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Abstract
The memory requirements of machine learning
(ML) models has been growing quickly. How-
ever, the memory capacity of GPUs has not kept
pace. Despite significant research on reducing the
memory usage of ML models, the larger models
do not fit in a single device. A popular solution
to the memory capacity issue is to use multiple
devices in parallel. In this paper, we focus on
a particular form of parallelism called pipelin-
ing, as it offers a good balance between cost and
performance for many ML models. We present
Pfeife, the first tool that integrates with PyTorch
to provide automatic pipelining of ML models.
Pfeife intercepts the execution of models and par-
allelizes them transparently, requiring no manual
work. We show that Pfeife can execute large mod-
els that would otherwise not run due to not fitting
in a single device. Moreover, Pfeife can pipeline
non-sequential models such as Stable Diffusion,
which are not supported by existing pipelining par-
allelism tools. Pfeife outperforms state-of-the-art
tools by up to 22%.

1. Introduction
ML models have been growing in terms of memory re-
quirements very quickly. The memory needed just for the
weight matrices has gone from 0.4 GiB in 2018 (ELMo (Pe-
ters et al., 2018)) to 754 GiB in 2024 (Llama 3.1 405B
FP16 (Grattafiori et al., 2024)).

While memory requirements of ML models have increased
by several orders of magnitude in just a few years, hardware
has not kept up the pace. For example, NVIDIA’s high-end
GPUs, the most used platform for training and deploying
ML models, cannot fit state-of-the-art ML models in a single
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device. The maximum memory capacity of the top NVIDIA
GPU released this year (GB200) is only 384 GiB, still unable
to fit Llama 3.1.

Several techniques have been developed to circumvent the
hardware memory capacity limitations, especially using
multiple devices on the same server and across servers. This
encompasses multiple orthogonal techniques that can be
combined, including data parallelism, which replicates the
model across devices and splits each input batch between
devices; weight sharding, which splits parameters across
devices; and model and tensor parallelism that partition the
execution of one instance of the model.

These approaches face two main challenges: scalability and
usability. Data parallelism and weight sharding, for instance,
eventually require full synchronization of the weights across
all devices, thus require heavy communication. For model
and tensor parallelism, most tools are notoriously hard to
use. They often require writing models in a particular way
or to annotate models in a non-trivial way. Or even to pick
the partitions or identify the parallelism manually. None of
these tasks are easy for humans, especially for ML practi-
tioners, who are usually not experts in distributed systems,
parallel computing, or HPC.

In this paper, we focus on pipeline parallelism, which is
a particular form of model parallelism. We built Pfeife, a
tool that integrates with PyTorch and that pipelines models
automatically with no user intervention. PyTorch’s tracing
JIT compiler constructs, at run time, a data-flow graph that
represents the model being executed, and it is capable of
looking through a lot of Python’s dynamism. This enables
tools like Pfeife to grab the data-flow graph of ML models.
Moreover, it allows us to intercept the execution of models
and parallelize the execution in a transparent way to users.

Pfeife also allows selectively parallelizing a model in a
training loop, so that it can ensemble multiple models like
pre-trained frozen models. This functionality helps users to
train complex models like Stable Diffusion (Rombach et al.,
2022) which are traditionally not supported by automatic
model parallelism tools.

The contributions of this paper are as follows:

1. A specification language for describing synchronous
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and asynchronous pipeline parallelism that can simu-
late broad types of pipeline schedules.

2. An efficient algorithm that finds good pipeline sched-
ules automatically from data-flow graphs with thou-
sands of operations.

3. Investigation into the optimal workload distribution
conditions. We show that unbalanced schedules with
prefetching are often the optimal solution, contrary to
the popular belief that work must be distributed evenly
across devices.

4. Pfeife: our tool that integrates with PyTorch to provide
an automated and transparent way to pipeline models
across multiple devices. Pfeife offers three key func-
tionalities: (1) fine-grained, operation-level pipeline
parallelism, (2) an implementation of the scheduling
algorithm that generates schedules in our language,
and (3) a runtime to execute the schedules with partial
pipeline parallelism and data parallelism.

We show that Pfeife is capable of running large ML models
that do not fit in a single device due to memory capacity
constraints. Moreover, we show that Pfeife outperforms
state-of-the-art pipelining tools by up to 21% on large mod-
els, while being fully automatic.

2. Background and Related Work
There are many techniques to parallelize large ML models.
We give a brief overview, with a special focus on pipelining.

2.1. Data Parallelism and Weight Sharding

Data parallelism (DP) replicates the model and splits an
input batch into multiple mini-batches. Each device then
processes a different slice of the input. Since only the size
of the activations depends on the size of the mini-batch, DP
reduces the size of the activations but not of the weights.

Sometimes a single weight does not fit in a single device/-
core’s memory. For that case, weight sharding spreads the
weights across devices and gathers them on demand (Rajb-
handari et al., 2020; Wang et al., 2023b; Xu et al., 2021b;
Zhao et al., 2023). Sharding reduces the number of dupli-
cate copies of weights and enables sharing parts of weights
across parallel instances, but it incurs in additional commu-
nication.

Data parallelism is the simplest and easiest way to par-
allelize a model, but it requires full synchronization (i.e.,
all-reduce) of gradients between devices since it replicates
the weights. Its communication workload is linear in the
size of weights, and thus requires a high-bandwidth network
between devices.

2.2. Model and Tensor Parallelism

Any partition of a model to run whole operations in separate
devices is called model parallelism.

Tensor parallelism (TP) splits individual operations and
distributes the operations with sliced input or weights to
multiple devices (Bian et al., 2021; Xu et al., 2021a; Wang
et al., 2023a; Sousa et al., 2023; Singh et al., 2023). It
can distribute any kind of data but requires per-operation
gather/scatter communication and it is hard to automate.

