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Abstract
Automatically generated tools can significantly improve program-
mer productivity. For example, parsers and dataflow analyzers can
be automatically generated from declarative specifications in the
form of grammars, which tremendously simplifies the task of im-
plementing a compiler. In this paper, we present a method for
the automatic synthesis of software verification tools. Our synthe-
sis procedure takes as input a description of the employed proof
rule, e.g., program safety checking via inductive invariants, and
produces a tool that automatically discovers the auxiliary asser-
tions required by the proof rule, e.g., inductive loop invariants
and procedure summaries. We rely on a (standard) representation
of proof rules using recursive equations over the auxiliary asser-
tions. The discovery of auxiliary assertions, i.e., solving the equa-
tions, is based on an iterative process that extrapolates solutions
obtained for finitary unrollings of equations. We show how our
method synthesizes automatic safety and liveness verifiers for pro-
grams with procedures, multi-threaded programs, and functional
programs. Our experimental comparison of the resulting verifiers
with existing state-of-the-art verification tools confirms the practi-
cality of the approach.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.4.5 [Operating Systems]:
Reliability—Verification; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

Keywords Proof rules, verification tool synthesis, software verifi-
cation, software model checking

1. Introduction
Developing tools that deal with programs, e.g., parsers, compilers,
analyzers, or verifiers, is a difficult yet necessary task for increasing
programmer productivity. Programs are complex artifacts and their
treatment within a tool requires careful consideration of various
intricate aspects of program syntax and semantics. Tool synthesis
offers an attractive alternative to manual tool development. Once a
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tool generator is developed for a given problem domain, it can be
used to synthesize various tools that deal with particular problem
instances in the given domain. For example, in the problem domain
of parsing, a parser generator allows one to synthesize parsers for
particular (programming) languages [1]. Each parser is synthesized
by the generator from a language specification in the form of
a grammar. Furthermore, static analyzers (including pointer alias
analyzers) can be generated from attribute grammars [47], dataflow
equations [29, 31], equations in the form of set constraints [2, 3,
27], or equations as Datalog rules [28, 34, 51]. These approaches
take an analysis specification as a set of equations and produce an
analyzer that infers program properties by solving the equations.

Recently, property verifiers became a target for automated
tool construction. For example, the GETAFIX tool for checking
Boolean programs was synthesized from a logical formula in
µ-calculus using a BDD-based fixpoint solver [49]. Still, soft-
ware verification tools such as SLAM [4], BLAST [20, 21],
FSOFT [23], IMPACT [33], TERMINATOR [11], CPACHECKER [7],
or DSOLVE [24, 43], are developed from the ground up in a com-
plex manual effort that takes into account particularities of domain
specific reasoning for the applied verification method. The devel-
opment efforts may need to be repeated to a large extent once a dif-
ferent proof rule is employed, or programs in a different program-
ming language are considered as input. This status quo hinders the
advancement of the state-of-the-art in software verification, makes
it prohibitively expensive to develop new verification methods and
provide verification tools for the growing number of application
domains. Without automatic tool support for the development of
software verifiers, we cannot deliver required tools for improving
software reliability and leave software developers alone in dealing
with the increasing complexity of modern software systems.

In this paper we present a method for automating the devel-
opment of software verification tools by providing the following
key ingredients: a methodology for describing verification meth-
ods for reachability and termination properties as constraint solv-
ing problems, and an efficient solver for the resulting constraints.
As a result, developing a new software verifier will become a two-
step process: i) design and specification of a verification method
in the form of constraints supported by our methodology, and ii)
construction of a frontend that generates constraints from software
source code. The main effort will be spent in the formulation of a
suitable verification method, which is a creative activity that usu-
ally leverages existing methods and adapts them to new applica-
tion domains. The frontend construction usually requires writing a
translator from the compiler’s intermediate representation into the
language of constraints, which is a well-established routine. We be-



int sum(int n) {
int s;

1: if (n > 0) {
2: s = sum(n-1);
3: return s+n;

} else {
4: return 0;

}
5: }

V = (n, s, ret, pc)

init(V ) = (pc = `1)

ρ(V, V ′) = (n ≥ 1 ∧move(`1, `2) ∧ skip(n, s, ret)) ∨
(ret′ = s + n ∧move(`3, `5) ∧ skip(n, s)) ∨
(n ≤ 0 ∧move(`1, `4) ∧ skip(n, s, ret)) ∨
(ret′ = 0 ∧move(`4, `5) ∧ skip(n, s))

call(V, V ′) = (n′ = n− 1 ∧move(`2, `1))

ret(V, V ′) = (s′ = ret ∧move(`5, `3))

loc(V, V ′) = (skip(n, ret) ∧move(`2, `3))

Figure 1. An example program and its representation as a tran-
sition system. skip(v1, . . . , vk) abbreviates the conjunction v′1 =
v1 ∧ · · · ∧ v′k = vk . move(`, `′) abbreviates the conjunction
pc = ` ∧ pc′ = `′ .

lieve that our method offers promising potential to boost the devel-
opment (and deployment) of software verifiers in the same way the
parser generators paved the way to modern approaches to compiler
construction.

Our method focuses on automatic construction of verification
tools that implement proof rules for reachability and termination
properties in the form of Horn(-like) clauses, see e.g. [30]. Proof
rules in such form are shown to be sufficiently expressive and
practically adequate for dealing with a wide range of program-
ming languages (including sequential, concurrent, and functional
programs), temporal specifications and verification techniques, see
e.g. [13, 18, 19, 37, 42, 43]. We present an efficient algorithm for
solving Horn-like clauses by generalizing state-of-the-art software
verification algorithms, in particular counterexample guided ab-
straction and refinement schemes. To demonstrate the feasibility of
our approach in practice, we apply our solving algorithm in combi-
nation with appropriate constraint generation frontends to develop
a collection of verifiers for temporal properties of programs with
procedures, multi-threaded programs, and functional programs.

This paper makes the following contributions.

• Conceptually, we identify a formulation of proof rules for
reachability and termination properties in the form of Horn-like
clauses suitable for automation using state-of-the-art techniques
for software verification.

• Technically, we provide an algorithm for solving Horn-like
clauses that is based on a generalization of the state-of-the-art
counterexample guided abstraction refinement schemes.

• Practically, we present an implementation of our approach and
its evaluation on important proof rules for the verification of
transition systems, programs with procedures, multi-threaded
programs, and functional programs.

2. Illustration
We illustrate our verification approach using a simple example for
which we prove a safety and a termination property.

2.1 Verifying programs with procedures
See Figure 1 for an example program implementing a sum compu-
tation. The procedure sum takes an argument n and returns the sum
of the numbers between 1 and n, or 0 if its argument n is not posi-
tive. We assume that the program state is given by a valuation of the
program variables V = (n, s, ret, pc) . The variable ret models
return value passing, while pc is a procedure-local program counter
variable that keeps track of the current control location. The initial
states of the program are given as an assertion init(V ) , where
`1 indicates the program line labeled 1. We use assertions over a
tuple of variables V and its primed version V ′ to model program
statements as binary relations over states. In our program, ρ(V, V ′)
represents intra-procedural statements. call(V, V ′) and ret(V, V ′)
model parameter and return value passing, respectively. The last as-
sertion loc(V, V ′) ensures that the caller’s local data variables are
unchanged during the callee’s execution, while the caller’s program
counter moves over the call site. The set of local variables that are
kept unchanged by the assertion loc(V, V ′) excludes s , which is
assigned by the call statement.

Proving safety We prove that sum always returns a non-negative
value and formalize this property by the assertion error(V ) =
(pc = `5 ∧ ret < 0) . To prove the property, we rely on
a summarization proof rule for programs with procedures [42].
This proof rule requires the construction of an auxiliary assertion
Summ(V, V ′) that represents a binary relation between entry states
of a procedure and their successors on the same level of recursion.
The following constraints over Summ(V, V ′) guarantee that all
necessary pairs of states are captured.

init(V ) ∧ V = V ′ → Summ(V, V ′)

Summ(V, V ′) ∧ ρ(V ′, V ′′)→ Summ(V, V ′′)

Summ(V, V ′) ∧ call(V ′, V ′′) ∧ V ′′ = V ′′′ → Summ(V ′′, V ′′′)

Summ(V, V ′) ∧ call(V ′, V ′′) ∧ Summ(V ′′, V ′′′) ∧
ret(V ′′′, V ′′′′) ∧ loc(V ′, V ′′′′)→ Summ(V, V ′′′′)

We obtain a correctness proof if we can find an instance of Summ
that satisfies the above constraints together with the implication
Summ(V, V ′) ∧ error(V ′) → false . The following disjunction
is a solution that is computed by our proposed Horn solving algo-
rithm.

