. A query vector fetched
from a DM slice is provided to a slice and then, after it is
used 16 times on the current slice, the fetched vector moves,
over the fetch network, to the next slice which then uses it 16
times by performing dot products with its key vectors. In this
example, once a query vector is fetched from its DM slice, it
is reused 256 times (= 16 times, by 16 slices and 16 times on
each slice by broadcast to eight DPEs and reuse by the feed
unit). As shown in the case of LLaMa-2 model execution, TCP
can offer high efficiency on computation and HBM bandwidth
consumption by trying to maximally reuse data fetched from
HBM.

Fig. 10 (c) shows the low-level einsum representation of
this case for the lowered shapes of the Q, K, QK matrices
and the tactic where D represents per-head hidden dimension.
Note that the output QK matrix is also distributed across slices.
Thus, in order to compute the softmax on the QK matrix, each
slice first obtains the local max (of QK[0][0:16] on slice 0 for
instance) within its slice, and then a max-reduce is performed
between 16 slices to obtain the global max. This global max is
then broadcast to each slice’s RF. On the VE of each slice, we
calculate exp(x - global.max) for each element of the output
QK matrix and accumulate the results to compute the slice
sum. The final global sum is obtained through an add-reduce,
and then broadcast to the slice’s RF, and used to compute the
final result of the attention score, which is committed to the
DM of each slice.

Before calculating attention, the V tensor is loaded into the
RFs. V is stored as H1[4]V l/16[16] | D1[128]V 1[l/16] and
the softmax result as H1[4]Kl/16[16] | Q1[l]K1[l/16], where
V represents the axis of vector index. The attention is the
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Fig. 10: Example tactic for calculating QKT in the attention layer, i.e., HQD,HKD → HQK.

contraction between V and K of the softmax.1 A possible
tactic is H1[4] V l/16[16] | Q1[l]D8[16]D1[8]V 1[l/16], which
means that each DPE contracts V 1[l/16], and one input data
chunk is fed identically to eight DPEs 16 times, resulting in a
total of 128 input reuses. The outputs of the CE are transmitted
to the VE and to be reduced across slices according to the
lowered shape of the output.

C. Feed Forward

The feed forward network (FFN) layer consists essentially
of matrix multiplications. Its intermediate dimension, F , is
2.7× larger than that of attention output, which requires a large
set of MLP weights thereby incurring a significant amount of
HBM read traffic. Additionally, since F is not a power of two,
the intermediate vectors must be padded, reducing hardware
utilization.

We split the MLP weights into E × F/3. We process
each third of the operation while prefetching the next third.
The activation function (SiLU) is fused and processed in the
vector engine as a chained operation following the previous
contraction.

D. Performance Analysis

Table II shows that TCP offers noticeable performance per
watt, 2.7× better than H100 and 4.1× better than L40s.2 In
terms of throughput, each chip reaches performance close
to its peak, with differences between chips mostly due to
peak memory bandwidth. TCP has 1.7× higher peak memory
bandwidth than L40s and is 1.76× faster, despite having a
57% lower TDP. H100 has 2.2× larger memory bandwidth
than TCP and is 1.72× faster. However, H100 has a 4.7×

1Note that Q, K, and V all represent the same vector index and thus should
be represented as a single axis like L. In this example, we use Q, K and V
separately for better readability.

2We referred to NVIDIA’s public LLaMA results. The 7B models of
LLaMA and LLaMA-2 are identical from a computational perspective. While
NVIDIA’s results are in FP8, TCP is in INT8 since we do not yet have an
FPP8 model for LLaMA-2, and TCP provides the same performance for both
FP8 and INT8, and power consumption is compared in terms of TDP. While
using actual power consumption instead of TDP would be more convincing,
but it was difficult to measure the exact power consumption of the GPUs
we were comparing with. Therefore, for comparison, we used TDP for both
sides. TDP is not exact, but we consider it as a reasonable approximation of
actual power consumption.

L40s H100 TCP

Technology TSMC 5nm TSMC 4nm TSMC 5nm

BF16/FP8 (TFLOPS)* 362/733 989/1979 256/512

INT8/INT4 (TOPS)* 733/733 1979/- 512/1024

Memory Capacity (GB) 48 80 48

Memory Bandwidth (TB/s) 0.86 3.35 1.5

Host I/F PCIe
Gen4 x16

PCIe
Gen5 x16

PCIe
Gen5 x16

TDP (W) 350 700 150

Latency
(msec)

B=1,L=128 14 7 8

B=1,L=2K 73 36 65

Through-
put
(tokens
/sec)

B=16,IL=2K,
OL=2K

531 935

B=32,IL=2K,
OL=2K

2230 1293

Perf/Watt
(tokens
/sec/W)

B=16,IL=2K,
OL=2K

1.52 6.24

B=32,IL=2K,
OL=2K

3.19 8.62

TABLE II: LLaMA-2 7B latency and throughput comparison.
B stands for batch size, IL (OL) stands for input (output)
sequence length. (* without sparsity) [13]

higher TDP than TCP. TCP shows higher throughput relative
to power consumption due to its higher memory bandwidth
compared to TDP.

