
Link-Time Optimization of Dynamic Casts in C++ Programs

XUFAN LU and NUNO P. LOPES, INESC-ID / Instituto Superior Técnico - University of Lisbon, Portugal

A core design principle of C++ is that users should only incur costs for features they actually use, both in
terms of performance and code size. A notable exception to this rule is the run-time type information (RTTI)
data, used for dynamic downcasts, exceptions, and run-time type introspection.

For classes that define at least one virtual method, compilers generate RTTI data that uniquely identifies
the type, including a string for the type name. In large programs with complex type inheritance hierarchies,
this RTTI data can grow substantially in size. Moreover, dynamic casting algorithms are linear in the type
hierarchy size, causing some programs to spend considerable time on these casts.

The common workaround is to use the -fno-rtti compiler flag, which disables RTTI data generation.
However, this approach has significant drawbacks, such as disabling polymorphic exceptions and dynamic
casts, and requiring the flag to be applied across the entire program due to ABI changes.

In this paper, we propose a new link-time optimization to mitigate both the performance and size overhead
associated with dynamic casts and RTTI data. Our optimization replaces costly library calls for downcasts
with short instruction sequences and eliminates unnecessary RTTI data by modifying vtables to remove RTTI
slots. Our prototype, implemented in the LLVM compiler, demonstrates an average speedup of 1.4%, as well as
an average binary size reduction of 1.7%.

CCS Concepts: • Software and its engineering→ Polymorphism; Compilers.

Additional Key Words and Phrases: Link-Time Optimizations, Dynamic Casts, RTTI, C++, LLVM

1 Introduction
C++’s design is rooted in the so-called zero overhead abstraction principle [69], meaning that
users only pay for the features they actually use. For example, method calls in C++ are dispatched
statically by default to avoid potentially unnecessary run-time overhead. Methods need to be
explicitly tagged with the virtual keyword to enable per-method dynamic dispatch.

A notable exception to this design principle is the run-time type information (RTTI) data, which
is used by compilers and runtime libraries to implement dynamic downcasts, exceptions, and
run-time type introspection (i.e., the typeid operator). Below is a simple program with three classes
with simple straight-line type inheritance:
class A { /* ... */ };
class B : public A { /* ... */ };
class C : public B { /* ... */ };

void f(A *obj) {
if (dynamic_cast<B*>(obj))
// obj is of type B or C or ...?

}

Function f receives a pointer to an object of type A. Note, however, that the object can also be of
type B or C, since they both inherit directly or transitively from A. The dynamic cast checks if the
object is of type B or any other class that inherits from it (in this case, C).
The implementation of dynamic_cast is not dictated by the C++ standard; compilers are free to

implement it in whatever way they see fit. Compatibility between compilers on the same platform

Authors’ Contact Information: Xufan Lu, luxufan@tecnico.ulisboa.pt; Nuno P. Lopes, nuno.lopes@tecnico.ulisboa.pt,
INESC-ID / Instituto Superior Técnico - University of Lisbon, Portugal.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0008-5511-9099
HTTPS://ORCID.ORG/0000-0002-3160-1672
https://orcid.org/0009-0008-5511-9099
https://orcid.org/0000-0002-3160-1672
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

167:2 Xufan Lu and Nuno P. Lopes

is ensured through an ABI, which specifies, among other things, the layout of objects in memory
and the RTTI data the compiler must emit for the C++ runtime library’s dynamic_cast algorithm.1

Most C++ projects compile their code on a per-file basis. This means that the compiler does not
know anything about the rest of the code in other files and must assume the worst. One unfortunate
implication is that the type hierarchy is usually open, i.e., the compiler does not know if there are
other classes inheriting from the ones in the file being compiled. For example, when compiling
a file with the code above, the compiler must allow other files to inherit from any of the three
classes.2 Thus, the dynamic_cast above may also succeed for an object of, say, type D that is defined
in another file and that inherits from B or C.
Since C++ compilers must live with the open-world assumption for the type hierarchy, they

are forced to always emit RTTI data, regardless of whether it is used by the program or not. The
compiler never knows if there is a dynamic cast in one file referring a class defined in another file.
The implication is that RTTI is not a zero-overhead abstraction: all programs need to pay for it
even if they do not use exceptions or dynamic casts, or if they use them but only with a subset of
the classes.
RTTI data can be quite large, specially for programs with deep type inheritance chains or

namespaces with long names. For each class with virtual methods, an additional 32 to 40 bytes are
used to store RTTI pointers. A string containing the mangled name of each class is also stored.
Since these strings contain the full namespace and class names, they become very large. Below is
an example of a mangled type string for a class of the Chromium web browser that occupies 375
bytes (note that Chromium has 45k classes!):
_ZTIZN9reporting12StorageQueue6CreateERKNS_12QueueOptionsEN4base17RepeatingCallbackIFvNS_17Uploader
Interface12UploadReasonENS4_12OnceCallbackIFvNS4_8expectedINSt4__Cr10unique_ptrIS6_NSA_14default_de
leteIS6_EEEENS_8internal11ErrorStatusEEEEEEEEE13scoped_refptrINS_25EncryptionModuleInterfaceEESM_IN
S_17CompressionModuleEENS8_IFvNS9_ISM_IS0_ESG_EEEEEE23StorageQueueInitContext

Mangled type names are long because they encode the fully qualified type name of all the
parameters and return value. While some platforms compare these strings when doing dynamic
casts, most do not and thus these strings are only used if the program uses the typeid operator. In
fact, we show in Section 3.2 that most RTTI data is never accessed.

To avoid the overhead of RTTI data, large C++ programs, such as Chromium and LLVM disable
the emission of RTTI data altogether using the -fno-rtti compiler flag. This disables all features
that depend on RTTI data, including dynamic casts. LLVM, for instance, implements its own
dynamic casting mechanism by hand, requiring some code and an extra field in all classes.
Given the advances in link-time optimization (LTO) in the past decade, we explore using LTO

to optimize dynamic casts and remove unneeded RTTI data. We leverage LTO to obtain the type
hierarchies and RTTI data that are internal to the program, i.e., classes that cannot be extended or
accessed by external libraries. Our new optimization replaces calls into the C++ runtime library’s
implementation of dynamic_cast with optimized code sequences that exploit the full knowledge of
the type hierarchies. Thus, we allow programs to use dynamic casts and exceptions without having
to pay for RTTI data for the whole program.

The contributions of this paper are as follow:
(1) A new benchmark suite consisting of ten C++ programs that either use dynamic casts,

or implement their own casting mechanism and that have been modified to use standard
dynamic casts (total of 55 million lines of code).

1For example, the ABI used by Linux systems is specified in https://itanium-cxx-abi.github.io/cxx-abi/abi.html.
2C++ 2011 introduced a new final keyword that can be used to annotate leaf classes (no class can inherit from them) to
help the compiler. Nevertheless, there is still no mechanism to annotate classes in the middle of the type hierarchy, so the
problem of the type hierarchy being open persists even if developers were to annotate all leaf classes.

https://itanium-cxx-abi.github.io/cxx-abi/abi.html

Link-Time Optimization of Dynamic Casts in C++ Programs 167:3

(2) Characterization of the benchmark suite with respect to how these C++ programs use
dynamic casts in practice.

(3) A new link-time optimization algorithm that optimizes dynamic casts into short code
sequences and that removes unneeded RTTI data.

(4) An implementation of the proposed algorithm in the LLVM compiler, supporting both the
full LTO and ThinLTO compilation pipelines.

(5) Evaluation of the proposed algorithm on the benchmark suite, showing an average speedup
of 1.4% and an average binary size reduction of 1.7%. For large applications that implement
their own versions of dynamic casts, we show that using C++’s dynamic_cast results in up to
a 4× slowdown and that our optimization can recover most of the overhead.