Summ(V, V ′) = (pc = `1 ∧ pc′ ∈ {`1, `4}) ∨
(pc = `1 ∧ pc′ = `2 ∧ n′ ≥ 1) ∨
(pc = `1 ∧ pc′ = `3 ∧ n′ + s′ ≥ 1) ∨
(pc = `1 ∧ pc′ = `5 ∧ ret′ ≥ 0)

Note that the last disjunct ensures the non-negativeness of the
return value.

Proving termination For proving that sum terminates on every
input, we require that a so-called recursion relation between entry
states of the caller and its immediate callee is well-founded, i.e., it
does not admit infinite chains. We obtain the recursion relation by
relational composition of the summary with the parameter passing
relation. Hence, for proving termination, we need to find an asser-
tion Summ(V, V ′) that satisfies the above implications ensuring
the summarization property and the following well-foundedness
condition.

well -founded(Summ(V, V ′) ∧ call(V ′, V ′′))



To prove termination, our previous solution for Summ(V, V ′) re-
quires a strengthening n′ ≤ n that keeps track of changes applied
to n and guarantees that n never increases. Our solving algorithm
computes the following solution.

Summ(V, V ′) = (pc = `1 ∧ pc′ = `1 ∧ n ≥ n′) ∨
(pc = `1 ∧ pc′ = `2 ∧ n′ ≥ 1 ∧ n ≥ n′) ∨
(pc = `1 ∧ pc′ = `3 ∧ n′ + s′ ≥ 1) ∨
(pc = `1 ∧ pc′ = `4) ∨
(pc = `1 ∧ pc′ = `5 ∧ ret′ ≥ 0)

The composition of the strengthened solution with the parameter
passing relation is

(move(`1, `1) ∧ n
′ ≥ 0 ∧ n

′ ≤ n− 1) .

Its well-foundedness follows from the decrease of n at each step
and its boundedness from below by n′ ≥ 0.

As our example illustrates, we consider proof rules that can be
represented as a set of implication constraints over formulas repre-
senting the program and “unknown” formulas, e.g. Summ(V, V ′) .
To provide a basis for efficient solving algorithms, our implication
constraints resemble Horn clauses as they may have at most one un-
known formula in the consequent part of a clause. We refer to such
implications as Horn-like clauses, since we allow arbitrary disjunc-
tions among “known” formulas.

2.2 Verifying functional programs
We represent the program from Figure 1 as a functional program.

let rec sum n =
if n > 0 then let s = sum (n-1) in s+n
else 0

For functional programs, typing constraints can be used to track
value flow through program expressions. They relate refinement
types [14, 26] that represent assertions over values of expressions
and values of identifiers in scope. For example, the type of the
above function sum can be represented as follows.

sum : (n : {ν : int | P1(ν)} → {ν : int | P2(n, ν)})

Following recent work on refinement type inference, see e.g., [24,
48, 50], we embed the typing constraints into logical implica-
tions and obtain the following set of Horn-like clauses over P1(ν)
and P2(n, ν) .

true → P1(ν)

P1(n) ∧ n > 0 ∧ ν = n− 1→ P1(ν)

P1(n) ∧ n > 0 ∧ P2(n− 1, ν) ∧ ν′ = n + ν → P2(n, ν′)

P1(n) ∧ n ≤ 0 ∧ ν = 0→ P2(n, ν)

P2(n, ν)→ ν ≥ 0

The first clause encodes that there is no restriction on the in-
puts to sum. The second and third clauses represent data flow if
the branching condition succeeds. First, there is data flow due to
the parameter passing, which is represented by the second clause.
Then, the result of the recursive call is represented using the asser-
tion P2(n−1, ν). The sum of ν and n is the return value. The fourth
clause encodes return value passing when the branching condition
fails. The last clause represents the property that sum returns non-
negative values. If there is a solution to the above clauses then sum
satisfies the property.

Our solving algorithm computes solutions for P1(ν) and
P2(n, ν) , which yields the following type for sum.

sum : (n : {ν : int | true} → {ν : int | ν ≥ 0}) .

3. Preliminaries
In this section we introduce preliminary definitions.

We write λx ∈ X.e to represent a definition that assigns to each
x ∈ X the value obtained by evaluating e. Given a function f , let
dom(f) denote the domain of f , i.e., the set of values for which
f is defined. A binary relation is well-founded if it does not admit
infinite chains. We write well -founded(ϕ(v, v′)) if ϕ(v, v′) is a
well-founded relation, i.e., there is no infinite sequence s1, s2, . . .
such that ϕ(si, si+1) for all i ≥ 1. Let ε denote the empty tuple.
A relation ϕ(v, v′) is disjunctively well-founded if it is included
in a finite union of well-founded relations, i.e., if there exist well-
founded ϕ1(v, v′), . . . , ϕn(v, v′) such that

ϕ(v, v′) |=T ϕ1(v, v′) ∨ · · · ∨ ϕn(v, v′).

For example, the relation x ≥ 0 ∧ x′ ≤ x− 1 is well-founded,
while the relation x ≥ 0 ∧ x′ ≤ x − 1 ∨ y ≤ 0 ∧ y′ ≥ y + 1 is
disjunctively well-founded.

Constraints Let T be a first-order theory in a given signature,
V be a set of variables, and |=T be the entailment relation with
respect to T . We write v to denote a non-empty tuple of variables,
i.e., v ∈ V+. We refer to formulas in the given signature as
constraints, and let c(v) denote a constraint over the variables v.
Let false denote an unsatisfiable constraint.

For example, let x, y, and z be variables. Then, v = (x, y) and
w = (y, z) are tuples of variables. x ≤ 2, y ≤ 1 ∧ x− y ≤ 0, and
f(x) + g(x, y) ≤ 3 ∨ z ≤ 0 are example constraints in the the-
ory T of linear inequalities over rationals/reals and uninterpreted
functions, where f and g are uninterpreted function symbols. The
entailment y ≤ 1 ∧ x− y ≤ 0 |=T x ≤ 2 is valid.

Queries and dwf-predicates We assume a set of uninterpreted
predicate symbolsQ that we refer to as query symbols. The arity of
a query symbol is encoded in its name. We write q to denote a query
symbol. Given q of a non-zero arity n and a tuple of variables v of
length n, we define q(v) to be a query. Furthermore, we introduce
an interpreted predicate symbol dwf of arity one (dwf stands for
disjunctive well-foundedness). Given a query q(v, v′) over tuples
of variables with equal length, we refer to dwf (q(v, v′)) as a dwf -
predicate.

For example, let Q = {r, s} be query symbols of arity one
and two, respectively. Then, r(x) and s(x, y) are queries, and
dwf (s(x, y)) is a dwf -predicate.

Horn-like clauses Let h(v) range over queries and constraints
with variables in v. We define a Horn-like clause to be either an
implication

c(v0) ∧ q1(v1) ∧ · · · ∧ qn(vn)→ h(v)

or a unit clause

dwf (q(v, v′))

which consists of a dwf -predicate. The left-hand side of the impli-
cation is called the body and the right-hand side is called the head.
We use cl to denote a Horn-like clause.

The following set of clauses C illustrates our definition of Horn-
like clauses.

C = {x ≤ y ∧ y ≤ −1→ r(x), y = x+ 1 ∧ r(x)→ s(x, y),

r(x)→ x ≤ 0, dwf (s(x, y))}
To support efficient verification, our Horn-like clauses slightly

deviate from the standard notion of Horn clauses since constraints
occurring in our clauses can contain disjunctions and conjunctions.
For example, we admit clauses such as

(x ≤ 0 ∨ y ≤ 0) ∧ s(x, y)→ s(x, y)



and
s(x, y)→ (x ≤ 0 ∨ y ≤ 0).