Mixture-of-experts (MoE) selectively activates a subset of
layers per input (Shazeer et al., 2017; Rajbhandari et al.,
2022; Masoudnia & Ebrahimpour, 2014), allowing experts
to be placed on separate devices and run in parallel. Large-
scale frameworks increasingly combine such techniques to
scale to thousands of GPUs (Jiang et al., 2024).

2.3. Pipeline Parallelism

Pipeline parallelism (this paper) is a particular form of
model parallelism. It slices the data-flow graph of a model
and executes each sub-graph in a different device.

Pipeline parallelism is an effective technique to run large
models by distributing the weights and activations across
devices. However, it suffers from having devices idle at
times, the so-called pipeline bubbles.

After PipeDream (Narayanan et al., 2019) and
GPipe (Huang et al., 2019) introduced the concept
of pipeline parallelism for ML models, a number of
approaches have appeared to overcome some of the
drawbacks of pipeline parallelism, including more effective
communication/computation overlap (Chen et al., 2024a).

DAPPLE (Fan et al., 2021) uses 1F1B schedules to reduce
peak memory, despite noting that uneven schedules can
yield better performance. AutoPipe (Liu et al., 2022) applies
critical path analysis like Pfeife, but only for 1F1B without
prefetching and assumes balanced partitioning is optimal. It
also partitions at sub-layer granularity, whereas we support
per-operation slicing.

There are other schedules that reduce pipeline bubbles. For
example, the looped pipeline from TeraPipe (Li et al., 2021),
BFS (Lamy-Poirier, 2023), and AIAO (Li et al., 2023a) all
reduce the initial bubble and can hide gradient synchroniza-
tion latency in data parallelism. The kFkB schedule (Wang
et al., 2023c) aims at hiding communication latency with
a cluster of k forward passes, and Chimera (Li & Hoefler,
2021) uses bi-directional pipelines to increase utilization.

In terms of implementations, PiPPy (Reed et al., 2022) uses
the TorchFX tracer to generate a graph, but users must man-
ually specify cutpoints. Slapo (Chen et al., 2024b) provides
a more flexible scheduling language. Varuna (Athlur et al.,
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def forward(self, x):
   x = self.lin(x)
   x = self.relu(x)
   x = self.lin2(x)
   return x
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new_mod = torch.compile(mod, pfeife_compiler)
pipe_runner = PipeRunner()
for input in dataset:
   def exec_fn(input):
      loss = new_mod(input)
      loss.backward()
   pipe_runner.run(exec_fn, input)

Compile & Training Loop

Figure 1: Overview of the architecture of Pfeife.

2022) runs on vanilla PyTorch but requires users to manually
inject no-op cutpoint layers.

Hybrid Parallelism It is possible to combine multiple
kinds of parallelism. 3D parallelism combines DP, TP, and
PP for the same model.

Megatron-LM (Narayanan et al., 2021) trained transformer-
like models using 3D-parallelism with the looped 1F1B
pipeline. DeepSpeed (Rajbhandari et al., 2020) supports
3D-parallelism with ZeRO-DP. However, their support for
TP and PP requires manual work.

Colossal-AI (Li et al., 2023b) and Merak (Lai et al., 2023)
support automatic 3D-parallelism, but they are limited to
a few selected transformer models of HuggingFace (Wolf
et al., 2020).

Alpa (Zheng et al., 2022) and Sagemaker (Karakus et al.,
2021) use several search strategies to optimize the perfor-
mance of 3D-parallelism, but users have to rewrite the model
using their libraries, or compile the PyTorch module with
TorchScript (DeVito, 2022).

Recently, PyTorch revealed TorchTitan (Liang et al., 2024),
which enables 3D parallelism in PyTorch, but is limited to
train LLMs, especially Transformer models and requires
manual parallelization.

There are also other parallelism tools (Jia et al., 2019; Xu
et al., 2021b) that do not perfectly fit into this classification.

3. Pfeife
3.1. Architecture Overview

Figure 1 shows the architecture of Pfeife. ML models are
written in plain PyTorch. They are then compiled using
PyTorch 2’s torch.compile (Ansel et al., 2024), as it is
now common.

TorchDynamo is PyTorch 2’s new tracing JIT compiler in
torch.compile. TorchDynamo captures a static data-

flow graph (DFG) of a PyTorch model from its function
frame through symbolic execution at run time. It also allows
us to intercept the execution of models and replace the
original model with a parallel version of them.

Pfeife is implemented as a backend for torch.compile.
After getting the DFG, Pfeife distributes the operations in
the graph through the available devices. It then builds a
pipeline schedule so that it maximizes throughput while still
fitting in the memory capacity of each device.

Once a schedule is generated, Pfeife replaces the original
model. Since Pfeife captures and parallelizes the actual
execution of PyTorch APIs, the tool works with any user-
defined model. Execution is parallelized transparently to
the user, except that it will execute a large model that would
otherwise go out of memory.

The main training loop is expressed as a single closure
exec fn. From the closure, the user can mix a pipeline
module with any kind of model, such as pretrained frozen
models before or after the main module. PipeRunner
will call the closure with a set of micro-batches, catch the in-
put entered into the pipelined model new mod, and execute
a pipeline schedule through the workers. This design al-
lows pipeline parallelism for general models and use cases,
whereas existing frameworks usually require a fully lin-
earized forward pass from input to loss calculation. The
appendix contains more details about the implementation.

3.2. Problem Setting

Graph Construction A core part of pipeline parallelism
is how we distribute the set of operations of a model through
multiple devices. Since a device can only execute one func-
tion at a time, we must know the order in which the functions
have to be run on each device, and what results have to be
sent to the following device. That order and the data de-
pendencies can be expressed as a graph, which we call a
computation graph. A computation graph is expressed as a
TorchFX graph generated by TorchDynamo.
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Figure 2: Example dependency graph with two mini-batches and two nodes. The computation time of v1 and v2 is,
respectively, 15 and 10, communication time is 1, and backward nodes take twice the forward time. The red line is the
critical path, and blue circles indicate the longest distance from the source node (In).