2 Run-Time Type Information (RTTI)
In this section, we give an overview of what RTTI data is and how it is used by C++ compilers and
runtime libraries to implement dynamic casts.

RTTI is a form of metadata that is used to represent type information that can be queried during
program execution by the program itself through the typeid operator and by the C++ runtime
library. To explain the general principles of RTTI, consider the following example C++ code on the
left, and its corresponding type hierarchy graph on the right:

class A {
int a;

public:
virtual void foo();

};
class B : public A { int b; };
class C : public A { int c; };
class D : public B { int d; };

B* cast_to_B(A *a) {
return dynamic_cast<B*>(a);

}

C* cast_to_C(A *a) {
return dynamic_cast<C*>(a);

}

void f() {
B *pb = new B();
B *b = cast_to_B(pb);
C *c = cast_to_C(pb);

}

A

B C

D

public public

public

In this code snippet, class A is polymorphic: classes B and C inherit directly from A. Function f

first allocates an object of type B on the heap. Then it calls function cast_to_B, which receives an
object of type A (or any derived type) as argument, and returns the same object if it is of type B. In
this case it is, and hence b will have the same value as pb. Conversely, the dynamic cast in cast_to_C

fails, and thus the function returns a null pointer.
Fig. 1 show the memory layout of an object of class B. The object itself occupies 16 bytes: 8

bytes for the virtual table (vtable) pointer (to implement dynamic function dispatch), and 4 bytes
for each integer field. Each class (and not object) has a unique vtable, containing one pointer per
virtual method in the class; in this case it has just one pointer for foo. Since B does not override the

167:4 Xufan Lu and Nuno P. Lopes

VTable Pointer

a

b

Offset To Top

B's RTTI Pointer

foo()

VTable Pointer

B's type string

A's RTTI Pointer

VTable Pointer

A's type string

Layout of pb VTable of B B's RTTI data A's RTTI data

Fig. 1. Memory layout for an object pb of class B and its corresponding vtable and RTTI data (Itanium ABI).

definition of foo, the vtable points to A::foo. Each vtable also contains a pointer to the class’s RTTI
data, and an offset used to implement multiple inheritance, which we ignore for now.

RTTI data is itself polymorphic. B’s RTTI data contains 3 pointers: (1) a pointer to the vtable of
one of the three RTTI classes defined in the C++ runtime library (depending on the inheritance
type), (2) a string with the full type name (including namespaces) mangled according to the ABI,
and (3) a pointer to the RTTI data of class A since B inherits directly from A. The RTTI data of A
only has 2 pointers since it is a base class.

2.1 Dynamic Cast Algorithm
C++ supports inheriting from multiple classes in parallel, essentially allowing arbitrary type
hierarchy DAGs (not just trees!), including inheriting from the same class multiple times, and
private inheritance (for which the algorithm cannot traverse the path when casting). This makes
the algorithm for casting quite complex.
In this paper we focus on the simple case only: the type hierarchy must be a tree and all

inheritance must be public. In Section 3.3, we show that this covers the vast majority of the casts in
our benchmark programs.
For our example, the cast from A to B in cast_to_B works as follows. First, it loads the vtable of

object a. Then, it compares the RTTI data pointed to by the vtable with B’s RTTI data. Since they
are the same, the cast succeeds.

In general, the algorithm may need to traverse the RTTI data’s pointers from the dynamic type
until finding the target type. For a hypothetical cast from A to B where the object is of type D (e.g.,
call ‘cast_to_B(new D)’), the algorithm first loads the vtable and obtains D’s RTTI data. Since this is
not equal to B’s RTTI data, the algorithm has to continue to the parent’s RTTI data. It now hits B’s
RTTI data, thus completing the cast. A failed cast will usually traverse the whole type hierarchy
until the base class (but may be able to stop earlier; more details later).

2.2 RTTI Data Comparison
Comparing RTTI data is a key operation in the dynamic cast algorithm, as well as for excep-
tion handling. Perhaps surprisingly, there are three distinct approaches for implementing this
comparison:

• Compare the addresses of the RTTI data
• Compare the addresses of the type name strings
• Compare the type name strings with strcmp

The third method is the easiest to implement, but it incurs in significant run-time overhead,
especially when the program uses long class names and namespaces. On some platforms, loaders do
not unify all symbols in a single global namespace because that is quite expensive. String comparison
is a solution for comparing RTTI data across DSOs that does not require such unification.

Link-Time Optimization of Dynamic Casts in C++ Programs 167:5

Many platforms adopt one of the other two methods. Both of these methods compare just two
pointers, making them more efficient. However, for these methods to work correctly, the compiler
and the linker must ensure that the addresses of RTTI data/type names uniquely identify the type.
That is, different classes must have distinct RTTI addresses, and vtables of the same class must
point to the same RTTI data.
To see why ensuring a bijective relation between types and addresses is challenging, consider

the following two files that define a class A in the anonymous namespace:
// file1.cpp
namespace { class A { ... }; }

// file2.cpp
namespace { class A { ... }; }

Classes declared in an anonymous namespace are visible only in the file where they are declared.
Hence, a program may define classes with the same name in different files as long as they are
defined in anonymous namespaces. However, because their definitions are identical, their RTTI
data and type names are also identical.
Compilers and linkers usually merge identical constant global variables when their addresses

are not meaningful (e.g., when they are marked with unnamed_addr in LLVM). Because the addresses
of RTTI data and/or type strings may be significant, this optimization cannot always be done,
requiring coordination between the compiler and the linker. An opposite example, where ensuring
uniqueness of addresses of equal RTTI data is intricate, is given below:
// class.h
class A { virtual void foo() { ... } };

// file1.cpp; compile with: clang++ -shared file1.cpp -o lib1.so
#include "class.h"

// file2.cpp; compile with: clang++ -shared file2.cpp -o lib2.so
#include "class.h"

Here, we build two shared libraries (lib1.so and lib2.so), each containing a copy of class A. If
we then have a binary that loads both shared libraries, the run-time linker needs to ensure that the
RTTI data is merged. Comparing type strings makes this case trivial.

2.3 Implementing Dynamic Casts: Itanium ABI
We now briefly present how dynamic casts are implemented on Linux (Itanium ABI) as an example.
For each dynamic cast, the compiler introduces a call to a run-time library function, implemented
in libstdc++ (GCC) and libc++ (LLVM). The interface of this function is as follows:
void* __dynamic_cast(const void *obj,

const __class_type_info *static_type,
const __class_type_info *dst_type,
std::ptrdiff_t static2dst_offset);

Consider again the following code snippet:
B* cast_to_B(A *obj) {

return dynamic_cast<B*>(obj);
}

The cast library function gets called with the following arguments: (1) obj, (2) a pointer to A’s
RTTI data, (3) a pointer to B’s RTTI data, and (4) 0 (assuming a public tree-shaped type hierarchy).

The last argument (static2dst_offset) is a hint given by the compiler to the runtime library.
It is meant to speed up the casting algorithm, and can take one of the following values:

167:6 Xufan Lu and Nuno P. Lopes

Table 1. Programs used for benchmarking, including their number of lines of code (LoC), the number of
dynamic casts and the ‰ of dynamic casts vs the total number of IR instructions (after standard -O2
optimizations), the total number of classes, the number of leaf classes (no class inherits from them), and the
% of leaf classes annotated with the final keyword. In the dynamic casts column, the numbers in parenthesis
indicate the number of converted dynamic casts for programs that do not use C++’s dynamic_cast.