While our presentation of the proposed method does not rely on the
Boolean structure of constraints occurring in clauses, it is useful
in practice to allow disjunction in constraints in order to keep the
number of clauses small. (Note that the above two clauses can be
translated into logically equivalent Horn clauses x ≤ 0∧s(x, y)→
s(x, y), y ≤ 0 ∧ s(x, y) → s(x, y) and s(x, y) ∧ ¬(x ≤ 0) →
y ≤ 0.) In contrast, we rely on the fact that there is at most one
non-negated query in a clause.

Clauses in normal form Before formalizing the semantics of
the clauses, we introduce assumptions on the syntax of Horn-like
clauses that significantly simplify the presentation of the semantics
without introducing any proper restrictions.

First, we assume that for each query symbol q there is a fixed
tuple v of variables with the corresponding length and that each
query with the symbol q is of the form q(v). That is, each query has
an a priori defined tuple of variables. Furthermore, we assume that
all variables in v are pairwise distinct, i.e., for the tuple of variables
v = (x1, . . . , xn) we have xi and xj are different variables for all
1 ≤ i 6= j ≤ n.

Second, we assume that in each clause a query symbol can occur
at most once. Formally, for each clause c(v0) ∧ q1(v1) ∧ · · · ∧
qn(vn) → h(v) we assume that qi is different from qj for all
1 ≤ i 6= j ≤ n, and if the head h(v) is a query q(v) then q is
different from each qi for all 1 ≤ i ≤ n.

The first assumption can be established by assigning tuples of
variables to query symbols, and then translating queries into the
desired form by adding corresponding equality constraints into the
constraint of a clause. For example, for the query symbols r and
s we assign variables vr = (xr) and vs = (xs, ys), respectively.
Then, a clause x + y ≤ 0 ∧ r(x) ∧ s(x, x) → y ≤ 0 violates our
first assumption but can be transformed to

x = xr ∧ x = xs ∧ x = ys ∧
x+ y ≤ 0 ∧ r(xr) ∧ s(xs, ys)→ y ≤ 0.

The first conjunct corresponds to the translation of the query r(x),
while the second and third conjuncts correspond to s(x, x).

The second assumption can be established by introducing aux-
iliary queries and clauses each time there is a clause with multiple
occurrences of some query. The violating clause is transformed by
replacing the violating query occurrences in the clause body by the
auxiliary queries.

For example, a clause r(xr) ∧ r(xr)→ r(xr) violates the sec-
ond assumption due to the triple occurrence of r(xr). Hence, we in-
troduce two auxiliary query symbols r1 and r2 of arity one together
with the corresponding tuples of variables vr1 = (xr1) and vr2 =
(xr2), respectively. Then, we express the relation between r(xr)
and the introduced queries using the following auxiliary clauses:
xr = xr1 ∧ r(xr)→ r1(xr1) and xr = xr2 ∧ r(xr)→ r2(xr2).
Finally, we translate the original clause r(xr) ∧ r(xr)→ r(xr) to

xr = xr1 ∧ xr = xr2 ∧ r1(xr1) ∧ r2(xr2)→ r(xr).

We refer to a set of Horn-like clauses that satisfies the above
two conditions as clauses in normal form. In the rest of the paper,
we assume that the clauses are Horn-like and in normal form.

For C defined above we obtain the following normal form CNF .

{x = xr ∧ x ≤ y ∧ y ≤ −1→ r(xr),

x = xr ∧ x = xs ∧ y = ys ∧ y = x+ 1 ∧ r(xr)→ s(xs, ys),

x = xr ∧ r(xr)→ x ≤ 0, dwf (s(xs, ys))}

Semantics of Horn-like clauses A set of clauses can be seen as
an assertion over the queries that occur in the clauses.

We consider a function Σ that maps each query q(v) occurring
in a given set of clauses into a constraint over v. Such a function
is called a solution if the following two conditions hold. First, for
each clause c(v0)∧ q1(v1)∧ · · · ∧ qn(vn)→ h(v) from the given
set we require:

c(v0) ∧ Σ(q1) ∧ · · · ∧ Σ(qn) |=T

Σ(q) if h(v) is q(v),

ch(v) if h(v) is ch(v).

Second, for each clause dwf (q(v, v′)) in the input set we require
that the relation Σ(q) is disjunctively well-founded. Let |=Q be the
corresponding satisfaction relation, i.e., Σ |=Q C if Σ is a solution
for C.

For example, the previously defined set of clauses CNF has a
solution Σ such that

Σ(r) = xr ≤ −1,

Σ(s) = xs ≤ 0 ∧ ys ≥ xs + 1.

To check Σ |=Q CNF we consider the validity of the entailments

x = xr ∧ x ≤ y ∧ y ≤ −1 |=T xr ≤ −1,

x = xr ∧ x = xs ∧ y = ys ∧ y = x+ 1 ∧ xr ≤ −1

|=T xs ≤ 0 ∧ ys ≥ xs + 1,

x = xr ∧ xr ≤ −1 |=T x ≤ 0,

and the fact that Σ(s) is a (disjunctively) well-founded relation.

Dependency and recursion-free clauses For a clause cl such that

c(v0) ∧ q1(v1) ∧ · · · ∧ qn(vn)→ h(v)

we define depends(cl) to be the set of query symbols that appear
in the body of cl , i.e., depends(cl) = {q1, . . . , qn}. A set of
clauses defines a binary dependency relation on query symbols.
Each clause cl that has a query q(v) (rather than a constraint) in
its head contributes the set of pairs {(qi, q) | qi ∈ depends(cl)} to
the dependency relation. We say that a set of clauses is recursion-
free if the corresponding dependency relation is well-founded.

For example, the second clause in C depends on the set of query
symbols {r}, and the entire set of clauses C defines the dependency
relation {(r, s)}. This dependency relation is well-founded, hence
C is recursion-free.

Solving recursion-free clauses We assume an algorithm for solv-
ing recursion-free clauses. This algorithm takes as input recursion-
free clauses in the theory T and computes a solution Σ when it
exists. There already exist such algorithms for the theory of lin-
ear arithmetic (see [19]) and linear arithmetic with uninterpreted
functions (see [17]), which are based on extensions of interpolation
algorithms [32, 46] to tree-like structures.

4. Algorithm HSF
In this section we present our algorithm HSF for finding solutions
to recursive Horn-like clauses.

Let C be a finite set of clauses that is given as input to HSF.
We partition C into inference clauses I and property clauses P . In-
ference clauses contain queries in their heads, and property clauses
contain the rest, i.e.,

I = {cl ∈ C | cl = (. . .→ q(v))},
P = C \ I.

Inference clauses impose a relationship between queries, while
property clauses impose absolute assertions on queries.

HSF finds a solution by following an iterative, abstraction-
based approach that relies on (spurious) counterexample deriva-
tions to refine the abstraction in case of imprecision. This approach



is a generalization of the counterexample-guided abstraction re-
finement schemes for proving reachability and termination prop-
erties of software. Our generalization deals with Horn-like clauses
(instead of transition systems/programs with procedures). Our ap-
proach inherits the advantages and disadvantages of the existing
counterexample-guided abstraction refinement schemes: a suffi-
ciently precise yet not overly detailed abstraction can be discov-
ered automatically, however the abstraction discovery procedure
may not terminate. In practice, the non-terminating behavior is suf-
ficiently seldom.

The iteration proceeds in three main steps.

1. We find a solution for the inference clauses I. At this step
we perform logical inference and rely on abstraction to ensure
termination in the presence of recursion and to ensure efficiency
in the presence of large sets of clauses.

2. We check whether the computed solution satisfies the property
clauses P . If some property clause, say cl , is not satisfied then
we proceed with the analysis of the inference tree computed in
the first step. Otherwise, if all property clauses are satisfied, we
return the solution.

3. We check whether the logical inference performed in the first
step in the setting without any abstraction yields a solution
that still violates the property clause cl . If the violation is
present then we return the inference tree as a counterexample
derivation. Otherwise we use the obtained solution to refine the
abstraction function and go back to the first step.