Computation graphs of large ML models can have thousands
of nodes. To reduce the search space, we group several
vertices together and treat them as a single node in a reduced
graph, referred to as the fused graph G = (V, E). Producing
a good fused graph is key to balance scheduling time and
model running time. We call this process slicing a graph,
and we delve into this in Section 3.4.

Scheduling of Pipeline Parallelism Pipeline parallelism
involves executing multiple forward and backward passes
across devices according to a predefined schedule. We as-
sume that each device can only run a single function (i.e., a
vertex in a fused graph) on a single mini-batch at a time. We
now formalize the notions of a schedule and the associated
operations.

Definition 3.1 (Schedule). A Schedule S = (P,R) defines
the order of execution of a fused graph G = (V, E). Let
device operations be P : D → P(Op), where D is a set of
devices and P(Op) is the set of operations to run on each
device. Operation dependency R = P(Op×Op) is the set
of dependencies (partial order) between operations.

P denotes the set of computation and communication oper-
ations assigned to each device and mini-batch. R represents
the set of dependencies between these operations. These
dependencies are either automatically derived from the struc-
ture of the fused graph, or manually specified by the user
for, e.g., synchronization or reducing memory usage.

The set of operations, Op, consists of two primitive types:
(1) forward or backward computation of the i-th vertex vi
with the n-th mini-batch, denoted as v±n

i = (vi, n,F/B),
where v+n

i represents forward computation and v−n
i repre-

sents backward computation; and (2) communication be-
tween two nodes v±n

i and v±n
j connected by an edge e±n

i,j

for the n-th mini-batch, denoted as e±n
i,j = (ei,j , n,F/B).

By combining a fused graph and a schedule, we can simulate
most scheduling strategies for pipeline parallelism described
in the literature. We give some examples in Section 3.4.

Operation Dependency Graph Since R is a partial order
of operations in a schedule, we can derive a dependency

graph of all the Ops by interpreting the orderings as edges.
Figure 2 shows an example of that graph, which we refer to
as the operation dependency graph, or dependency graph.

For simplicity, we add dependencies based on the mini-
batch index without loss of generality. Also, we assume
that communication of output values is executed right after
the computation is finished. Existence of a dependency
between two communication nodes (e1, e2) is governed by
the number of the communication channel. We assume that
there is a single channel (e.g., PCIe or NVLink) between
two devices. The order between e1 and e2 is decided by the
scheduling algorithm, given the network topology.

Some implementations of pipeline parallelism such as
torchgpipe (Kim et al., 2020) strictly divide the computation
and communication phases. By assigning more dependen-
cies, we can simulate synchronization operations between
two devices. Considering the graph of Figure 2, if we explic-
itly set cross dependencies like e+1

1,2 → v+2
1 and v+1

2 → e+2
1,2,

then these work like a synchronization barrier which forces
communication to be executed only after all the computation
is finished.

3.3. Cost Model

To achieve our goal of reducing the total execution time of
models, we need a cost model to estimate the running time
and the peak memory usage of a given graph slicing and
schedule, and use it as the objective for our optimization
algorithm.

Following the strategy of DAPPLE (Fan et al., 2021), we
use a profiler to measure the computation time and memory
consumption of each operation in a computation graph be-
fore pipelining the model. We then use a planner to search
for the optimal graph slicing and execution order using the
results of the profiler.

Unlike previous pipeline planners, our cost model is based
on critical path analysis and thus is not dependent on any
specific pipeline schedule nor needs an in-depth analysis
of the schedule to build a heuristic. It is also agnostic to
the structure of the model or its graph. Because of this
generality, our planner found several interesting pipelines
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schedules that are faster than state-of-the-art frameworks.

For the communication time, we run a set of micro-
benchmarks offline to measure throughput and latency of
sending data between all pairs of devices. This information
is then used by the planner to estimate the communication
time based on source/destination devices and data size.

Running Time Estimation We can interpret dependency
graphs as flow graphs with a source and a sink nodes. We
want to know the earliest possible starting time of the sink
node. To achieve this, we have to compute the earliest
possible starting time of each of the individual nodes.

Nodes can have multiple parents. For example, in Figure 2,
v+2
2 has two parents: v+1

2 and e+2
1,2. The child node’s possi-

ble starting time (31) is the maximum of the parent’s ending
time (start + execution times). This can be viewed as a
vertex weight (starting time, blue circles) + edge weight
(execution time). The running time of operations is obtained
by running each operation at a time on the target device and
measuring the time it takes.

Since the dependency graph is a DAG, we can use, e.g.,
Dijkstra’s shortest path algorithm with negated weights to
find the longest path, which corresponds to the estimated
run time of the model. By finding the longest path from the
source to the sink node, we can find the critical path and the
estimated running time of a single iteration of the schedule.

Linearization and Graph Slicing by Split Points Slicing
a computation graph is one of the most important tasks when
generating a parallel schedule. The issue is that slicing an
arbitrary computation graph is equivalent to the min-cut
problem, and thus it is NP-hard. However, we can simplify
the decision of where to split the model by linearizing the
graph and finding a set of split points in the linearized graph.

Linearizing a graph is equal to selecting one of the partial
orders of the computation graph. It can be easily found
through a topological sort since the computation graph is a

DAG.

Selecting a particular topological order when the compu-
tation graph contains parallel branches is obviously an ap-
proximation and may not yield the optimal running time.
However, most current models, such as Transformer-based
models or CNNs, have a strict total order between their op-
erations or only a few negligible parallel operations. There-
fore, we opted to use the order of operations generated by
the TorchDynamo compiler. We show later that this approx-
imation yields good results in practice.

The remaining job consists in slicing the linearized sequence
of nodes, i.e., selecting split points. The detailed algorithm
is described in the next section.