Program Description kLoC Dyn Casts Classes Leaf Classes (final)

Blender 3D graphics 1,883 817 / 0.08‰ 5,939 5,387 (17%)
deal.II Differential equations 94 27 / 0.21‰ 109 74 (0%)
Envoy Distributed proxy 859 420 / 0.05‰ 17,017 15,162 (0%)
OMNeT++ Event simulator 27 16 / 0.26‰ 104 84 (0%)
POV-Ray Ray tracer 113 89 / 0.24‰ 546 431 (82%)
Solidity Compiler 419 1,368 / 0.60‰ 638 510 (25%)
Z3 Theorem prover 516 100 / 0.07‰ 1,489 1,227 (0.2%)

Chromium Web browser 45,168 (15,441) / 0.71‰ 44,505 37,374 (27%)
LLVM Compiler 2,334 (77) / 2.05‰ 2,616 2,138 (17%)
V8 JavaScript compiler 3,768 (1,438) / 0.31‰ 3,402 3,049 (57%)

• ≥ 0: The static type is a unique public non-virtual base type of the destination type. The
value indicates the number of bytes between the static and destination object layouts.

• -1: No hint.
• -2: The static type is not a public base of the destination.
• -3: The static type is a multiple public base type but never a virtual base type.

Given that negative hints are uncommon (c.f. Section 3.3), we ignore them in the rest of the
paper. Therefore, we ignore class hierarchies with virtual, private, and multiple inheritance.
A dynamic cast succeeds iff there is a path from the actual (dynamic) type of the object and

the destination type, crossing only public edges. Given that we only consider non-negative hints,
the destination type always points upward towards a public base class. This ensures that there
is always at least one path from the static type to the destination type. Hence, the algorithm just
needs to traverse the path (through the RTTI data pointers) from the dynamic type until the static
type. If the destination type is found along the way, the cast succeeds, otherwise it returns a null
pointer. If the hint is positive (in some cases of multiple inheritance), it is added to the obj pointer.
What we just described works for the simple case (tree-shaped type hierarchies). The actual

implementations usually have several algorithms (three, in the case of the Itanium ABI), each
specialized for a different kind of inheritance. This allows more efficient implementations for the
common cases. The different algorithms are exposed through the RTTI vtable, hence a dynamic cast
entails a lot of pointer chasing: (1) loading the vtable of the object, (2) loading the RTTI data of the
class, (3) loading the vtable of the RTTI data, and (4) do an indirect call to the cast implementation.

3 Dynamic Casts in the Wild
In this section, we analyze how dynamic casts are used in the wild. We selected 10 programs of
different domains and sizes, as listed in Table 1. In total, we consider 55 million lines of code.

We observe that dynamic casts are not frequent, accounting for less that 0.1% of the total number
of instructions. The percentage of leaf classes is very high, but the usage of the final keyword varies
significantly across programs. This keyword helps the compiler optimize, e.g., virtual method calls.

Link-Time Optimization of Dynamic Casts in C++ Programs 167:7

Blender Chromium deal.II Envoy LLVM OMNeT++ POV-Ray Solidity V8 Z3
1

10

100

1000
1 2 3 4 5 6 >6

Blender Chromium deal.II Envoy LLVM OMNeT++ POV-Ray Solidity V8 Z3
1

10

100

1000
1 2 3 4 5 6 >6

Fig. 2. Distribution of the height (top) and width (bottom) of the inheritance trees per program (log scale).

The three largest programs we consider compile without RTTI, and therefore they cannot use
C++’s dynamic_cast mechanism. Instead, they deploy their own casting mechanism or use static
casts only. LLVM, for example, requires all classes to have an additional integer field to store the
class id, as well as some extra methods to implement its own dyn_cast.3 Below is an example of the
code required for the Alloca instruction class and part of its type hierarchy:

// Class Value
const unsigned char SubclassID;
unsigned getValueID() const { return SubclassID; }

// Class Instruction (inherits from Value)
unsigned getOpcode() const { return getValueID() - InstructionVal; }
bool classof(const Value *V) { return V->getValueID() >= Value::InstructionVal; }

// Class Alloca (inherits from Instruction)
bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Alloca; }
bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }

The advantages are obvious: the implementation is extremely efficient, requiring a single integer
comparison to determine whether an object of type Value is an instruction. Moreover, LLVM is able
to cleverly pack all class ids in a 1-byte field (which contrasts with RTTI which occupies 8 bytes
per object for the vtable pointer). Also, 1-byte fields can often be placed for free in the padding
of classes. The disadvantages are also obvious: each class requires additional code and packing
all classes within an 8-bit integer requires clever planning (note that although the field can only
represent 255 ids, LLVM has 2.6k classes!).

3.1 Inheritance and Type Hierarchies
We now explore how inheritance is used and what the type inheritance trees look like in the
benchmark programs. Fig. 2 shows the distribution of the height (top) and width (bottom) of the
inheritance trees in log scale. Both metrics impact the running time of dynamic casts. Short trees
dominate, with height up to 4 being the most prevalent. Nevertheless, most programs have a few

3https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html

https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html

167:8 Xufan Lu and Nuno P. Lopes

Table 2. Statistics on type hierarchies and inheritance DAGs: number of polymorphic DAGs (in parentheses
the % of LTO-internal DAGs), number of DAGs used in dynamic casts and in exception handling, and number
of classes of each inheritance kind (virtual/public/private/multiple).

Program Type DAGs (Internal) Dyn Cast EH Virtual Public Private Multiple

Blender 423 (98%) 35 2 2 5,394 93 89
deal.II 8 (100%) 1 0 8 99 1 5
Envoy 2,917 (100%) 135 2 457 13,756 254 793
OMNeT++ 8 (100%) 2 2 0 96 0 0
POV-Ray 85 (100%) 9 3 1 449 1 25
Solidity 41 (50%) 18 2 73 550 25 91
Z3 178 (100%) 22 2 0 1,288 21 36

Chromium-M 5,382 (100%) 935 0 83 38,906 211 4,633
LLVM-M 177 (100%) 1 0 0 2430 11 149
V8-M 155 (100%) 18 1 17 3,228 19 82

Table 3. Statistics on the size of the type information data (% of the binary size), size of the type name strings
(% of the binary size), % of unused type information, % of unused type name strings.

Program Type Info (KB) Type Strings (KB) Unused Type Info Unused Type Strings

Blender 152 (0.08%) 949 (0.49%) 76.7% 76.0%
deal.II 2.7 (0.37%) 3.4 (0.47%) 1.8% 1.8%
Envoy 528 (0.44%) 2,966 (2.48%) 60.9% 60.4%
OMNeT++ 2.5 (0.27%) 1.7 (0.18%) 5.2% 0%
POV-Ray 13 (0.32%) 25 (0.60%) 66.3% 66.0%
Solidity 29 (0.18%) 108 (0.69%) 28.1% 27.9%
Z3 39 (0.15%) 62 (0.24%) 70.1% 70.0%

Chromium-M 1,259 (0.06%) 2,618 (0.13%) 59.1% 59.6%
LLVM-M 75 (0.15%) 213 (0.44%) 83.4% 83.3%
V8-M 92 (0.06%) 322 (0.20%) 68.6% 68.3%

(< 10) trees with height of 6 or more. Width measures the number of classes that derive from the
same class. Although having just one derived class is the most frequent case, having more than six
derived classes is the second most common case for many programs. This means that ideally the
casting algorithm should take constant time on the width of inheritance trees.
Table 2 presents some statistics on type hierarchy DAGs. Most hierarchies are LTO internal

(more on this later), which is fundamental for optimizations. Also, the percentage of DAGs used in
dynamic casts and exception handling is very small, which indicates that most RTTI data is never
used. The typeid operator is rarely used, with only Envoy (2), OMNeT++ (3), POV-Ray (1), and Z3
(4) using it (in parentheses the number of DAGs referenced). Public inheritance dominates, and
multiple inheritance is uncommon except in Chromium where it is used by over 10% of the classes.