The first step is implemented using a procedure INFERABST that
applies ADDINFERRED to perform the necessary bookkeeping of
the inference tree construction. MAKECEX extracts a relevant sub-
tree of the inference tree in case a solution computed by INFER-
ABST violates some property clause. We rely on existing proce-
dures for the analysis of the obtained subtree. ADDPREDS converts
solutions obtained by the successful subtree analysis into a refine-
ment of the abstraction function. The procedure HSF puts the steps
together in a loop (Figure 4).

Next we present the procedures that implement the three steps.

(Predicate) abstraction We use predicate abstraction as an ap-
proximation technique employed by HSF.

Let α be a function that takes as input a constraint ϕ(v) together
with a finite set {c1(v), . . . , cn(v)} of predicates, i.e., atomic con-
straints, over v. The output is an over-approximation of ϕ(v) that is
constructed from the given predicates using Boolean operators. We
use the following definition (which is called Cartesian abstraction
in the literature [5]).

α(ϕ(v), {c1(v), . . . , cn(v)}) =
∧
{ci(v) | i ∈ 1..n ∧

ϕ(v) |=T ci(v)}

For example, given the constraint x ≤ y ∧ y ≤ z ∧ z ≤ 0 and
the predicates {x ≤ z, x ≥ 0, x ≤ 0} , the predicate abstraction
function returns the conjunction x ≤ z ∧ x ≤ 0 .

We rely on two properties of the abstraction function:
over-approximation and monotonicity. That is, for each
pair of constraints ϕ(v), ψ(v) and each set of predi-
cates Preds we have i) ϕ(v) entails α(ϕ(v),Preds) and ii)
if ϕ(v) entails ψ(v) then α(ϕ(v),Preds) entails α(ψ(v),Preds) .
The over-approximation will guarantee that combining logical
inference with abstraction will yield solutions to inference clauses
and the monotonicity will guarantee that such solutions can be
computed using fixpoint iteration techniques.

Inference and abstraction Before presenting the procedure IN-
FERABST, which performs logical inference, abstraction, and

RINIT
c(v0)→ q(v) ∈ I

α(c(v0),Preds(q)) ∈ Inferred(q)

RSTEP

ϕ1(v1) ∈ Inferred(q1) . . . ϕn(vn) ∈ Inferred(qn)

c(v0) ∧
∧n

i=1 qi(vi)→ q(v) ∈ I
α(c(v0) ∧

∧n
i=1 ϕi(vi),Preds(q)) ∈ Inferred(q)

Figure 2. Abstract inference rules for a given set of clauses I and
a predicate abstraction function with the set of predicates Preds(q)
for each query symbol q.

bookkeeping, we first present a characterization of what it com-
putes in the form of inference rules.

See Figure 2. The presented rules RINIT and RSTEP define a
relation between a possibly empty sequence of constraints in the
premise and a constraint in the consequence such that the relation
satisfies some inference clause from the input set I.

We keep track of the inferred constraints in the set Inferred that
we partition according to the query symbols of these constraints.
The inference process applies the rules as long as the derived
constraints are not subsumed by the previously derived ones. A
constraint ϕ(v) derived by applying a clause with the query q(v)
in its head is subsumed if there is a constraint ψ(v) in Inferred(q)
such that ϕ(v) entails ψ(v). (This subsumption definition is called
local entailment in the literature.)

We observe that the inference process terminates since the range
of the abstraction function is finite, i.e., there are only finitely many
different constraints that can be added to Inferred , and the abstrac-
tion function is monotonic. Furthermore, the resulting constraints
yield a solution for the inference clauses. Formally, we define

Σ = λq ∈ dom(Inferred).
∨

Inferred(q)

and obtain Σ |=Q I.

Procedure INFERABST We turn the inference rules RINIT and
RSTEP into a worklist-based iteration procedure INFERABST that
also keeps track between inferred constraints and corresponding
clauses. See Figure 3.

INFERABST takes as input the inference clauses I and a func-
tion Preds that assigns to each query symbol q (and the correspond-
ing tuple of variables v) a finite set of predicates over v. The output
of INFERABST consists of the inferred constraints Inferred and a
function Parent that represent the bookkeeping results. Parent as-
signs to each inferred constraint ϕ(v) a sequence of constraints and
a clause that were used in the rule application that produced ϕ(v).
INFERABST maintains a worklist WL containing inference clauses
that may infer new constraints.

The inference starts with applying all clauses that do not depend
on any queries, and are hence applicable when no constraints are
yet inferred. Each clause application follows the rule RINIT and
applies ADDINFERRED to process the application result. Then,
INFERABST iteratively applies the clauses from the worklist until
no more non-subsumed constraints can be computed, i.e., until
the worklist becomes empty. At every iteration step, INFERABST
takes a clause from the worklist and exhaustively applies the clause
following the rule RSTEP.

Example For the set of clauses CNF defined in the previous sec-
tion, we consider the predicates Preds(r) = {xr ≤ 0} and
Preds(s) = {xs ≤ ys} . For brevity, we denote the four clauses
from CNF as cl1 , cl2 , cl3, and cl4 , respectively. Our algorithm
initially processes the clauses that do not depend on any queries,
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function INFERABST

input
I – inference clauses
Preds – predicate table

output
Inferred – inferred constraints
Parent – parent function for inferred constraints

vars
WL – worklist with clauses
procedure ADDINFERRED

input
ϕ(v) – abstract relation
ϕ1(v1), . . . , ϕn(vn) – parent abstract relations
cl = (. . .→ q(v)) – parent clause with head q(v)

begin
if ¬(∃ψ(v) ∈ Inferred(q) : ϕ(v) |=T ψ(v)) then
Inferred(q) := {ϕ(v)} ∪ Inferred(q)

Parent(ϕ(v)) := ((ϕ1(v1), . . . , ϕn(vn)), cl)

WL := {cl ′ ∈ I | q ∈ depends(cl ′)} ∪WL

end
begin
Inferred := λq ∈ Q.∅
Parent := ∅
WL := ∅
for each c(v0)→ q(v) ∈ I do
ϕ(v) := α(c(v0),Preds(q))

ADDINFERRED(ϕ(v), ε, c(v0)→ q(v))

while WL 6= ∅ do
c(v0) ∧ q1(v1) ∧ · · · ∧ qn(vn)→ q(v) := take from WL

for each i ∈ 1..n and ϕi(vi) ∈ Inferred(qi) do
ϕ(v) := α(c(v0) ∧ ϕ1(v1) ∧ · · · ∧ ϕn(vn),Preds(q))

ADDINFERRED(ϕ(v), (ϕ1(v1), . . . , ϕn(vn)),

c(v0) ∧ q1(v1) ∧ · · · ∧ qn(vn)→ q(v))

return (Inferred ,Parent)

end

Figure 3. Abstract inference algorithm.

i.e., cl1 (see lines 8–10 from Figure 3). The computation of a new
constraint at line 9 proceeds as follows: ϕ(xr) = α(x = xr ∧ x ≤
y ∧ y ≤ −1, {xr ≤ 0}) = (xr ≤ 0) . �

Procedure ADDINFERRED The procedure ADDINFERRED is
shown in Figure 3. Since ADDINFERRED is defined within INFER-
ABST, Inferred , Parent , and WL are in scope of ADDINFERRED.

The input to ADDINFERRED is an inferred constraint ϕ(v) that
was computed by applying a clause cl with the head q(v) on the
possibly empty sequence of constraints ϕ1(v1), . . . , ϕn(vn), i.e.,
n may be equal to zero. First, ADDINFERRED checks if ϕ(v) is
subsumed by already inferred constraints. If no subsumption takes
place then we add it to the set of inferred constraints Inferred ,
extend Parent with a corresponding bookkeeping record, and add
inference clauses that depend on q to the worklist.

Example (cont.) After computing the constraint ϕ(xr) = xr ≤
0 , the inference algorithm calls ADDINFERRED(xr ≤ 0, ε, cl1)
(see line 10 of Figure 3) and records the information about the

newly inferred constraint as follows:

Inferred(r) = {xr ≤ 0} ,
Parent(xr ≤ 0) = (ε, cl1) ,

WL = {cl2} .
After adding the clause cl2 to the worklist, it will be processed in
the loop at lines 11–15 and a call ADDINFERRED(xs ≤ ys, (xr ≤
0), cl2) leads to a second inferred constraint as follows:

Inferred(s) = {xs ≤ ys} ,
Parent(xs ≤ ys) = ((xr ≤ 0), cl2) ,

WL = ∅ .