3.4. Pipeline Parameters and Optimization Algorithms

We now describe how Pfeife generates fused graphs and
schedules.

Looped Training Schedule Any ML model has many
valid pipelining schedules. Trying to find the optimal sched-
ule at run time without any constraint is not viable as current
solving techniques do not scale. Inspired by previous work,
we reduce the search space to finding the following parame-
ters for the looped 1F1B schedule (Narayanan et al., 2021):

• (B) Total batch count: Number of mini-batches

• (Nl) Loop count: How many times the forward loop is
executed.

• (Bl) Loop batch count: How many mini-batches go
through the forward pass of a single stage.

• (B⃗f ) Prefetch batch count: A list with the number
of forward passes each device runs in addition to Bl

before it runs its first backward pass. |B⃗f | = |D|.

Obviously, each set of parameters offers a different tradeoff
in terms of performance and memory consumption. With
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this setting, we can express the schedules proposed in previ-
ous work including BFS (Lamy-Poirier, 2023) and looped-
1F1B (Narayanan et al., 2021). See Appendix B) for the
tradeoffs and examples.

Figure 3 shows an example schedule with 8 mini-batches
and 4 devices. We sliced the graph into Nl ·|D| nodes and let
the forward pass loop the sequence of devices. This makes
the length of a single forward pass equal to 1/Nl stages,
so it reduces the pipeline bubble in the beginning (i.e., the
top-left idle zone in the figure).

One of our major findings is discovering the role of prefetch-
ing forward passes before the first backward pass specified
as B⃗f , as we explain next.

Co-optimization of Slicing and Scheduling Both graph
slicing and scheduling matter to reduce latency and peak
memory consumption. However, existing planners choose
only one part as their optimization target. They usually fix a
schedule and then find the optimal graph for that, or equally
slice the graph first and then find the best schedule for that
slicing.

Our algorithm optimizes both slicing and scheduling at the
same time so that it can find the best pair of scheduling
and slicing. We use a superset of the schedules proposed
in previous work and find the best graph slicing for each
schedule.

Algorithm 1 shows the pseudo-code. We first generate a
set of schedules and then find split points for each sched-
ule based on our cost model (line 4). The set of sched-
ules is given as a set of scheduling parameters Pset =
(B,Nl, Bl, B⃗f ).

We find the split points for each schedule using beam search.
The initial set of split points p⃗ has the sum of the weights
and activations evenly distributed across devices (line 5).
Then, we make a beam set K that has a maximum size Lk,
and insert a pair of latency and split points (T, p⃗) calculated
from the computation graph. Next, we try to improve each
set of split points using the following steps:

1. Take out a set of split points in the beam set (line 9).

2. Move one of the points by 1 to 10 nodes (line 10).

3. For each point from (2), move the other points propor-
tional to the movement of (ps, k) (lines 11-12).

4. Calculate the latency and memory consumption for the
split points from (2) and (3) (line 14).

5. If the latency is improved and the peak memory does
not exceed the memory capacity, insert the new split
points in the beam set (lines 15-17).

6. Select the best LK valid split points in the beam set
(lines 18-21).

Algorithm 1 Graph-schedule co-optimization.

1: Input: Computation graph G, batch count B.
2: Output: Fused graph Gmin, dependency graph Smin,

and pipeline latency Tmin.
3: Tk, Tmin ←∞,∞
4: for Pset ← possible param(|D|, B) do
5: p⃗← (p1, · · · , pn) = init split pos(G)
6: T,Mp ← calc time mem(G,Pset, p⃗)
7: K ← {(T, p⃗)}
8: while K is changing do
9: for ( , (p1, · · · , pn)) ∈ K do

10: for 1 ≤ s ≤ n, 0 < |k| ≤ 10 do
11: p⃗single ← (p1, · · · , ps + k, · · · , pn)
12: p⃗prop ← (p1+k1, · · · , ps+k, · · · , pn+kn)
13: for p⃗← {p⃗single, p⃗prop} do
14: T ′,Mp ← calc time mem(G,Pset, p⃗)
15: if T ′ < Tk and Mp < max mem(D) then
16: K ← K ∪ {(T ′, p⃗)}
17: end if
18: if |K| > LK then
19: K ← select K min(K,LK)
20: Tk ← max({T | (T, ) ∈ K)}
21: end if
22: end for
23: end for
24: end for
25: end while
26: T ′, p⃗min ← min({(T, p⃗) ∈ K})
27: if T ′ < Tmin then
28: Tmin ← T ′

29: Gmin, Smin ← build graphs(G,Pset, p⃗min)
30: end if
31: end for

7. Repeat (2)-(6) until the set of split points does not
change (line 25).

The number of movements in (3) is round( (pi−pi−1)(ps+k)
ps

)

if i < s and round( (pi+1−pi)(|V (G)|−ps)
|V (G)|−ps−k ) otherwise. For

all pairs of schedule and split points, we select the pair that
has the lowest running time (lines 26-30).

The purpose of steps (2) and (3) is to fill the pipeline bubble
below the schedule by assigning more operations at the
beginning of the pipeline and fewer at the last devices.

For example, Figure 4 shows the overall steps with the actual
split points and structure. From the first to the last schedule,
the beam searcher moved the first and then the second points
and finally found the optimal split points (6, 11).

The running time can be further improved with prefetching
as shown in the last schedule. If we focus in the middle
of the schedule, we see that it is v+3

2 that is increasing the
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Figure 4: Latency comparison of four 1F1B schedules with
15 ops and 3 devices. The number of operations for each
device is shown on the left for each schedule; the latency is
shown on the right. Critical paths are shown in red.

critical path. Moving it to earlier reduces the critical path.

This schedule shows that uneven slicing changes the critical
path and reduces the length of the pipeline bubbles between
the forward and backward passes. This is in contrast with
the popular belief that even slices are optimal.