Single batch first token latency (B = 1 in the table)
represents the compute and memory characteristics of the
prefill phase. When sequence length is small (L = 128), it
tends to be slightly more memory intensive. However, when
sequence length is large (L = 2k), it becomes more compute
intensive. As shown in Table II, compared with L40s, TCP has
much lower TOPS and TDP, but it shows 41% lower latency
for L = 128 and 11% lower for L = 2048, respectively. The
better performance for long sequences (L = 2k) demonstrates
that TCP achieves higher utilization due to TCP’s architecture
which makes better use of parallelism and data reuse available
in tensor contractions.

Fig. 11 (a) shows the first token latency of the prefill phase
over multiple sequence lengths. For sequence lengths smaller
than 256, the first token latency is almost linearly proportional
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to the sequence length since the computation cost of attention,
which is usually proportional to the square of the sequence
length, is relatively small. With long sequence lengths (> 2k),
the computation cost of attention starts to dominate, and the
execution time increases super linearly. Even though the size
of QKT exceeds the SRAM size, TCP is able to hide the
latency of tensor transfers within computations, so the total
latency increases linearly with the amount of computation.

Fig. 11(b) shows the utilization of memory bandwidth and
MAC, where MAC utilization is calculated by dividing the
number of contractions by the latency, and does not include
element-wise operations like softmax, RMSNorm, add, and
mul. Memory bandwidth utilization is calculated by dividing
the size of the weights and KV cache by HBM bandwidth,
1.5TB/s. In the case of Fig. 11 (b), when L = 128, the overall
model is relatively memory bound, thus MAC utilization is
low. However, as L increases, MAC utilization also increases.
But when L exceeds 2k, attention scores cannot fit entirely into
SRAM, and MAC utilization gets slightly decreased due to
the increased memory boundedness incurred by the additional
memory traffics to deliver split QKT tensors for softmax.
Note that Fig. 11 (b) shows only the memory utilization from
the model itself. Thus, the increased memory traffic due to
softmax is not reflected.

Fig 12 shows the next token latency and utilization of the
decode phase. The decode phase is basically bottlenecked by
memory bandwidth due to the read traffic of weights. Thus, as
shown in Fig. 12 (a) and (b), the next token latency does not
noticeably increase when the sequence length and batch size
are small. However, as the sequence length or batch size gets
larger than some level, the latency also starts to increase. This
is because the increased size of the KV cache incurs additional
HBM traffic. As L and B increase, not only does the amount
of computation increase, but also the time to load the KV
cache, resulting in memory boundedness. Fig. 12 (c) shows as
L becomes very large, we observe memory boundedness due
to softmax and KV cache which is also reported in Fig. 11
(b).

Fig. 13 shows the trace of TU and TDMA activities for
an encoder block during the prefill phase. In Fig. 13 (a),
we can see how the computation time can be hidden behind
weight transmission when the sequence length is very short.
Conversely, in Fig. 13 (b), we can see how weight transmis-
sion time can be hidden behind computation time when the
sequence length is large and computation dominates.

Fig. 14 shows the performance and power consumption
of the attention layer when using different tactics. Power
results are based on estimations using Synopsys’ SpyGlass
and TSMC library. Different tactics exploit different types of
data reuse depending on the order of fetch and how buffers
are managed, leading to different tradeoffs of performance
and power consumption. For performance critical systems, the
compiler would select the tactic with the highest performance,
i.e., the top-left point (Opt. 1) in the figure. However, a system
under stringent peak power constraints may need lower power
tactics, e.g., Opts. 2/3.

Fig. 15 shows the power breakdown of six points of Fig. 14:
Opt. 1, 2, 3, which represent the most power efficient tactics in
their performance category, and Ineff. 1, 2, 3, which represent
the least efficient ones. The breakdown reveals that efficient
tactics use less DPE power than the inefficient ones with
equivalent execution time. The optimal cases commonly utilize
all the eight DPEs in parallel. They differ in the usage of
the accumulation unit and the data supply from the fetch
unit. On the other hand, inefficient cases are characterized by
limited usage of DPE parallelism, even though the data supply
from the fetch unit is sufficient. Consequently, the balance
between the data supply from the fetch unit and parallelism in
the DPE contributes to higher performance and lower power
consumption.