For the given sets of predicates, i.e., Preds(r) = {xr ≤ 0} and
Preds(s) = {xs ≤ ys} , the computation of inferred constraints
finishes here since the worklist is empty. �

Procedure HSF The main procedure of our algorithm is HSF.
It is shown in Figure 4. HSF takes as input a finite set of Horn-
like clauses C = I ] P and iteratively computes a solution for the
inference clauses I that also satisfies the property clauses P .

HSF computes solution candidates from the constraints in
Inferred that are inferred using INFERABST. The obtained can-
didate is guaranteed to satisfy I, while satisfaction of P requires
finding a sufficiently precise abstraction function. The abstraction
function α is determined by a set of predicates Preds that is parti-
tioned between query symbols.

A sufficiently precise abstraction function is computed by HSF
iteratively by adding predicates to Preds , which is empty initially.
For the given Preds , we first use INFERABST to compute inferred
constraints Inferred and Parent . Then we check whether the so-
lution for I defined by Inferred also satisfies P . We distinguish
between violation of a clause that has a constraint in its head from
the violation of a clause consisting of a dwf -predicate.

If a clause cl = c(v0) ∧ q1(v1) ∧ · · · ∧ qn(vn)→ ch(v) is not
satisfied by some sequence of inferred constraints, say ϕ1(v1) ∈
Inferred(q1), . . . , ϕn(vn) ∈ Inferred(qn), then we check if re-
peating the same inference steps without applying the abstraction
function computes a sequence of constraints that satisfies cl .

We reconstruct the inference steps that produced
ϕ1(v1), . . . , ϕn(vn) by using the procedure MAKECEX.
The output of MAKECEX is a set of recursion-free clauses X
whose queries correspond to the constraints that were involved, as
recorded by Parent , in the computation of ϕ1(v1), . . . , ϕn(vn).
We record the correspondence using the function Sym that assigns
query symbols of the involved constraints to the fresh query
symbols that represent constraints derived without abstraction. We
also include into X a clause imposing an assertion on the queries
that correspond to ϕ1(v1), . . . , ϕn(vn).

Now, we solve X using an existing tool for solving recursion-
free clauses [17, 19]. If a solution exists then we use it to extract
additional predicates for Preds . The function Sym translates query
symbols from the domain of the solution into the query symbols in
our clauses C. In this case, after refining the abstraction we continue
with another attempt to find a solution for C. If a solution does not
exist, we return the clausesX as a witness of the property violation.

Example (cont.) The set of clauses CNF contains the property
clause cl3, i.e., x = xr ∧ r(xr) → x ≤ 0, which is satisfied
by the candidate solution: Inferred(r) = (xr ≤ 0) . �

If a clause dwf (q(v, v′)) is not satisfied by some of the inferred
constraints, say ϕ(v, v′) ∈ Inferred(q), then we proceed in a
similar way as in the above case. First, we use MAKECEX to
construct a set of recursion-free clauses X that reconstructs the
inference steps leading to ϕ(v, v′). Then, we rely on an existing
solver for recursion-free clauses to find a solution forX that assigns
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function HSF
input
I ] P – Horn-like inference and property clauses

vars
Preds – predicate table
Sym – definition of quoted query symbols
function MAKECEX
input
ϕ(v) – inferred constraint
Parent – parent function

output
X – set of recursion-free clauses with root ϕ(v)

begin
((ϕ1(v1), . . . , ϕn(vn)),

c(v0) ∧
∧n

i=1 qi(vi)→ h(v)) := Parent(ϕ(v))

Sym := {“ϕ1(v1)” 7→ q1, . . . , “ϕn(vn)” 7→ qn} ∪ Sym

return {c(v0) ∧
∧n

i=1 “ϕi(vi)”(vi)→ “ϕ(v)”(v)} ∪⋃n
i=1 MAKECEX(ϕi(vi),Parent)

end
procedure ADDPREDS

input
Σ – solution function

begin
for each “ϕ(v)” ∈ dom(Σ) do
q := Sym(“ϕ(v)”)

Preds(q) := Σ(“ϕ(v)”) ∪ Preds(q)

end
begin
Preds := λq ∈ Q.∅
repeat

(Inferred ,Parent) := INFERABST(I,Preds)

if exist c(v0) ∧
∧n

i=1 qi(vi)→ ch(v) ∈ P and
ϕi(vi) ∈ Inferred(qi) for each i ∈ 1..n such that
c(v0) ∧

∧n
i=1 ϕi(vi) 6|=T ch(v) then

Sym := {“ϕ1(v1)” 7→ q1, . . . , “ϕn(vn)” 7→ qn}
X := {c(v0) ∧

∧n
i=1 “ϕi(vi)”(vi)→ ch(v)} ∪⋃n

i=1 MAKECEX(ϕi(vi),Parent)

if exists Σ such that Σ |=Q X then
ADDPREDS(Σ)

else
return “error derivation X ”

else if exist dwf (q(v, v′)) ∈ P and ϕ(v, v′) ∈ Inferred(q)

such that ¬well -founded(ϕ(v, v′)) then
Sym := {“ϕ(v, v′)” 7→ q}
X := MAKECEX(ϕ(v, v′),Parent)

if exists Σ such that Σ |=Q X and
well -founded(Σ(“ϕ(v, v′)”)) then
ADDPREDS(Σ)

else
return “error derivation X ”

else
return “solution λq ∈ dom(Inferred).

∨
Inferred(q)”

end.

Figure 4. Abstract inference, checking, and refinement.

a well-founded relation to q(v, v′) [39]. If INFERABST infers a set
of constraints Inferred that defines a solution for P then we return
this solution.

Example (cont.) The set of clauses CNF contains a second prop-
erty clause, i.e., dwf (s(xs, ys)) . The conditions at line 20 of
Figure 4 are satisfied for the inferred constraint xs ≤ ys :
dwf (s(xs, ys)) ∈ CNF , xs ≤ ys ∈ Inferred(s) and
¬well -founded(xs ≤ ys) . In this case, the inferred constraint
does not correspond to a well-founded relation. �

Procedure MAKECEX The procedure MAKECEX is shown in
Figure 4. Its scope contains Sym and Preds from HSF. MAKE-
CEX takes as input an inferred constraint ϕ(v) and bookkeeping
records Parent such that ϕ(v) ∈ dom(Parent).

Then, MAKECEX creates a clause that records the
fact that ϕ(v) was derived using the constraints and the
clause in Parent(ϕ(v)). Let Parent(ϕ(v)) be the pair of
ϕ1(v1), . . . , ϕn(vn) and c(v0) ∧ q1(v1) ∧ · · · ∧ qn(vn) → h(v).
This dependency is modeled by introducing auxiliary queries
“ϕ1(v1)”(v1), . . . , “ϕn(vn)”(vn). These auxiliary queries stay in
one-to-one correspondence with the constraints, i.e., “ϕi(vi)”(vi)
corresponds to qi for all 1 ≤ i ≤ n. This correspondence is
established by applying a bijective quotation function “ · ” that
translates a constraint into a query symbol. Finally, we recursively
apply MAKECEX on the constraints that produced ϕ(v) and
return all constructed clauses.

Example (cont.) For the inferred constraint s = xs ≤ ys, the
procedure MAKECEX(xs ≤ ys,Parent) is invoked at line 22
from Figure 4. As a result, a function Sym is constructed to keep
track of the quoted query symbols: {“xs ≤ ys” 7→ s, “xr ≤ 0” 7→
r}. Finally, the procedure MAKECEX returns the following set of
recursion-free clauses:

{x = xr ∧ x = xs ∧ y = ys ∧ y = x+ 1 ∧ “xr ≤ 0”(xr)→
“xs ≤ ys”(xs, ys),

x = xr ∧ x ≤ y ∧ y ≤ −1→ “xr ≤ 0”(xr)}
�

Procedure ADDPREDS The procedure ADDPREDS is shown in
Figure 4. It has Sym in scope and takes as input a solution function
whose domain consists of quoted constraints. ADDPREDS uses
Sym to translate quoted constraints into original query symbols
and add the solution constraints into the corresponding partitions
of Preds .