LLVM does not use C++’s dynamic_cast. We changed only the biggest type tree (rooted on Value)
to use dynamic casts instead of using LLVM’s own casting mechanism.

Link-Time Optimization of Dynamic Casts in C++ Programs 167:9

Table 4. Dynamic profile of dynamic casts: number of executed dynamic casts in millions, success rate (i.e.,
% of cases for which the cast did not return null), max/average number of RTTI data comparisons within the
casting algorithm, max/average height of the inheritance sub-graph considered for casting (distance between
the dynamic and the static types), % of the running time spent in dynamic casts (approximated, measured
with perf), and % of casts with zero/negative/positive hints given to the dynamic cast runtime function.

Program Casts Success Max/Avg Cmp Max/Avg Height Time Zero/Neg/Pos hint

Blender 0.206 53.1% 12 / 5.42 4 / 3.04 0% ∼100% / ∼0% / 0
deal.II 181.8 100% 3 / 1.91 4 / 3.97 1.3% 100% / 0 / 0
Envoy 65.6 99.996% 12 / 2.50 4 / 1.46 0.02% ∼100% / ∼0% / ∼0%
OMNeT++ 40.8 100% 3 / 2.36 4 / 3.65 0.5% 100% / 0 / 0
POV-Ray 0.001 100% 12 / 4.46 5 / 2.84 0% 100% / 0 / 0
Solidity 3,278 8.7% 18 / 7.40 4 / 2.77 25% 79.6% / 20.4% / 0
Z3 0.037 100% 1 / 1.00 3 / 2.00 0% 100% / 0 / 0

Chromium-M 1.35 100% 29 / 2.10 8 / 2.01 4.5% 97.0% / 0 / 3.0%
LLVM-M 1,086 24.3% 36 / 18.2 6 / 3.20 59% 100% / 0 / 0
V8-M 423.2 100% 4 / 1.01 8 / 6.97 4.9% 100% / 0 / 0

3.2 RTTI Overhead
Table 3 presents the size of RTTI data (ignoring alignment and padding), as well as the percentage
of such data that is provably never accessed by dynamic casts or exception handling (computed
statically). RTTI data occupies less than 1% of the binary size of all programs except for Envoy,
where RTTI occupies almost 3% (just the type strings occupy almost 3 MB).

Two thirds of the programs have more than half of the RTTI data unused. Programs deal.II and
OMNeT++ have the least amount of unused RTTI data because the type DAGs that their casts and
exception handling operate on dominate the total number of classes.

3.3 Dynamic Cast Usage
Table 4 shows the dynamic profile of the usage of dynamic casts by the benchmarks. The LLVM
and Solidity compilers execute billions of casts, making the time spent on them highly significant
(note that LLVM was modified to use dynamic_cast). These programs also exhibit a low cast success
rate, as opposed to the remaining benchmarks for which the casts succeed most of the times.

We note that the number of RTTI data comparisons within the casting algorithm can be higher
than the height of the considered sub-graph for two reasons: (1) multiple inheritance (the algorithm
must follow several paths), and (2) the dynamic cast algorithm has several fast paths that lead to
the evaluation of the same RTTI data multiple times if the fast paths fail.

4 Optimizing Dynamic Casts
Optimizing dynamic casts is challenging in the traditional compilation setting, where each file is
compiled separately. Consider the following example:
// file1.h
class A { virtual void foo() { ... } };
class B : public A { ... };

// file1.cpp
#include "file1.h"
B* cast(A *obj) {

167:10 Xufan Lu and Nuno P. Lopes

return dynamic_cast<B*>(obj); // obj is of type B or ...?
}

// file2.cpp
#include "file1.h"
class C : public B { ... };

When compiling file1.cpp, one might be tempted to optimize the dynamic cast knowing that
obj can only be of type A or B. If that was the case, the compiler could replace the dynamic cast with
a comparison, for example of the vtable pointers as follows: *(char**)obj == vtable_of_B (assuming
that vtables uniquely identify the type).
In the case above, we have another class derived from B defined in a different file. Hence, the

optimization we described is illegal. The compiler never knows if the type hierarchy is extended
in another file or not (except if the classes are defined in the anonymous namespace – thus only
visible in the file).

4.1 Link-Time Optimizations (LTO)
An alternative to compiling each file individually is using link-time optimizations (LTO) [28, 31, 41,
42, 62, 68], where each file is first compiled into an intermediate representation (LLVM IR in the
case of Clang) instead of producing assembly right away. Then, the linker invokes the compiler
with the IR of all files, which then optimizes the whole program at once.

The main benefit of LTO is that it enables inter-procedural optimizations (IPO) across files. IPO
algorithms take advantage of symbols are that internal to the LTO unit, which means that they
are not accessible from outside of the unit, to compute the set of all users of each internal symbol.
LTO can be used to build dynamic libraries, as programs can still have externally-visible symbols,
including the main function and the public API of a library. However, optimizations will skip
external symbols (e.g., dead code elimination cannot remove a symbol if it is externally accessible).

We measured the percentage of classes internalized with LTO in our benchmarks, and it ranges
from 98% to 100%. Our LLVM benchmark program is the optimization binary (opt). For comparison,
we built LLVM as a dynamic library (libLLVM.so), and observed that only 24% of classes are
internalized. This is because LLVM exposes a C++ API containing many classes.

In this work, we leverage LTO to obtain internal type hierarchies, where all types in the hierarchy
are internal, to implement the optimization described above in a sound way.

4.2 Algorithm For Optimizing Dynamic Casts with LTO
The key observation that underpins our optimization is that if the type hierarchy is known, we can
do partial evaluation of the dynamic casting algorithm at compile time, and produce an optimized
code sequence that implements the remaining bits of the algorithm.
Let 𝑠 be the static type of the cast (A in our running example), 𝑡 the target type of the cast (B in

the example), 𝑑 the dynamic type of the object we want to cast, and 𝑜 the offset/hint.
As we have seen before, if 𝑜 ≥ 0, the cast succeeds iff there is a path from 𝑑 to 𝑡 , otherwise it

returns null. Hence, if the DAG below the target type is fixed, we implement the check for the
existence of a path with a set membership check. Let 𝑇 be the set of the target type and its derived
classes (𝑇 = {B, C} in the example), the cast succeeds iff 𝑑 ∈ 𝑇 .
The set membership check must be implemented according to the platform’s ABI (recall Sec-

tion 2.2). Our prototype targets the Itanium ABI, which does not ensure each type has a unique
vtable. We could compare the pointers to RTTI data instead, since it is guaranteed to be unique,
but we opted to change Clang to guarantee vtable uniqueness. This consists in removing the

Link-Time Optimization of Dynamic Casts in C++ Programs 167:11

1 2 3 4 5 6 7>70

200

400

600 Blender

1 2 3 4 5 6 7>70

10000

20000
Chromium

1 2 3 4 5 6 7>70
3
6
9

12 deal.II

1 2 3 4 5 6 7>70

200

400 Envoy

1 2 3 4 5 6 7>70

5000

10000 LLVM

1 2 3 4 5 6 7>70
3
6
9

12 OMNeT++

1 2 3 4 5 6 7>70

20

40 POV-Ray

1 2 3 4 5 6 7>70

500

1000
Solidity

1 2 3 4 5 6 7>70

1000

2000 V8

1 2 3 4 5 6 7>70

100

200

300 Z3

Fig. 3. Distribution of the number of candidate types (i.e., the size of 𝑇) per dynamic cast.

unnamed_addr attribute from vtables to prevent the compiler from merging identical vtables. Since
identical vtables are rare, the impact is negligible.