VII. LESSONS LEARNED

Diversity in Data Reuse Patterns Across Operators Oper-
ators in AI models exhibit varied data reuse patterns, requiring
a nuanced approach to optimize data handling. Understanding
these patterns is essential to make informed decisions on
data storage, access, and processing, which in turn affects the
overall efficiency of the accelerator.

Optimizing SRAM Locality and Tensor Movement Opti-
mizing SRAM locality between consecutive operators is vital.
A common challenge arises when there is a mismatch in
the layout of the output of a layer and the input of the
subsequent layer. This situation often necessitates costly layout
transformations. Overcoming these challenges requires not
just local optimizations for each operator but also a global
optimizer to manage efficient tensor flow throughout the entire
model.

TCP’s support for multiple contexts plays a vital role in
hiding the overhead associated with data movement, thereby
enhancing overall efficiency.

Accurate Cost Model for End-to-End Optimization A
precise cost model is critical for optimizing AI programs. Such
a model helps predict how different tactics affect performance
and power consumption, allowing for more efficient designs.

Supporting Dynamic Shapes and Control Flow Support-
ing dynamic shapes and dynamic control flow is critical for the
optimization of AI accelerators, especially in LLM inference
where context length and batch size can vary dynamically.
TCP’s software supports dynamic shapes by modifying control
registers on the fly, and additionally, the CPU core facilitates
the creation of dynamic programs easily and efficiently, which
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enables more efficient program generation according to the dy-
namically changing requirements of computation, memory and
power consumption by allowing PEs to be fused dynamically
via the reconfiguration of fetch networks.

Complexities of Mapping Since contraction is possible
along any axis, there are challenges faced in navigating this
high-complexity space. We divide the problem into optimizing
tactics within a given lowered shape and mapping lowered
shapes from a perspective of whole model optimization. When
exploring numerous tactics available for a given lowered
shape, as demonstrated in Fig. 14, the performance estimator
practically contributes to narrowing down to meaningful tac-
tics. The design space for minimizing data movement between

layers of the model involves 1) various heuristics to prune the
space, and 2) several mapping optimization methods including
dynamic programming. Models with repetitive blocks, such
as transformers, significantly contribute to reducing the search
space for global optimization.

VIII. CONCLUSION

We presented TCP (Tensor Contraction Processor), a novel
accelerator for AI workloads. Our proposed SoC consists
of eight PEs with two HBM stacks. The PE architecture is
characterized by tensor contraction, flexibility, concurrency,
and data reuse. Each slice performs tensor contractions as well
as vector operations by concurrently running multiple contexts
on contraction and vector engines. The fetch network enables
data reuse across multiple slices, which renders the PE a
coarse-grained processor for large-scale parallel computations.
Data reuse is also exploited inside of slices via input broadcast
to multiple contraction engines and input reuse on the feed
unit. The compiler explores possible choices of tensor shapes
and their order in TCP computation and tries to provide the
best configuration for the given requirements of performance
and power consumption. We demonstrated that, in the case
study of running the LLaMA-2 7B model, TCP offers 2.7×
and 4.1× better performance per watt than H100 and L40s,
respectively.

ACKNOWLEDGEMENTS

We thank all the members of FuriosaAI who have con-
tributed to the development of the chip as a team. Special
thanks go to the Algorithm Team, who assisted with important
architectural decisions and prepared the models for perfor-
mance evaluation, and to the Platform Team, who supported
all aspects of software and hardware development, including
verification through scalable infrastructure. We also thank the
anonymous ISCA reviewers for their feedback and suggestions
on earlier drafts of this paper.

12



REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: a system for large-scale
machine learning,” in OSDI.

[2] K. Chatha, “Qualcomm® cloud AI 100: 12tops/w scalable, high per-
formance and low latency deep learning inference accelerator,” in Hot
Chips, 2021.

[3] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware
accelerators,” Communications of the ACM, vol. 63, no. 7, pp. 48–57,
2020.

[4] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–
362, Sep. 2020.

[5] H. He, “Where do the 2000+ pytorch operators come
from?: More than you wanted to know,” 2021. [Online].
Available: https://dev-discuss.pytorch.org/t/where-do-the-2000-pytorch-
operators-come-from-more-than-you-wanted-to-know/373

[6] L. Jia, Y. Liang, X. Li, L. Lu, and S. Yan, “Enabling efficient fast
convolution algorithms on GPUs via megakernels,” IEEE Transactions
on Computers, vol. 69, no. 7, pp. 986–997, 2020.