Example (cont.) Let us assume that the following solution Σ
is returned at line 23 of Figure 4: {“xr ≤ 0”(xr) 7→ xr ≤
0, “xs ≤ ys”(xs, ys) 7→ xs < ys} . The solution constraints
are partitioned as follows: Preds(r) = {xr ≤ 0} and Preds(s) =
{xs ≤ ys, xs < ys} . Given these predicates, the next iteration
of the abstract inference algorithm computes abstract constraints
precise enough to satisfy both property clauses cl3 and cl4 from
our example.

Inferred(r) = {xr ≤ 0}
Inferred(s) = {xs ≤ ys ∧ xs < ys}

�

Correctness Upon termination, the algorithm HSF computes a
solution for the input clauses. The soundness of the approach
is guaranteed by the fact that the abstraction function is over-
approximating. Our abstraction refinement method guarantees that
a set of counterexample clauses X is never analyzed twice, i.e.,
our refinement method satisfies the progress of refinement property.
Such soundness and progress of refinement properties are standard
for counterexample guided abstraction refinement schemes.



For assertions {Tf over Vf and V ′
f | f ∈ Procs(P )} ,

CP1 : init(Vmain) ∧ Vmain = V ′
main → Tmain(Vmain , V

′
main)

CP2 : Tf (Vf , V
′
f ) ∧ ρf (V ′

f , V
′′
f ) → Tf (Vf , V

′′
f )

CP3 : Tf (Vf , V
′
f ) ∧ call f ,g(V ′

f , V
′′
g ) ∧ V ′′

g = V ′′′
g → Tg(V ′′

g , V
′′′
g ) f , g ∈ Procs(P ) such that f calls g

CP4 : Tf (Vf , V
′
f ) ∧ call f ,g(V ′

f , V
′′
g ) ∧ Tg(V ′′

g , V
′′′
g ) ∧

ret f ,g(V ′′′
g , V ′′′′

f ) ∧ locf (V ′
f , V

′′′′
f ) → Tf (Vf , V

′′′′
f ) f , g ∈ Procs(P ) such that f calls g

CP5 : Tf (Vf , V
′
f ) ∧ error(V ′

f ) → false

program P is safe

Figure 5. Summarization rule for programs with procedures.

Alternative solving methods In this paper we use predicate ab-
straction and refinement to solve Horn-like clauses. Predicate ab-
straction allows us to formulate a practical algorithm, yet the pre-
sented formulation is sufficiently general such that a different ap-
proximation techniques can be employed instead without any sig-
nificant changes to HSF. For example, abstract domains based on
widening can be used to compute a solution to inference clauses,
by choosing the corresponding abstraction function for INFER-
ABST. Alternatively, we could use model checking techniques,
e.g., bounded model checking, to explore the clauses up to a finite
bound. Usually, predicates are atomic constraints; however recent
approaches to predicate abstraction show that predicates containing
Boolean operators can be useful [7].

5. Proof rules as Horn-like clauses
In this section, we show a collection of proof rules that can be
automated using our verification approach.

5.1 Transition systems
We consider a transition system with variables V , a set of initial
states init(V ), a transition relation ρ(V, V ′), and a standard se-
mantics.

Safety Let error(V ) represent a set of error states. To verify
safety the transition system, we use an invariance proof rule with
conditions over a queryR(V ) that characterizes reachable states as
follows.

For assertion R over V ,

CR1 : init(V ) → R(V )

CR2 : R(V ) ∧ ρ(V, V ′) → R(V ′)

CR3 : R(V ) ∧ error(V )→ false

transition system P is safe

Condition CR1 requires that all initial states are present in
R(V ). Condition CR2 states that a program transition starting from
a state in R(V ) ends in a state that is in R(V ′). Finally, CR3 states
that the intersection of reachable and error states is empty. Our
algorithm HSF finds a solution for the query R(V ).

Termination To reason about termination properties of transition
systems, we use a proof rule based on transition invariants
[37]. The assertion T represents a transition invariant, which is
a superset of the transitive closure of the transition relation ρ .

For assertion R over V that satisfies CR1 and CR2
and assertion T over V and V ′ ,

CT1 : R(V ) ∧ ρ(V, V ′) → T (V, V ′)

CT2 : T (V, V ′) ∧ ρ(V ′, V ′′) → T (V, V ′′)

CT3 : dwf (T (V, V ′))

transition system P terminates

We restrict the assertion T (V, V ′) to states that are reachable
using CT1,CT2 and two clauses from the invariance proof rule,
CR1 and CR2 . The last clause, CT3, uses a predicate symbol
dwf of arity one that requires a disjunctive well-founded argument
T (V, V ′) . The existence of a (disjunctive well-founded) transition
invariant guarantees program termination, cf. [37].

5.2 Programs with procedures
We consider programs with a set of recursive proce-
dures Procs(P ). Let main ∈ Procs(P ) be the procedure
that starts the program execution. For each f ∈ Procs(P ),
let Vf the set of variables that are in scope, ρf (Vf , V

′
f ) be

the intra-procedural transition relation. If f calls a procedure
g ∈ Procs(P ), then let call f ,g(Vf , V

′
g ) and ret f ,g(Vf , V

′
g ) be

parameter and return value passing relations, respectively. The
relation locf (Vf , V

′
f ) states which local variables of f are not

modified during a call to g .

Safety We prove safety properties of procedural programs using a
rule based on context-free language reachability [42]. See Figure 5
for the proof rule that consists of constraints over assertions Tf ,
one for each program procedure. A query Tf (Vf , V

′
f ) represents a

summary of the procedure f , which is a binary relation between
entry states of f and their successors on the same level of recur-
sion. For simplicity, our formulation does not adopt the common
distinction between path edges and summaries, see, e.g., [42].

The first condition CP1 of the proof rule requires that the ini-
tial states constraint implies the query corresponding to the entry
procedure main . The condition CP2 extends a query Tf (Vf , V

′
f )

with a transition relation from the same procedure. The third and
fourth conditions handle procedure calls. In CP3, given a query
Tf (Vf , V

′
f ) of the caller and the calling context passed from the

variables V ′
f to V ′′

g , the result is used to seed the summary of the
callee procedure g . The condition CP4 is the most complex clause
of the proof rule and ensures procedure-modular reasoning. It uses
a query from the caller Tf (Vf , V

′
f ) , links the calling context with



the parameter passing relation call f ,g(V ′
f , V

′′
g ) , uses the summary

of the callee Tg(V ′′
g , V

′′′
g ), passes the return value back in the scope

of the caller with ret f ,g(V ′′′
g , V ′′′′

f ) and links local variables not af-
fected by the call with locf (V ′

f , V
′′′′
f ) . Finally, the condition CP5

requires that states reachable at an arbitrary location in some pro-
cedure f do not intersect error states.

Termination For proving termination properties, we use the proof
rule from Figure 5 with an additional well-foundedness condition
that no infinite recursion is feasible. This condition is imposed
on a transition relation that describes recursive descent by com-
posing procedure summaries with call relations following [12].
Let VP =

⋃
f∈Procs(P ) Vf be the set of variables that occur

in all procedures. The technique of [12] constructs an assertion
Descent(VP , V

′
P ) such that the program P terminates if and only

if Descent(VP , V
′
P ) is well-founded. By taking a transitive clo-

sure of Descent(VP , V
′
P ) as described above, we can replace well-

foundedness condition by a disjunctive well-foundedness condi-
tion.

5.3 Multi-threaded programs
We consider a multi-threaded program that consists ofN threads as
a tuple (V, init , ρ1, . . . , ρN ), where ρi is the transition relation of
the thread i. The transition relation of the program ρ is the disjoint
union of the N transition relations of the threads.

Owicki-Gries rule for proving safety Based on Owicki-Gries
method [36], we present the following proof rule for verifying
safety of multi-threaded programs. This proof rule lists conditions
over N query symbols Ri that characterize reachable states for
each thread i ∈ 1..N .