Clang produces the following IR for the example function (note the explicit check for null pointers
since dynamic cast is well defined for such pointers):

define ptr @cast(ptr %obj) {
entry:

%isnull = icmp eq ptr %obj, null
br i1 %isnull, label %ret, label %cast

cast:
%dyncast = call ptr @__dynamic_cast(ptr %obj, ptr @_ZTI1A, ptr @_ZTI1B, i64 0)
br label %ret

ret:
%r = phi ptr [%dyncast, %cast], [null, %entry]
ret ptr %r

}

Our optimization replaces the call into the library function with the following code sequence:

cast:
%obj_vtable = load ptr, ptr %obj, align 8
%isB = icmp eq ptr %obj_vtable, getelementptr inbounds (i8, ptr @_ZTV1B, i64 16)
%isC = icmp eq ptr %obj_vtable, getelementptr inbounds (i8, ptr @_ZTV1C, i64 16)
%success = or i1 %isB, %isC
%dyncast = select i1 %success, ptr %obj, ptr null
br label %ret

The code works as follows (refer to Fig. 1 for the memory layout). First, we load the vtable pointer
of the object. Then, the vtable pointer is compared against the vtables of classes B and C (note that
an object’s vtable pointer points to the vtable address point, which is 16 bytes offset from the start
of the vtable data). If either of the comparisons succeeds, the same object pointer is returned. In the
case of multiple inheritance, the offset must be added to the object pointer (it is zero in this case).
Although we increased the code size slightly, from 11 to 15 instructions on x86, skipping the

library call reduces the run time significantly.
In terms of correctness of the optimization, it works for non-negative offsets and requires all

classes in𝑇 to be LTO internal, which ensures that no shared library can define a class that inherits
from a class in 𝑇 .

167:12 Xufan Lu and Nuno P. Lopes

4.3 Efficient Membership Checks for Large Type Hierarchies
Fig. 3 shows the distribution of the number of candidate types (i.e., the size of𝑇) per cast. Although
having a single candidate is the most common case, more than half of the casts in POV-Ray have
more than 7 candidates. Ideally, we would rather not emit a comparison per candidate.
For the cases we consider, the type hierarchies are always trees. If we lay out the vtables in a

pre-order traversal ordering, it is guaranteed that all sub-classes of a class are laid out consecutively
after the class. This is implemented by merging each tree into a single global variable and then
changing references to this new variable with the corresponding offset.

Checking if a class is of a given type can now be done with a range check: 𝑏 ≤ 𝑝 ≤ 𝑒 + 16, where
𝑝 is the object’s vtable pointer, 𝑏 is the address of the vtable of the target class 𝑡 of the cast, and 𝑒 is
the address of the last derived class of 𝑡 .
The complexity of dynamic casts is, therefore, improved to 𝑂 (1) instead of being a function of

the size of the type hierarchy. We use the range check when there are 3 or more candidates.
The type hierarchy for classes with multiple inheritance is not a tree. For this case, we could

decompose the graph into multiple trees, and use one range check per tree, as proposed by Bounov
et al. [10], or attempt to produce a global ordering for the various trees as used in PQ-Encoding [30].
Since multiple inheritance in casts is not common, we decided to not support it.

4.4 Removing Unused RTTI Data
RTTI data is used by three functionalities: dynamic casts (for polymorphic classes), exception
handling, and the typeid operator. For non-polymorphic classes, since the only way their RTTI data
can be used is through direct reference, the dead code elimination (DCE) optimization of LLVM
can already remove unused RTTI data of such classes.

However, for polymorphic classes, RTTI data can be accessed indirectly through the RTTI slot in
the vtables. This means that if the vtable of a class is referenced, DCE cannot remove its RTTI data.
We devised an algorithm to remove unneeded RTTI data, which runs after the dynamic cast

optimization (since it removes the need for RTTI data). First, we compute an over-approximation
of the live RTTI data, and then any data not marked as live is removed.

There are five cases to consider. Any non-LTO internal DAG is marked as live, since they may be
used by an external library. For any dynamic cast, the static type and all its subclasses are marked
as live (this over-approximates the RTTI data accessed by the casting algorithm for any dynamic
type). For exceptions, we mark as live each thrown class and its parents (since we can have a catch
block for any parent class). For the typeid operator, computing liveness is more involved. Currently,
Clang compiles the typeid operator into the following LLVM IR:
%vtable = load ptr, ptr %obj
%rtti_ptr = getelementptr inbounds i8, ptr %vtable, i64 -8
%rtti = load ptr, ptr %rtti_ptr

This means that the information about the static type of the object is lost. Recovering that
information would be very complex, requiring inter-procedural alias analysis. Instead, we modified
Clang to preserve the static type by emitting the following additional IR:4

%a = call i1 @llvm.type.test(ptr %vtable, metadata !"_ZTS1A") ; RTTI mangled name
call void @llvm.assume(i1 %a)

Now that we have the static type for each typeid operator, we mark as live the static types and
all their subclasses.

The last case is the special cast dynamic_cast<void*>(obj), which is compiled into:

4This technique is also used by the implementations of the CFI protection and the devirtualization optimization.

Link-Time Optimization of Dynamic Casts in C++ Programs 167:13

ThinLTO

b.cpp

fr
on

te
nd

fr
on

te
nd

co
m

bi
ne

 s
um

m
ar

ie
s

&
 s

pl
it

vt
ab

le
s

a.bc

vtables.bc

b.bc

Combined Summary

layout vtables

vtables.bc

BEa.cpp

BE

BE

vtables.o

a.bc

b.bc

b.o

a.o

remove unused
RTTI data

remove vtable
slots

Fig. 4. Overview of the ThinLTO compilation process, including our extension to remove unused RTTI data and
vtable slots (in orange). The backend (BE) optimizes each file using global knowledge about the program from
the combined summary. It is also the BE that replaces dynamic casts with range checks (our optimization),
and finally produces assembly.

%vtable = load ptr, ptr %obj
%offset_to_top_ptr = getelementptr inbounds i8, ptr %vtable, i64 -16
%offset_to_top = load i64, ptr %offset_to_top_ptr, align 8
%result = getelementptr inbounds i8, ptr %obj, i64 %offset_to_top

For this case, only the offset-to-top slot is live, but the type information is lost. We use the same
@llvm.type.test mechanism as before to track which classes are live.

After computing the live RTTI data, we remove all the data that is not live. Since classes that have
their RTTI data removed are not used in dynamic casts, we further remove the offset to top and the
RTTI slots from vtables, saving an extra 16 bytes per class. Since the objects’ vtable slot points into
their vtable+16, we also need to patch the IR used for the new operator to skip the offsetting:
%obj = call ptr @_Znwm(i64 16) ; allocate 16 bytes
store ptr getelementptr inbounds (i8, ptr @_ZTV1A, i64 16), ptr %obj, align 8 ; before
store ptr @_ZTV1A, ptr %obj, align 8 ; after

Although this transformation violates the C++ ABI, the transformation is still sound because it
only works on classes that are internalized and thus the vtable layout is not meaningful.

4.5 Extension for Lightweight LTO (ThinLTO)
Regular LTO loads the IR of the whole program in memory during linking. For large programs, this
is slow and leads to very high memory consumption (hundreds of GBs of RAM).
Recently, lightweight LTO algorithms have emerged, which avoid loading the whole program

into memory at once. Instead, the compilation of each file produces a summary with information
to be exchanged with other files (e.g., number of instructions of each function, to enable cross-file
inlining). Then, at linking time, only the summaries of each file are loaded into memory and
processed by inter-procedural analyses. Finally, the combined information is shared and each file is
then optimized individually by taking into consideration the summarized global knowledge.

In LLVM, ThinLTO [41] implements such an algorithm. Although it is not as effective as regular
LTO, the much faster compilation process makes it the default LTO build mode for large projects like
Chromium. Fig. 4 gives an overview of the ThinLTO compilation process, as well as our extension
to remove unused RTTI data and vtable slots (in orange).