In our benchmark suite, beam search with 4 batches, 11 split
points, and 406 vertices (ViT-g/14 with Nl = 3) completes
within 10 seconds. For the largest model (StableDiffusion-
XL, 1645 vertices, 8 devices), with Nl = 2 (15 split points)
it takes less than 5 minutes, and with Nl = 3 (23 split
points) it takes about 10 minutes. In most cases, the whole
optimization process finishes within a few seconds.

4. Evaluation
We evaluate Pfeife1 in three ways: (1) applicability of the
approach, (2) accuracy of cost estimations, and (3) end-to-
end performance comparison with existing frameworks.

We used two servers for the experiments. For coverage and
correctness, we used a small server with 8x NVIDIA RTX
3090 24 GiB GPUs with 4 NVLink connections. For the
end-to-end experiments, we used a larger server with 8x
A100 40GB GPUs with NVSwitch. The main reason for
splitting the work across two machines was because we did
not have sufficient compute time available for validation in
the A100 cluster.

4.1. ML Model Coverage

To check how applicable Pfeife is, we used Torch-
Bench (Hao et al., 2023), which is the official PyTorch
benchmark suite. It includes a wide range of models.

We selected 49 trainable models that allow customization
of the mini-batch size and that can be run both on CPUs

1Available at https://github.com/MerHS/pfeife.

(238, 629.4ms)

(238, 639.1ms)

(225, 789.8ms)

(229, 797.5ms)

(238, 498.7ms)

(245, 499.7ms)

Figure 5: Expected vs actual latency of the ViT-g/14 model
(407 nodes) with 2 devices. Bottom to top: 2-4 mini-batches.
Circles and stars indicate the minimum expected and actual
running time, respectively.

and GPUs, so we have a baseline to compare against. We
excluded models that do not support training by default, and
models with quantized integer weights or that are too small.

We run the models with and without Pfeife and compared the
results. As expected, 37 out of 49 models run successfully
and produce the exact same output with and without pipelin-
ing, including complex models such as pytorch unet,
hf clip, and hf Bert large.

Of the remaining models, 11 cannot be compiled with
torch.compile due to issues within PyTorch itself, and
one model (timm efficientnet) produces incorrect re-
sults. Appendix C provides further details. These results
show that Pfeife can successfully run a broad range of state-
of-the-art ML models.

4.2. Cost Estimations and Effect of Scheduling
Parameters and Split Points

We now study how the scheduling parameters affect the per-
formance and peak memory consumption. See Appendix E
for more details.

Table 5 summarizes the results. We used two models: Vi-
sion Transformer (ViT-g/14) (Zhai et al., 2022) and GPT2-
large (Radford et al., 2019) with 512 tokens per batch. We
observe that Pfeife safely overestimates the peak memory
usage for every device (to avoid unexpected OOMs). Also,
the estimated value is at most 10% higher than the actual.

Figure 5 presents a study on how the choice of split points
affects the running time. Two observations are noteworthy:
(1) the predicted and optimal split points yield similar ex-
ecution times, demonstrating the effectiveness of Pfeife’s
heuristics, and (2) the optimal split is not at the midpoint.
The model has 407 nodes, while the best split occurs be-
tween nodes 229–245, indicating that the first device handles
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Figure 6: Expected (red points) vs actual (bars) latency of
ViT-g/14 with 2 and 4 devices by changing the scheduling
parameters and split points.

a larger portion of the computation.

Figure 6 shows the per-device running time of sched-
ules with varying loop count (Ln), loop batch count (Bl),
prefetch batch count (Bf ), and split points. For all schedul-
ing parameters, the actual latency follows the expected la-
tency with a small (30-40ms) difference at most (I/O over-
head). Therefore, Pfeife can select the optimal scheduling
parameters by simply choosing the parameters which show
the minimal expected latency.

We also compare three slicing strategies: distribute weights
uniformly (DeepSpeed), distribute operations by running
time uniformly (Alpa), and Pfeife’s uneven slicing. For all
cases with prefetching, Pfeife’s uneven slicing outperforms
the other strategies. We find that prefetching is necessary to
take advantage of uneven slicing.

4.3. End-to-End Comparison

For the end-to-end experiments, we compared Pfeife with
two semi-automatic PyTorch parallelization frameworks:
DeepSpeed (Rajbhandari et al., 2020), and Colossal-AI (Li
et al., 2023b). We used 3 HuggingFace models for bench-
marking, namely a vision model (ViT-g/14) (Zhai et al.,
2022), an LLM (Llama2-7B) (Touvron et al., 2023), and a
diffusion model (Stable Diffusion-XL) (Podell et al., 2023)
as an example of a non-sequential model. Note that the
weights of Llama and SDXL do not fit in a single GPU.

Table 1: Throughput comparison of pipeline parallelism
(item/s). |D|: number of devices. B: number of micro-
batches. C-AI: Colossal-AI. Higher is better. (* ZeRO 2 &
3)

Model |D|, B DeepSpeed C-AI Pfeife
ViT 2, 2 72.0 70.9 84.8 (+18%)
ViT 2, 4 86.5 86.1 92.8 (+7.3%)
ViT 4, 4 124.5 122.6 151.4 (+22%)
ViT 4, 8 157.7 139.7 161.5 (+2.4%)
ViT 8, 8 230.9 197.0 265.7 (+15%)
ViT 8, 16 297.7 216.7 282.2 (-5.5%)
LLama 8, 8 OOM(*) 6.80 7.46 (+10%)
LLama 8, 16 OOM(*) 8.69 8.81 (+1.4%)

Table 2: Throughput comparison of SDXL (item/s). Batch
count is equal to the number of devices (except FP16 x2,
which uses twice more batches). DP, PP: number of devices
in the groups of DP and PP.