For assertions R1, . . . , RN over V ,

CO1 : init(V ) → Ri(V )

CO2 : Ri(V ) ∧ ρi(V, V ′) → Ri(V
′)

CO3 : Ri(V ) ∧ (
∨

i∈1..N\{j}Rj(V )∧ρj(V, V ′))→ Ri(V
′)

CO4 : R1(V ) ∧ . . . RN (V ) ∧ error(V ) → false

multi-threaded program P is safe

The conditions CO1, CO2 and CO4 resemble those from the
invariance proof rule, while the additional condition CO3 ensures
that the query Ri(V, V

′) corresponding to thread i is free from
interference from the transitions of other threads j . The presence of
distinct query symbols for the reachable states of each thread allows
our HSF algorithm to perform abstraction at the thread boundaries
and leads to more scalable verification compared to the monolithic
proof rule.

Rely-guarantee rule for proving safety As an alternative to the
above proof rule, we can use a proof rule based on rely-guarantee
reasoning method [25]. The proof rule uses assertions Ri and Ei

that characterize reachable states of each thread i ∈ 1..N and
environment transitions of each thread i ∈ 1..N , respectively,
following [19].

Each assertion Ri(V ) includes the initial states due to CM1.
States reachable after executing a transition of thread i or an envi-
ronment transitionEi(V, V

′) are inRi(V
′) due to CM2 and CM4 ,

where ρ=i requires that the local variables of thread i do not change
during an environment step of thread i . CM3 requires that every
step of thread i starting from a reachable state is captured by the
environment transitions of each other thread j. CM5 ensures that
the intersection of reachable states and error states is empty.

For assertions R1, . . . , RN over V and E1, . . . , EN over V, V ′ ,

CM1 : init(V ) → Ri(V )

CM2 : Ri(V ) ∧ ρi(V, V ′) → Ri(V
′)

CM3 : (
∨

i∈1..N\{j}Ri(V ) ∧ ρi(V, V ′)) → Ej(V, V
′)

CM4 : Ri(V ) ∧ Ei(V, V
′) ∧ ρ=i (V, V ′) → Ri(V

′)

CM5 : R1(V ) ∧ · · · ∧RN (V ) ∧ error(V )→ false

multi-threaded program P is safe

Rely-guarantee rule for proving termination Rely-guarantee
reasoning [25] can be combined with the transition invariance proof
rule [37] to prove termination properties of multi-threaded pro-
grams. The proof rule uses assertions Ti for transition invariants
and Ei for environment transitions [39].

For assertions T1, . . . , TN and E1, . . . , EN over V, V ′ ,

CG1 : init(V ) ∧ ρi(V, V ′) → Ti(V, V
′)

CG2 : Ti(V, V
′) ∧ ρi(V ′, V ′′) → Ti(V

′, V ′′)

CG3 : Ti(V, V
′) ∧ ρi(V ′, V ′′) → Ti(V, V

′′)

CG4 : (
∨

j∈1..N\{i} init(V ) ∧ ρj(V, V ′)) → Ei(V, V
′)

CG5 : (
∨

j∈1..N\{i} Ti(V, V
′) ∧ ρj(V ′, V ′′))→ Ei(V

′, V ′′)

CG6 : init(V ) ∧ Ei(V, V
′) ∧ ρ=i (V, V ′) → Ti(V, V

′)

CG7 : Ti(V, V
′) ∧ Ei(V

′, V ′′) ∧ ρ=i (V, V ′) → Ti(V
′, V ′′)

CG8 : Ti(V, V
′) ∧ Ei(V

′, V ′′) ∧ ρ=i (V, V ′) → Ti(V, V
′′)

CG9 : dwf (T1(V, V ′) ∧ · · · ∧ TN (V, V ′))

multi-threaded program P terminates

The conditions CG1 and CG2 require that Ti over-approximates
the transition relation of the thread i restricted to initial states and
to arbitrary reachable states. The condition CG3 extends Ti with
a relation from ρi . The conditions CG4 and CG5 populate the
environment transitions of thread i with steps of all threads other
than i . The three conditions CG6, CG7 and CG8 are similar to the
first three conditions except local transitions from ρi are replaced
by environment transitionsEi∧ρ=i . As before, ρ=i requires that the
local variables of thread i do not change during an environment step
of thread i . The final condition CG9 ensures that the conjunction
of the transition invariant queries, T1(V, V ′)∧ · · ·∧TN (V, V ′) , is
disjunctively well-founded.

6. Experiments
In this section we present an experimental comparison between
verifiers developed using our HSF algorithm and state-of-the-art
verification tools developed using traditional methods.

Our tool HSF is implemented in Prolog and compiled with
the SICStus Prolog 4.2.0 compiler. The implementation relies on
a built-in constraint solver for linear arithmetic. For C programs,
we use the CIL library [35] and an additional frontend step that
produces clauses for various proof rules. For verifying OCaml
programs, we use DSolve [43] to generate automatically subtyping
constraints and then our code translates these constraints to Horn-
like clauses.

Benchmarks We used several sets of benchmarks for our experi-
ments.



Program BLAST CPAchecker HSF

Numerical Recipes
amebsa FAIL T/O 0.2s
amotsa FAIL 2.3s 0.2s
bandec T/O T/O T/O
choldc 14.1s 2.7s 2.6s
crank 6.0s 1.9s 0.9s
cyclic FAIL T/O 2.2s
four1 FAIL T/O T/O
lop FAIL FAIL 0.7s
pzextr 11.2s FAIL 0.1s
qrdcmp 75.2s T/O 12.2s
qrsolv FAIL 3.3s 0.1s
rsolv T/O 33.6s 0.2s
spline FAIL 1.6s 0.3s
tridag 4.1s 1.5s 0.3s

ntdrivers
cdaudio simpl1 64.8s 24.9s 393s
diskperf simpl1 41.9s 21.1s 213s
floppy simpl3 30.9s 10.3s 67s
floppy simpl4 50.1s 16.3s 139s
kbfiltr simpl1 3.7s 2.7s 3.2s
kbfiltr simpl2 5.5s 4.0s 7.2s
cdaudio simpl1 BUG 29.3s 12.3s 351s
floppy simpl3 BUG 1.5s 7.5s 96s
floppy simpl4 BUG 1.5s 12.9s 135s
kbfiltr simpl2 BUG 3.1s 3.2s 14.7s

ssh-simplified
s3 clnt 1 103s 8.0s 7.4s
s3 clnt 2 147s 59s 4.2s
s3 clnt 3 FAIL 7.4s 7.3s
s3 clnt 4 80s 9.7s 6.6s
s3 srvr 1 FAIL 23.2s 9.8s
s3 srvr 2 FAIL 40.0s 10.1s
s3 srvr 3 FAIL 9.9s 36.1s
s3 srvr 4 FAIL 11.3s 8.9s
s3 srvr 6 110s 41.9s 49.5s
s3 srvr 7 FAIL 14.0s 133s
s3 srvr 8 41.5s 11.1s 23.1s
s3 clnt 1 BUG 4.5s 3.0s 1.3s
s3 clnt 2 BUG 4.9s 2.6s 1.4s
s3 clnt 3 BUG 4.9s 2.9s 1.3s
s3 clnt 4 BUG 4.6s 3.0s 1.4s
s3 srvr 1 BUG FAIL 2.6s 3.1s
s3 srvr 2 BUG 66s 2.5s 2.2s

Program Threader HSF

Multi-threaded programs
Fig2-cex-BUG 0.2s 0.1s
Fig2-fixed 0.8s 0.7s
Fig4-cex-BUG 4.5s 0.5s
Fig4-fixed 1.5s 0.5s
Bluetooth2 29.1s 12.9s
Bluetooth2-fixed 3.7s 0.2s
Bluetooth3-fixed 135s 18.6s
Scull 129s 11.6s
Dekker 11.1s 4.0s
Peterson 4.7s 3.7s
Readers-writer-lock 0.2s 0.1s
Time varying mutex 11.8s 9.8s
Szymanski 32s 8.7s
NaiveBakery 2.5s 2.6s
Bakery 105s 32.4s
Lamport 121s 30.5s
QRCU 34.5s 15.4s