By default, the flag ‘-fsplit-lto-unit’ is enabled, which compiles each file into two modules
(instead of just one). The split module contains only the vtable definitions and virtual functions

167:14 Xufan Lu and Nuno P. Lopes

that do not access memory. The other module contains the remaining definitions (global variables
and the other functions).
At link time, ThinLTO merges all split modules into a single module. The original motivation

was to support the control-flow integrity (CFI) protection with type enforcement, which requires
full knowledge of the type hierarchy. Fortunately, we require the same information, allowing us to
leverage the same mechanism to implement the vtable layout algorithm.

Since the vtable layout algorithm merges vtables into a single global variable, we need to record
in the summary the offsets for each vtable so each file can then adjust the references. For example,
the following summary states that a dynamic cast with destination type B should do a range check
between offsets 8 and 64 of the merged global:
rangemap: ((name: "B", (name: "A.merged", (offset: 8, offset: 64))))

For unused RTTI data elimination, we extend the per-file summary to contain information of the
present dynamic casts, typeid operations, and excepting handling. Below is an example summary
for a file with two dynamic casts, two uses of the typeid operator, and one throw:
dyncast: ((dst: "B", static: "A", hint: 0), (dst: "C", static: "A", hint: 0))
typeid: (type: "A", type: "B")
eh: (type: "A")

At link time, the summaries are combined to obtain the global usage of RTTI data. The linker
determines which casts are guaranteed to be optimized away by the backends afterwards, and
which are not (and thus need RTTI data alive).

As the RTTI data is not emitted into the split module, but rather scattered through the remaining
modules, we extend the combined summary with RTTI liveness information.

5 Evaluation
We now assess whether the proposed optimization improves 1) the running time of our benchmark
programs, 2) reduces the binary size, and 3) reduces the peak memory consumption.

Additionally, we modified LLVM (LLVM-M) so it uses C++’s dynamic_cast instead of using its own,
hand-rolled, casting mechanism. The goal of this experiment was to understand the benefit of this
manual optimization, and whether our optimization can realize the same benefits automatically.

For Chromium-M and V8-M, we changed Clang to compile static casts as if they were dynamic.
These programs can be optionally compiled with safeguards to prevent security issues related
with incorrect casts. We assess whether using optimized dynamic casts matches the security and
performance of the existing hardening solution.

Experiments were run on a server running Ubuntu 24.04, with a 64-core AMD EPYC 9554P CPU
with 768 GB of RAM. Table 5 lists the programs and the versions used for evaluation, as well as the
benchmarking workloads. We used LLVM 18 as the baseline and to implement our optimization.5

5.1 End-to-End Performance, Binary Size, and Peak Memory Impact
Fig. 5 shows the end-to-end impact in terms of performance, binary size, and memory usage on
our benchmark programs. All benchmarks get faster, except Z3 and Envoy, which show a slight
regression. Solidity performs downcasts frequently and thus shows the largest improvement. deal.II
also gets a significant speedup since all dynamic casts get replaced with 1 or 2 pointer comparisons.
In terms of size, all binaries become smaller due to the removal of unused RTTI data. We note

that ThinLTO performs fewer inter-procedural optimizations and uses different inlining heuristics,
which explains the differences in binary size.

5Code available at https://github.com/luxufan/llvm-project/tree/dyncastopt and benchmarks available at https://github.
com/luxufan/cpp_dyncasts_benchmark.

https://github.com/luxufan/llvm-project/tree/dyncastopt
https://github.com/luxufan/cpp_dyncasts_benchmark
https://github.com/luxufan/cpp_dyncasts_benchmark

Link-Time Optimization of Dynamic Casts in C++ Programs 167:15

Table 5. Programs used for evaluation, their version number, and the benchmarking workload used.

Program Version Evaluation Command

Blender 4.2 tests/performance/benchmark.py
Chromium-M 122.0.6249.0 Blink performance tests
deal.II SPEC CPU 2006 SPEC’s benchmark
Envoy 1.31 Envoy-perf’s Siege performance script
LLVM-M 18.0.0 opt -O2 z3.internal.bc (optimize the LTO module of Z3)
OMNeT++ SPEC CPU 2006 SPEC’s benchmark
POV-Ray 3.8.0 povray –benchmark
Solidity 0.8.26 test/benchmark/external.sh
V8-M 12.7.189 SunSpider 1.0.2 JavaScript benchmark
Z3 4.12 Five random files of SMT-LIB’s QF_BV benchmarks

Blenderdeal.IIEnvoy
OMNeT++

POV-Ray
SolidityV8-M Z3

-1%
0%
1%
2%
3%
4%
5%
6% Run-time Performance

LTO
ThinLTO

Blender
deal.IIEnvoy

OMNeT++
POV-Ray

SolidityV8-M Z3
0%
1%
2%
3%
4%
5%
6% Binary Size

LTO ThinLTO

Blender
deal.IIEnvoy

OMNeT++
POV-Ray

SolidityV8-M Z3
-1%

0%

1%

2%

3%

4% Peak Memory Consumption
LTO ThinLTO

Fig. 5. End-to-end impact on performance (left), binary size (middle), and peak memory usage (right). Higher
is better (benchmarks became faster, binary shrank, and the peak memory decreased).

Replacing dynamic casts with short code sequences impacts the inlining heuristic. Because the
sequence is estimated to have a lower cost, the optimizer ends up inlining more. We observe up to
0.6% more calls getting inlined. Nevertheless, binaries still get smaller overall.
Besides the expected reduction of the .rodata and .strtab sections of the binaries (used,

respectively, for the RTTI type info and RTTI type strings), another section shrinks as well. Because
binaries are built by default in relocatable mode, each symbol in the program (including RTTI data)
has an entry in the .rela.dyn section. Removing unused RTTI data also removes the corresponding
relocation information. This explains the large binary size reduction.

Our optimizations reduces the peak memory usage of V8-M. This happens for two reasons: the
optimized program does not need to load as much RTTI data into memory as before (because we
replace dynamic_castwith pointer comparisons), and because we reduce the size of the vtables. Other
benchmarks do not exhibit significant improvements because they allocate orders of magnitude
more memory, overshadowing the memory savings achieved through our optimizations.

5.2 Benchmark Programs Profiling
Fig. 6 (left) shows the percentage of RTTI symbols removed by vanilla LLVM (without our opti-
mization). We observe that LLVM can only remove up to 2.5% of the RTTI symbols. On the other
hand, our optimization removes from 10% to 85% of the RTTI symbols (Fig. 6, middle). In absolute
terms, our optimization shrinks the binary size by up to 2.4 MB (Chromium).
Fig. 6 (right) shows the percentage of vtables whose offset-to-top and RTTI pointer slots are

removed by our optimization. It prunes more than half of the vtables in most programs, and prunes
over 60% of vtables in several benchmarks. Pruning vtables has three additional benefits besides

167:16 Xufan Lu and Nuno P. Lopes

Blen
der

Chr
omi

um-
M
dea

l.II
Env

oy
LLVM

-M

OMN
eT+

+
POV

-RaySoli
dityV8-M Z3

0.0%

1.0%

2.0%

3.0%

18.3KB

8.1KB

0.1KB

3.5KB0.2KB

0.2KB

0.1KB

2.6KB

0.9KB0.4KB

Blender

Chromium-M
deal.II

Envoy
LLVM-M

OMNeT++
POV-Ray

SolidityV8-M Z3
0%

20%

40%

60%

80%

100%

0.8MB2.4MB
3.2KB2.1MB

0.2MB

0.6KB

0.03MB

0.03MB

0.3MB0.07MB

RTTI data removed

Blender

Chromium-M
deal.II

Envoy
LLVM-M

OMNeT++
POV-Ray

SolidityV8-M Z3
0%

20%

40%

60%

80% Vtables pruned

Fig. 6. On the left, the amount of RTTI data removed by vanilla LLVM (without our optimization). In the
middle, the amount of RTTI data removed with our optimization. On the right, the percentage of vtables that
have their offset-to-top and RTTI pointer slots removed by our optimization.