Method DP PP FP16 FP16 x2 FP32
ZeRO2 2 1 3.78 OOM OOM
ZeRO3 2 1 0.81 0.94 OOM
Pfeife 1 2 3.72 4.74 2.38
ZeRO2 4 1 9.12 10.8 5.32
ZeRO3 4 1 2.01 1.84 2.01
Pfeife 1 4 7.12 9.32 3.98
Pfeife 2 2 7.06 8.67 4.54
ZeRO2 8 1 19.8 19.2 11.2
ZeRO3 8 1 3.82 3.35 3.22
Pfeife 1 8 12.1 15.4 6.09
Pfeife 2 4 13.9 15.9 7.32
Pfeife 4 2 13.8 17.2 9.02

None of the state-of-the-art tools offers fully automatic
pipeline parallelism, unlike Pfeife. Colossal-AI supports
just a few selected models and DeepSpeed requires a hand-
written, linearized sequence of layers, which makes it hard
to use with models that reuse a layer (e.g., transformers).

Sequential Models Table 1 shows the results. Pfeife out-
performs the state-of-the-art tools in all but one case. The
odd lines in ViT have higher bubble/computation ratio, and
therefore there are more opportunities for optimizing the
schedules and thus the performance gap is wider.

Pfeife outperforms state-of-the-art tools mainly for two rea-
sons: prefetching and looped schedules. Figure 7 shows
the profiles of 4 GPUs training the ViT-g/14 model with
Colossal-AI and Pfeife with and without loops and prefetch.
When we use a naive 1F1B schedule (top two profiles), there
is limited opportunity to exploit uneven slicing due to the
fixed critical path. By prefetching some forward passes,
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Figure 7: Profiling of ViT training with 4 GPUs and B = 8. Blue, red, and green blocks: forward, backward, and optimizer
steps.

additional idle time (blank spaces) appears between the
backward passes on the first device. Pfeife extends the for-
ward pass on the first device to fill these idle slots, resulting
in an 8% speedup. When combined with a looped schedule,
the idle time at the beginning is further reduced (by 9%),
bringing the total latency reduction to 16%.

Since Transformer-based models share embedding weights
at both input and output layers, building a pipeline by hand
with DeepSpeed is not straightforward. Our attempt to use
ZeRO-DP resulted in out-of-memory errors, showing the
limitations of data parallelism for models of this size. Pfeife,
in contrast, successfully trained LLama and achieved up to
10% higher throughput than Colossal-AI. This demonstrates
Pfeife’s ability to handle large models more efficiently than
existing parallelism approaches.

The only case in which Pfeife underperforms relative to an-
other framework is with the ViT model using 8 devices and
a batch size of 16, where DeepSpeed is faster. As the batch
size increases and pipeline bubbles consequently decrease,
performance increasingly reflects DeepSpeed’s maturity and
extensive engineering optimizations. However, the number
of mini-batches per iteration (i.e., gradient accumulation
steps) is inherently limited by model accuracy considera-
tions and interactions with other parallelism strategies.

Non-sequential models & mixing with Data Parallelism
Pfeife can train complex models and be combined with other
parallelism methods such as data parallelism. For example,
SDXL uses a pre-trained autoencoder in front of the U-Net
model. Due to its complex training pass and multiple skip-
connections between its front and latter parts, U-Net models
are not typically a target for pipeline parallelism.

We parallelized the trainable U-Net submodule in SDXL;
Table 2 shows the results. We compared Pfeife with Deep-
Speed’s ZeRO-DP. The results show that Pfeife is compara-
ble to ZeRO2. With more batches, Pfeife is sometimes faster
than ZeRO2 since the proportion of the pipeline bubble is
reduced. Also, Pfeife is 3-4 times faster than ZeRO3 and
does not raise OOM in FP32.

These results demonstrate that Pfeife enables training of

significantly larger models that cannot be trained with other
frameworks while maintaining comparable performance.

5. Conclusion
In this paper we presented Pfeife, the first tool that inte-
grates transparently with PyTorch to provide fully automatic
pipelining. It works by (1) capturing the whole data-flow
graph of ML models through PyTorch’s new JIT compiler,
(2) distribute operations across devices and schedule the
input data into mini-batches to establish the order in which
they will travel the pipeline, and (3) intercept the execution
of models and run their pipelined version instead.

We show that Pfeife runs large models that do not fit in a
single GPU transparently, thus saving a significant amount
of manual work. Our fine-grained, general pipeline opti-
mizer enables Pfeife to train models up to 22% faster than
state-of-the-art tools.
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A. Implementation Details
A.1. Implementation of Partial Pipeline Parallelism

1 import torch
2 from some_library import PreProcessor, MainModel, get_dataset
3 from pfeife import initialize_pfeife, pfeife_compiler, PipeOptions, PipelineRunner
4

5 initialize_pfeife()
6

7 preproc_model = PreProcessor() # frozen preprocessing module
8 main_model = MainModel()
9

10 optimizer = torch.optim.Adam(main_model.parameters(), lr=1e-5)
11 criterion = torch.nn.CrossEntropyLoss()
12 dataset = get_dataset()
13

14 options = PipeOptions.from_args(cmd_args)
15 runner = PipelineRunner(options, optimizer)
16 main_model = torch.compile(main_model, backend=pfeife_compiler)
17

18 for inputs, labels in dataset:
19 """ Original training loop:
20 with torch.no_grad():
21 inputs = preproc_model(inputs)
22 outputs = model(inputs)
23 loss = criterion(outputs, labels)
24 loss.backward()
25 optimizer.step()
26 print(f"loss: {loss.item()}")
27 """
28

29 # Do the same with a closure with inputs and labels
30 def iter_fn(inputs, labels):
31 with torch.no_grad():
32 inputs = preproc_model(inputs)
33

34 # The execution of the model is automatically pipelined
35 outputs = main_model(inputs)
36 loss = criterion(outputs, labels)
37 loss.backward()
38 print(f"loss: {loss.item()}") # allows side-effects
39 return loss # returned to runner.step()
40

41 # Set the target of pipelining
42 runner.set_exec_fn(iter_fn)
43

44 # Execute the pipeline by slicing ‘inputs‘ and ‘labels‘ into N micro-batches
45 losses = runner.step(inputs, labels)
46 loss = sum([loss.item() for loss in losses])

Listing 1: Example training loop using Pfeife.