Program HMC HSF

OCaml programs (correct / buggy)
na dotprod-m 0.04s / 0.04s 0.11s / 0.06s
na arraymax-m 0.32s / 0.05s 0.05s / 0.07s
na bcopy-m 0.09s / 5.94s 0.06s / 0.07s
na bsearch-m 0.91s / 0.10s 0.03s / 0.02s
na insertsort-m 0.03s / 0.03s 1.78s / 0.04s
mult-cps-m 0.03s / 0.03s 0.03s / 0.03s
mult-all-m 0.03s / 0.03s 0.01s / 0.01s
sum-all-m 0.03s / 0.03s 0.01s / 0.01s
sum-acm-m 0.04s / 0.03s 0.01s / 0.01s

Program HSF

Terminating loops
broydn (33 cutpoints) 591s
elmhes (9 cutpoints) 23.0s
jacobi (15 cutpoints) 16.0s
ludcmp (11 cutpoints) 4.2s
qrdcmp (9 cutpoints) 189s
rlft3 (7 cutpoints) 16.1s
spctrm (14 cutpoints) 86s

Table 1. Timings for the benchmarks. The left-side of the page shows statistics for sequential programs, with multi-threaded programs,
functional programs and terminating loops on the right-side of the page. “T/O” stands for time out after 10 minutes, while “FAIL” indicates
that the tool failed to return a verification result.

For verification of sequential programs, we used a set of pro-
grams from the Numerical Recipes book [40], with array bound
checking being the safety property to verify. This set of bench-
marks includes simulated annealing (amebsa), evaluate a trial point
using simulated annealing (amotsa), fast fourier transform (four1),
or polynomial extrapolation (pzextr). We also used two sets of
benchmarks (ntdrivers and ssh-simplified) from the test suite of
CPAchecker [7].

We collected multi-threaded and functional programs from the
test suites of specialized verification tools, i.e., Threader [18] and
HMC [24]. For termination checking, we used a set of programs
from the Numerical Recipes book, including a secant method pro-
gram (broydn), and a program to reduce a matrix to the Hessenberg
form (elmhes).

Our benchmark suite includes both safe and non-safe programs.
Non-safe programs have the word “BUG” attached to their name.
For termination checking, all the benchmarks are terminating and



we report the number of cutpoints as a measure for the effort to
verify program termination.

Evaluation Our experiments were run on an Intel Core 2 Duo
machine, clocked at 3.0 GHz, with 4 GB of RAM, and running
Linux 2.6.38. See Table 1 for the results.

For the first three categories of benchmarks (Numerical
Recipes, ntdrivers and ssh-simplified), we used HSF with the
summarization proof rule described in Section 2. For the veri-
fication of these sequential C programs, we compare HSF with
BLAST [20, 21] and CPAchecker [7]. For ntdrivers and ssh-
simplified, we used BLAST 2.5 with the MathSat solver [9]
and the following standard options: -craig 2 -dfs -predH 7
-nosimplemem -alias "", as suggested by the tool’s authors.
The use of the MathSat solver led to Blast failing all the Numerical
Recipes benchmarks, so instead we report statistics using the lat-
est publicly available version of Blast that uses the Simplify solver.
For CPAchecker, we used the revision r3842 from the tool repos-
itory and used the predicate abstraction with large block encoding
configuration as suggested by the tool’s authors.

For verification of multi-threaded programs, we used HSF with
a proof rule based on rely-guarantee reasoning [25]. We compare
HSF with Threader using a reasoning style that is equivalent to the
proof rule mentioned above.

For the verification of functional OCaml programs, we compare
HSF with HMC [24]. The techniques used in HMC extend a liquid
type system (i.e., [43] that requires user-provided logical qualifiers)
to enable automatic verification of OCaml programs.

We used HSF with a termination proof rule for the programs
from the last table, Terminating loops. We do not have access to
any public tool that can handle termination properties for these C
benchmarks.

In general, HSF is comparable and sometimes significantly
faster than state-of-the-art tools specialized to a particular verifi-
cation proof rule. For all our experiments, the verification tools (in-
cluding HSF) were run starting with an empty set of predicates,
i.e., all predicates needed for verification were discovered automat-
ically. Two limitations of our implementation lead to HSF being
slower for the ntdrivers benchmarks: no direct support for equality
predicates and the program representation with the transition rela-
tion in disjunctive normal form. For example, instead of a single
equality predicate (say x = y), HSF tracks two predicates, i.e.,
x ≥ y and x ≤ y , both during abstraction and refinement. We
plan to implement heuristics to handle the high level of branching
present in this set of benchmarks. On the other hand, we lever-
age the uniform representation of the Horn clauses for simplifi-
cation and inlining steps before the start of the verification pro-
cess. These transformations lead to substantial savings that are par-
ticularly effective in the Numerical Recipes, multi-threaded, and
OCaml benchmarks. In total, HSF took approximately 48 minutes
to analyze 35 kloc (we exclude the lines of code for the two pro-
grams on which HSF timed out).

We applied our tool on benchmarks from various classes of ver-
ification problems, which are usually approached using specialized
tools.

Verification competition HSF(C) is a verifier for C programs de-
veloped using the HSF algorithm and based on the summarization
proof rule. HSF(C) participated in the TACAS2012 software verifi-
cation competition [6] and reached the 3rd place in the largest cate-
gory ControlFlowInteger and it competed with recent implementa-
tions of Blast, CPAchecker and 6 more verification tools. (HSF(C)
did not participate in the other categories that required bit-precise
reasoning or pointer analysis features not supported by our CIL
frontend.)

For the ControlFlowInteger category, HSF(C) analyzed 96
benchmarks from five groups: locks, ntdrivers, ntdrivers-simplified,
ssh and ssh-simplified. Each of these benchmarks consists of a C
program and a safety property, which may or may not hold. HSF
timed out on 2 of these programs, verifying and finding counterex-
amples correctly for all the others, in total 207.2 kloc analyzed in
80 minutes. More details about HSF(C) can be found in the related
competition report [16].

7. Related work
Section 1 points to existing approaches to generate various analyses
based on dataflow domains that led to powerful program analysis
frameworks [3, 27–29, 31, 34, 47, 51].

Verifiers have also been a target for automated tool construc-
tion. XSB [41] is a programmable fixed-point engine used for im-
plementing model checkers for a concurrent language based on
CCS with properties specified in a fragment of mu-calculus. Model
checkers have been generated from algebraic specifications of a
source language and various fragments of temporal logic [45].
More recently, verifier generators have been developed for Boolean
programs (GETAFIX [49]) and programs for which Datalog style
bottom up inference terminates (µZ [22]). For programs with un-
bounded data domains, MatchC [44] provides a verifier based on
matching logic specifications that directly build upon the opera-
tional semantics of the source language. The verification is facil-
itated by (pattern) loop invariants provided by the programmer.
In comparison, our approach adds an abstraction refinement loop,
which is crucial for handling unbounded datatypes, and allows au-
tomation of proof rules for termination and liveness properties.

HSF synthesizes verifiers that are competitive with state-of-
the-art tools from a recent verification competition, while benefit-
ing from a series of verification algorithms. We build upon pred-
icate abstraction [15], counterexample guided abstraction refine-
ment [10], interpolation [32], ranking function generation [8, 38],
and constraint solvers for recursion-free Horn clauses [17, 19, 39].

Our work provides an intermediate representation for verifica-
tion tasks in the form of Horn-like clauses with the support for
a dwf -predicate. This representation was inspired by the usage
of Horn clauses for the inference of environment assumptions of
multi-threaded programs [19]. Boogie provides a different interme-
diate representation for procedural and object-oriented programs.
Boogie represents programs and therefore it requires an interme-
diate step to generate verification conditions, while Horn clauses
encode verification tasks directly as constraints. We believe that
generation of Horn clauses from Boogie programs will yield yet
another verification tool for Boogie and all of its input languages.

8. Conclusion
We presented a next logical step towards the automatic generation
of software verification tools. Our verifier generator takes as input
a proof rule written as Horn-like clauses and produces a verifier
that automates the proof rule. The experimental evaluation shows
that automatically generated verifiers are competitive with existing
state-of-the-art verification tools that are manually developed and
tuned.
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