1 2 >2 rc dyn0

200

400

600 Blender

1 2 >2 rc dyn0

10000

20000
Chromium-M

1 2 >2 rc dyn0
3
6
9

12 deal.II

1 2 >2 rc dyn0

200

400 Envoy

1 2 >2 rc dyn0

5000

10000 LLVM-M

1 2 >2 rc dyn0
3
6
9

12 OMNeT++

1 2 >2 rc dyn0

20

40
POV-Ray

1 2 >2 rc dyn0

500

1000
Solidity

1 2 >2 rc dyn0

1000

2000 V8-M

1 2 >2 rc dyn0

100

200

300 Z3

Fig. 7. Distribution of the dynamic casts optimization cases: replaced with 1, 2, or more checks, replaced
with a range check (rc), or not optimized (dyn) (e.g., the cast uses a negative hint).

shrinking binaries. First, it reduces the number of symbol relocations, which in turns means faster
application startup. Second, the memory usage of the program is reduced due to the smaller vtables,
reducing the % of cache misses. Finally, the code sequence for the new operator gets slightly simpler.
The reasons why not all RTTI data is removed are: 1) not all dynamic casts can be removed

(e.g., because they have a negative hint, which we do not support), 2) RTTI data of classes used in
exception handling and typeid cannot be removed, and 3) we can only remove RTTI data that is
LTO internal. For example, Solidity uses the Boost C++ library extensively. Since Solidity does not
include Boost in its LTO module, but rather links with the static library, all classes inheriting from
the Boost library are not LTO internal. Another example is OMNeT++, which uses typeid heavily,
causing the compiler to conservatively mark over 80% of polymorphic classes’ RTTI data as live.

Fig. 7 shows the distribution of the dynamic casts optimization cases. The first three bars indicate
the number of casts replaced with 1, 2, or more checks. The fourth bar indicates the number of
casts replaced with a range check (rc), which is used when there are 3 or more alternatives, except
when the DAG is not a tree. The last bar measures the number of casts that were not optimized.

5.3 LLVM Case Study: Hand-Rolled Casts vs dynamic_cast

Because of the poor performance of dynamic_cast, LLVM implements a custom casting mechanism
and metadata. LLVM reserves an 8-bit field in each objet to store the type id and requires each class
to have a couple of methods to support its casting mechanism.

To assess whether using C++’s dynamic casts with our optimization roughly matches the perfor-
mance of LLVM’s hand-made solution (thus not needing it anymore), we changed LLVM to use

Link-Time Optimization of Dynamic Casts in C++ Programs 167:17

dynamic casts instead.6 We took the largest type tree in the code base (rooted in the Value class),
and changed it to use standard C++ features only. We first describe the changes made.
The first change was to make the Value class polymorphic, as that is a requirement to use

dynamic_cast. We did so by adding a dummy virtual function. This step alone increases the peak
memory consumption of LLVM by 4% and causes a 1% performance degradation due to the extra 8
bytes used for the vtable slot in every object.
The second change was to replace all uses of the custom casting functions (isa and dyn_cast)

with dynamic_cast. Since there are too many such places, we opted instead to change the classof
method of each class (called by the custom casting functions) to use dynamic_cast. Although we only
replaced 77 sites, after inlining during compilation there are more than 10k uses of dynamic_cast.
The third change consisted in removing the type id field from the Value class. This change is

tricky because the type id is used in switch statements to efficiently dispatch based on the type
(instead of having a linear sequence of dozens of dynamic casts). We considered two options: 1)
change the getValueID method to be virtual, and 2) subtract vtable addresses.

Below is an example of the changed method for the LoadInst class for the first option.
class Value { virtual unsigned getValueID() const = 0; };
class LoadInst : public Instruction {

unsigned getValueID() const override { return Instruction::Load; }
};

The second option consists in computing the difference between the object’s vtable pointer and
Value’s vtable address. This works because we layout vtables consecutively. The code is as follows:
unsigned Value::getValueID() {

char *vtable = *(char**)this;
return (vtable - _address_of_Value_vtable) / 8;

}

We cheated a bit by taking advantage of the knowledge we have about the vtables’ layout. The
goal was to assess whether C++ should offer a solution for type switching. Since we pruned vtables
to remove the RTTI and offset-to-top slots, all vtables have only 8 bytes.
A further complication is that not all LLVM types have a corresponding class. For exam-

ple, all binary operators such as addition and multiplication instructions are represented by
the class BinaryOperator although they have different type ids. We decided to change the
Instruction::getOpcode method as follows:
unsigned Instruction::getOpcode() {
if (auto *BO = dynamic_cast<BinaryOperator>(this))

return BO->getOpcode();
return getValueID() - InstructionVal;

}

Fig. 8 shows the impact on performance, peak memory consumption, and binary size compared
to the unmodified LLVM for the two options just described, with and without our optimization. The
solution based on the difference of vtable pointers has the best performance, being about 5% slower
than LLVM’s custom solution, while the virtual solution is over 20% slower (with our optimization).
Without our optimization, the slowdowns are unbearable, which justifies why LLVM had to roll its
own casting mechanism.
The slowdown of 5% is mainly due to LLVM’s original classof methods in the Constant and

Instruction classes having a single integer comparison, while our solution using dynamic casts
compiles these methods into a range check (i.e., two comparisons). Without range checks (i.e.,
6Modified version of LLVM (LLVM-M) that uses dynamic_cast instead of its own casting mechanism: https://github.com/
luxufan/llvm/tree/llvm-case-study-diff. We patched LLVM to output the vtables in the right order so we could use range
checks, available at https://github.com/luxufan/llvm/compare/main...llvm-case-study-opt.

https://github.com/luxufan/llvm/tree/llvm-case-study-diff
https://github.com/luxufan/llvm/tree/llvm-case-study-diff
https://github.com/luxufan/llvm/compare/main...llvm-case-study-opt

167:18 Xufan Lu and Nuno P. Lopes

polymorphic
virtual

virtual + opt diff
diff +

 opt
0.0%

10.0%

20.0%

30.0% >350% >550%
Run time overhead

polymorphic
virtual

virtual + opt diff
diff +

 opt
0.0%

1.0%

2.0%

3.0%

4.0%
Peak memory overhead

LTO ThinLTO

polymorphic
virtual

virtual + opt diff
diff +

 opt
0.0%

0.5%

1.0%

Binary size overhead

Fig. 8. Impact on performance, peak memory consumption, and binary size of the two alternatives for
converting LLVM’s Value type tree to use dynamic_cast, with and without our optimization. The first bar
refers to changing the Value class to be polymorphic, virtual refers to the solution of making the getValueID
method virtual, and diff refers to the solution of using the difference between vtable pointers. Lower values
are better. The baseline is unmodified LLVM.

using one comparison per type candidate), the slowdown increases to 10%. The fact that LLVM
manages to use a single comparison suggests that a cleverer layout of classes could be used to have
dynamic casts compiled into a single comparison as well.

Overall, we believe that using C++ dynamic casts, together with a new type switching mechanism
and our optimizations could replace the hand-rolled casting mechanisms used in large programs.