Listing 1 shows an example of the full code required to train a model with Pfeife. It demonstrates Pfeife’s strength: easy
integration and the ability to mix multiple modules, some of which may be frozen. As we can see from the example,
pipelining a training loop using Pfeife requires changing less than a dozen lines.

Before training, we compile the main module to be pipelined with Pfeife (line 16). The Pfeife runtime inserts a synchroniza-
tion point in the forward function of the compiled module and attaches a backward hook to the result of the forward function.
When input tensors or gradients flow to the pipelined module, Pfeife automatically sends the tensors to the pipelined devices
and workers.

The core part of Pfeife involves enclosing forward to backward passes in a training loop within a closure (lines 29-39). We
must enclose the training loop with a closure for two reasons: first, we want to execute the pre-processing part with a sliced

13
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(Bl, Bf) = (4, 0)
1001.8ms (opt.)

(Bl, Bf) = (8, 2)
975.4ms (no opt.)

(Bl, Bf) = (8, 2)
924.3ms (opt.)

Figure 8: Three schedules of ViT-g/14 training with different Bl and Bf . The second schedule uses uniform slicing in terms
of the forward pass running time, while the other two are optimized by beam search.

micro-batch rather than a full mini-batch. Second, we want to control the timing of the execution of the pre-processor so
that we can run the pre-processing part on the main device concurrently with the pipelined parts on the other devices.

B. Scheduling Parameters
B.1. Tradeoffs about Scheduling Parameters

Pfeife restricts the search space of our scheduling algorithm with a combination of scheduling parameters that simulates a
looped-1F1B schedule. The tradeoff of each parameter is as follows:

• (B) Total batch count: Enhances throughput per training iteration if increased, but can harm the performance and
convergence if the batch size is too large.

• (Nl) Loop count: Reduces the pipeline bubble at the beginning, but requires higher activation memory in the last
device.

• (Bl) Loop batch count: Communication latency can be hidden if increased, but uses significantly higher activation
memory.

• (B⃗f ) Prefetch batch count: Reduces the pipeline bubble between forward and backward passes, but requires higher
activation memory in the first device.

For example, the schedule of Figure 3 suffers from high memory consumption due to storing many activations. The device
at the bottom accumulates all the activations of 4 mini-batches in the first part of the loop. To mitigate this problem, we can
reduce the number of mini-batches Bl which are fed to a single loop. To fully utilize all the devices, Bl should be a divisor
of B and Bl ≥ |D|.

We now emphasize the role of prefetching the forward passes before the first backward pass. Each device must run
(Nl − 1)×Bl + i forward passes before executing the first backward pass where i is the index of the device (indicated with
the red vertical line). This configuration has the lowest peak memory usage for the looped 1F1B schedule.

B⃗f specifies that each device should execute a few more forward passes before the first backward pass. There are two
positive effects of prefetching: (1) hide communication latency, and (2) fill in otherwise empty slots (the pipeline bubble).
For example, observe the nodes v+7

0 and v+7
1 (the two light red “7” blocks of the two bottom devices). If we execute v+7

0

before v−1
0 (the bold green “1” block at the bottom), we can hide the latency between v+7

0 and v+7
1 which passes the result

of the first device to the second device.

Figure 8 shows a concrete example with the actual timings of ViT-g/14. Through repeated local optimization with prefetching
by beam search, we effectively fill the pipeline bubbles between forward and backward passes with a looped schedule. This
level of optimization is achievable only with a fine-grained, operation-level pipeline. The subtle differences between forward
passes in the second and third schedules demonstrate this precision.

B.2. Examples of Pipeline Schedules

To show the expressiveness of this setting, we summarize the schedules proposed in previous work with parameters
(B,Nl, Bl, B⃗f ) and assuming 4 devices:
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• GPipe (Huang et al., 2019), Figure 2: (8, 1, 8, (4, 5, 6, 7))

• 1F1B-PipeDream (Narayanan et al., 2019), Figure 8: (7, 1, 8, (0, 1, 1, 0))

• 1F1B-DAPPLE (Fan et al., 2021), Figure 3: (6, 1, 6, (0, 0, 0, 0))

• TeraPipe (Li et al., 2021), Figure 2: (8, 2, 4, (0, 1, 2, 3))

• Megatron-LM2 (Looped-1F1B) (Narayanan et al., 2021), Figure 4: (8, 2, 4, (3, 2, 1, 0))

• BFS Pipeline (Lamy-Poirier, 2023), Figure 4: (8, 4, 4, (4, 5, 6, 7))

We note that there are some scheduling strategies that cannot be expressed in this framework, namely kFkB (Wang et al.,
2023c) and Chimera (Li & Hoefler, 2021). However, these strategies double the number of activations or weights, and thus
they require a lot of memory, meaning they are not useful for the current memory-heavy models.

Nevertheless, our optimization algorithm is not specific to any pipelining strategy. These strategies can be expressed with
our scheduling notation. If a user wants to consider those strategies, they just need to specify the strategy in our notation and
give it to the optimizer.

C. Coverage Test Details

Table 3: Program coverage of TorchBench.

Total Success Multiple graphs Model sharing error Dynamo error Incorrect result
49 37 5 4 2 1

Our coverage test compares the result (i.e., loss) between a pipelined model and the vanilla model. Also, we execute 5
training loops and compare their results after the parameters are trained.

Table 3 summarizes results of the coverage test. As we allow graph breaks in torch.compile, one of the model
(hf Whisper) is trained correctly even if it returns 5 subgraphs while its compilation.