[7] N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,
S. Subramanian, A. Swing, B. Towles et al., “TPU v4: An optically re-
configurable supercomputer for machine learning with hardware support
for embeddings,” in ISCA, 2023.

[8] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma et al., “Ten lessons from
three generations shaped google’s TPUv4i,” in ISCA, 2021.

[9] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young,
and D. Patterson, “A domain-specific supercomputer for training deep
neural networks,” Communications of the ACM, vol. 63, no. 7, pp. 67–
78, 2020.

[10] S. Knowles, “Graphcore,” in Hot Chips, 2021.
[11] G. Li, Y. Xi, J. Ding, D. Wang, B. Liu, C. Fan, X. Mao, and Z. Zhao,

“Easy and efficient transformer: Scalable inference solution for large
NLP model,” arXiv preprint arXiv:2104.12470, 2021.

[12] E. Medina and E. Dagan, “Habana labs purpose-built AI inference
and training processor architectures: Scaling AI training systems using
standard ethernet with gaudi processor,” IEEE Micro, vol. 40, no. 2, pp.
17–24, 2020.

[13] “NVIDIA AI inference performance,” https://developer.nvidia.com/
deep-learning-performance-training-inference/ai-inference, NVIDIA.

[14] “NVIDIA multi-instance gpu user guide,” https://docs.nvidia.com/
datacenter/tesla/mig-user-guide/, NVIDIA.

[15] M.-J. Park, J. Lee, K. Cho, J. Park, J. Moon, S.-H. Lee, T.-K. Kim, S. Oh,
S. Choi, Y. Choi et al., “A 192-gb 12-high 896-gb/s HBM3 DRAM
with a TSV auto-calibration scheme and machine-learning-based layout
optimization,” IEEE Journal of Solid-State Circuits, vol. 58, no. 1, pp.
256–269, 2022.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[17] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” Proceedings of Machine Learning and Systems, vol. 5, 2023.

[18] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[19] P. Tillet, H. T. Kung, and D. Cox, “Triton: An intermediate language
and compiler for tiled neural network computations,” in MAPL, 2019.

[20] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[22] X. Wang, Y. Xiong, Y. Wei, M. Wang, and L. Li, “Lightseq: A
high performance inference library for transformers,” arXiv preprint
arXiv:2010.13887, 2020.

[23] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking TPU, GPU, and
CPU platforms for deep learning,” arXiv preprint arXiv:1907.10701,
2019.

[24] Y. Xu, H. Lee, D. Chen, B. Hechtman, Y. Huang, R. Joshi,
M. Krikun, D. Lepikhin, A. Ly, M. Maggioni, R. Pang, N. Shazeer,
S. Wang, T. Wang, Y. Wu, and Z. Chen, “GSPMD: General and
scalable parallelization for ML computation graphs,” arXiv preprint
arXiv:2105.04663, 2021.

[25] D. Zhang, S. Huda, E. Songhori, K. Prabhu, Q. Le, A. Goldie, and
A. Mirhoseini, “A full-stack search technique for domain optimized deep
learning accelerators,” in ASPLOS, 2022.

13

https://dev-discuss.pytorch.org/t/where-do-the-2000-pytorch-operators-come-from-more-than-you-wanted-to-know/373
https://dev-discuss.pytorch.org/t/where-do-the-2000-pytorch-operators-come-from-more-than-you-wanted-to-know/373
https://developer.nvidia.com/deep-learning-performance-training-inference/ai-inference
https://developer.nvidia.com/deep-learning-performance-training-inference/ai-inference
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

	Introduction
	Preliminaries
	Lowered Shape
	Tactics

	System-on-Chip (SoC)
	Processing Element
	Tensor Unit

	Micro-Architecture
	Data Memory
	Fetch Unit
	Contraction Engine
	Vector Engine
	Transpose Engine
	Commit Unit

	Programming Interface and Software Stack
	Programming Interface
	Various Tactics
	End-to-End Compiler
	Primitive Operator Conversion
	Tensor Kernel Generation
	Low-Level Operator Generation
	Command Generation
	Binary Creation through Scheduling & Resource Allocation

	Low-Level API

	Case Study: Running The LLaMA-2 7B Model
	Embedding Layer
	Attention Layer
	Feed Forward
	Performance Analysis

	Lessons Learned
	Conclusion
	References