However, 5 models result in tens of graphs so they raise an error from their side-effect handlers in the forward passes of the
compiled module. Note that side-effect handlers connects the sub-graphs when there are graph breaks.

Four models raise an error while sharding sliced subgraphs to worker processes. Since we support multi-node training, we
need to send a sliced PyTorch GraphModule through process pipes. However, their subgraphs cannot currently be marshaled
by Python, preventing multi-process training.

Two models fail to compile with torch.compile. Since Pfeife depends on torch.compile to extract a static TorchFX
graph, those models cannot be a target of pipeline parallelism until the PyTorch development team add supports for those
models.

The last column refers to the timm efficientnet benchmark. The cause of the error is that some parameters are not
captured in the generated TorchFX GraphModule. This seems to be an engineering problem, and a fix is expected soon.

The complete list of the coverage test is as follows:

• Success: alexnet, BERT pytorch, dcgan, densenet121, functorch dp cifar10, hf Albert,
hf Bert, hf Bert large, hf clip, hf DistilBert, hf Roberta base, hf GPT2, hf GPT2 large,
hf Whisper, LearningToPaint, lennard jones, llama, mnasnet1 0, mobilenet v2,
mobilenet v3 large, phlippe densenet, phlippe resnet, pytorch unet, resnet152,
resnet18, resnet50, resnext50 32x4d, shufflenet v2 x1 0, squeezenet1 1, timm nfnet,
timm regnet, timm resnest, timm vision transformer, timm vision transformer large,
timm vovnet, torch multimodal clip, vgg16,

• Multiple graphs: hf BigBird, hf Longformer, hf Reformer, hf T5 generate, opacus cifar10,

• Model sharing error: hf T5, hf T5 base, hf T5 large, dlrm,

• Dynamo error: cm3leon generate, hf Bart

• Incorrect result: timm efficientnet
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D. End-to-end Model Details

Table 4: Models used for evaluation. Train memory (GiB) = weights + gradients + optimizer state. Total = Estimated total
memory usage when training with a single mini-batch.

Model Batch size Weights Activations Train Total
ViT-g/14 24 3.1 21.1 12.3 33.4
LLama2-7B 1 (1024 tokens) 25.7 15.3 103 118
StableDiffusion-XL (FP16) 1 (1024px) 5.1 8.4 41.1 49.5
StableDiffusion-XL (FP32) 1 (1024px) 10.3 13.2 41.1 54.3

Table 4 shows the breakdown of memory usage in our end-to-end benchmarks. We reused the initial mini-batch through the
whole training iterations to measure the performance of parallelization only.

ViT-g/14 (Zhai et al., 2022) is a vision model that we use as an example of a computation-intensive workload. Llama2 (Tou-
vron et al., 2023), a large language model, represents a memory-intensive workload. Stable Diffusion XL (Podell et al.,
2023) is in between the two, exhibiting both significant computational demands and a complex computation graph.

We exclude the GPT2-Large (Radford et al., 2019) model from our end-to-end training experiments due to its relatively
small size, which results in suboptimal utilization of the A100 GPU.

E. Estimated vs Actual Run Time and Memory Consumption

Table 5: Accuracy of the run time and memory consumption estimations with 8 mini-batches. The columns are: |D|: number
of devices (and mini-batches); LB : size of a mini-batch; Nl, Bl, Bf : scheduling parameters; expected/actual peak memory
of the first and last devices (GiB); expected/actual running time (ms). (*): Rejected by the scheduler.

Model |D| LB Nl Bl Bf Est. peak mem. Act. peak mem. Est. time Act. time
ViT 2 6 1 - 1 20.5 / 11.4 20.2 / 11.2 1899 1960
ViT 2 6 2 4 1 19.1 / 14.8 18.8 / 14.6 1808 1891
ViT 2 6 3 4 1 19.0 / 16.6 18.3 / 15.9 1776 1856
ViT 4 6 1 - 2 17.4 / 6.21 17.1 / 5.96 1121 1149
ViT 4 6 2 8 3 18.5 / 14.6 17.6 / 13.2 966 1002
ViT 4 6 3 8 3 20.6 / 18.7 19.2 / 16.8 936 974
ViT 8 6 1 - 3 11.6 / 3.33 10.8 / 3.05 760 768
ViT 8 6 2 8 3 13.5 / 8.27 11.7 / 7.37 621 683
ViT 8 6 3 8 3 13.8 / 10.3 12.0 / 9.10 591 697 (*)
GPT2 2 2 1 - 0 16.4 / 11.4 16.9 / 11.6 1230 1283
GPT2 2 2 2 2 1 19.6 / 13.9 20.1 / 13.8 1142 1190
GPT2 4 2 1 - 2 19.4 / 5.25 19.9 / 5.45 699 725
GPT2 4 2 2 8 2 20.5 / 15.3 20.4 / 14.6 622 726
GPT2 8 2 1 - 2 13.0 / 4.07 12.5 / 3.96 486 661
GPT2 8 2 2 8 3 12.2 / 9.15 9.57 / 5.32 420 744 (*)

Table 5 summarizes the results of the cost model accuracy for two models, ViT-g/14 and GPT2-large, with 512 tokens per
batch. We run these models with a varying number of devices and batch sizes. For each setting, we let Pfeife find the best
scheduling parameters, and record the actual peak memory and running time.

Regarding loop count (Nl), we can see in Table 5 that the performance increases with more loops, as it reduces the pipeline
bubble. However, more loops also mean increased communication latency and also smaller kernels and thus higher overhead.

The estimated running time is very accurate, modulo a constant 30-60 ms warm-up time to distribute the mini-batches.
However, when the slicing is too fine-grained (less than 10 ms forward time per node), each node finishes too quickly, and
thus the Python threads cannot queue CUDA kernels fast enough. In this case, the overhead between the threads and CUDA
dominates the running time, hence we made the optimizer reject schedules with an estimated running time of the forward
pass less than 6 ms (marked with *).
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