5.4 Chromium Case Study: Hardening Static Casts
C++ offers both static and dynamic casts. Static casts are free, but the compiler only validates
upcasts, since that can be done easily at compile time. For downcasts, there is no checking at
compile or run time. On the other hand, dynamic casts are always checked.
Incorrect static downcasts can lead to security vulnerabilities, namely type confusion [34, 39,

49, 58, 75]. The security impact of such vulnerabilities are significant, ranging from mere crashes
to arbitrary code execution. Because of the potential hazards, Clang offers a static cast hardening
mechanism through the ‘-fsanitize=cfi-derived-cast’ flag. This mechanism instruments casts
to check that the vtable of the object is one of the expected ones.

We briefly illustrate how this hardening works. Consider the following C++ code fragment:
struct A { virtual ~A() {}; };
struct B : public A {};
struct C : public B {};
B* cast_to_B(A *obj) { return static_cast<B*>(obj); }

Clang produces the following LLVM IR:
@vtables = constant { [4 x ptr], [4 x ptr] }

{ [4 x ptr] [ptr null, ptr @_ZTI1B, ptr @_ZN1AD2Ev, ptr @_ZN1BD0Ev],
[4 x ptr] [ptr null, ptr @_ZTI1C, ptr @_ZN1AD2Ev, ptr @_ZN1CD0Ev] }

define ptr @cast_to_B(ptr %obj) {
%vtable = load ptr, ptr %obj, align 8
%vtable_int = ptrtoint ptr %vtable to i64
%sub = sub i64 %vtable_int, ptrtoint (ptr getelementptr (i8, ptr @vtables, i64 16) to i64)
%s1 = lshr i64 %sub, 5
%s2 = shl i64 %sub, 59
%rot = or i64 %s1, %s2
%ok = icmp ule i64 %rot, 1
br i1 %ok, label %ret, label %notok

Link-Time Optimization of Dynamic Casts in C++ Programs 167:19

dyn cast
dyn cast + opt

sanitizer
0%

5%

10%

15%

20%
Run time overhead

dyn cast
dyn cast + opt

sanitizer

-8%

-5%

-2%

0%

Throughput

dyn cast
dyn cast + opt

sanitizer

-0.2%

0.0%

0.2%

0.4%
Binary size

dyn cast
dyn cast + opt

sanitizer

-1.0%

0.0%

1.0%

Peak Memory

LTO
ThinLTO

Fig. 9. Impact of compiling Chromium with static casts converted to dynamic with and without our op-
timization, and with Clang’s cast hardening, in terms of total running time and throughput of the Blink
benchmarks, binary size, as well as peak memory consumption. Blink has 57 performance (first plot) and 22
throughput tests (Second plot). The Baseline version is unmodified Chromium. Higher is better except for the
first plot (run-time overhead increases, throughput increases, and binary size and peak memory decrease).

...
}

In a nutshell, the IR above checks if the object points to B’s or C’s vtables. This ensures that the
cast is safe. The check is implemented using a clever rotation of the difference of the object’s vtable
pointer and the address of the first vtable (in this case B’s). The check requires the vtables to be
laid out in memory in a specific order (similar to our algorithm). The IR is equivalent to naively
checking each vtable (in this case, obj_vtable_slot == vtable_b || obj_vtable_slot == vtable_c).
Chromium, being a security-sensitive application, supports building it with this Clang cast

hardening flag [61]. An alternative to this hardening is to use dynamic casts. Since dynamic casts
return null on failure, and that any memory access through the null pointer crashes the program,
the security guarantees of using dynamic casts and Clang’s hardening flag are similar. Therefore,
we modified Clang to change static casts into dynamic casts and compiled Chromium in this mode.
We wanted to assess whether using dynamic casts coupled with our optimization delivers a solution
that is competitive with Clang’s hardening instrumentation.
Fig. 9 compares the performance and binary size when using static casts (the baseline), when

static casts are converted to dynamic casts with and without our optimizations, and when using
Clang’s hardening. Using dynamic casts without our optimization causes a large slowdown (∼20%).
However, our optimization recovers most of the overhead, offering a solution that is competitive in
terms of performance, while producing a binary slightly smaller than Clang’s hardening.

Using dynamic casts offers similar security guarantees to Clang’s hardening, since dereferencing
a null pointer in user-space code poses low risk. However, our optimization uses a range check
when there are more than 2 type candidates. This check is less tight than Clang’s, since we allow
the object’s vtable pointer to point into any slot of the vtables (e.g., the RTTI pointer or any virtual
function), while Clang’s code only allows pointers into the right vtable slot. It is unclear if ROP
attacks similar to type confusion could be done by pointing into the suffix of a vtable of a valid
type (cf. [64, 72] for a review on ROP attacks through vtables). It is also possible to use a check
similar to Clang’s hardening, albeit at a slight performance impact.

6 Related Work
We briefly survey the work on improving the performance and safety of dynamic casts. Table 6
summarizes the techniques for implementing dynamic casts, comparing them in terms of space
and time complexity, whether they support multiple and virtual inheritance, whether they support
open type hierarchies (e.g., do not require LTO), and whether they are transparent to users.

167:20 Xufan Lu and Nuno P. Lopes

Table 6. Summary of the techniques for implementing dynamic casts, including their space and time com-
plexity, whether multiple and virtual inheritance are supported, whether open type hierarchies are supported,
and whether they are transparent to users. Let 𝐶 be the number of classes, 𝐸 the number of edges in the type
DAGs,𝑀 the number of objects, ℎ the height of the type hierarchy DAGs, and 𝑘 the number of sub-trees in
the type hierarchy DAGs (𝑘 = 1 if there is no multiple inheritance).

Technique Space Time Multi Virtual Open Transparent

C++ RTTI 𝑂 (𝐶 + 𝐸) 𝑂 (ℎ) ! ! ! !

MemCast [52] 𝑂 (𝐶 + 𝐸) 𝑂 (ℎ) ! ! ! !

FailFast [55] 𝑂 (𝐶 + 𝐸) 𝑂 (ℎ) ! ! ! !

FastCast [29] 𝑂 (𝐶) 𝑂 (1) ! !
LLVM’s custom RTTI 𝑂 (𝑀) 𝑂 (1)
Schubert et al. [63] 𝑂 (𝐶) 𝑂 (1) !

Cohen’s encoding [15] 𝑂 (ℎ ·𝐶) 𝑂 (1) !

Jalapeño’s encoding [5] 𝑂 (ℎ ·𝐶) 𝑂 (1) !

Packed encoding [71] 𝑂 (𝑘 · ℎ ·𝐶) 𝑂 (𝑘) ! !

PQ-encoding [30] 𝑂 (𝑘 ·𝐶) 𝑂 (𝑘) ! !

Graph coloring [46] 𝑂 (𝐶) 𝑂 (log𝐶) !

Perfect hashing [27] 𝑂 (𝐶) 𝑂 (1) ! ! !

ESE [4] 𝑂 (𝐶) 𝑂 (𝑘) ! ! !

Our optimization 𝑂 (1) 𝑂 (𝑘) !

MemCast [52] uses a cache per cast to speedup repeated casts. FailFast [55] uses bloom filters to
avoid iterating the whole type hierarchy when casts fail.
FastCast [29] encodes each class type as an integer and performs type checks in constant time.

The id of each class is computed as the product of the ids of its base classes’ ids and a unique
prime number. Casting works by checking if the id of the object’s type is divisible by the id of
the destination type. This approach requires internal type hierarchies and is limited to small type
hierarchies trees. It has been used by embedded systems [19, 20].
Schubert et al. [63] assign an integer interval to each class such that it is included in all of its

superclass’ intervals. Type checking is implement via an interval inclusion test. The R&B algorithm
uses similar range checks for Java sub-type tests [57].

Cohen’s encoding [15] records the distance to the root of the type hierarchy tree in each object.
Type checking consists in a single lookup in the class’ array by the distance tag of the object. Packed
encoding [71] extends Cohen’s encoding to support multiple inheritance by splitting type DAGs
into multiple disjoint type subsets. Jalapeño’s encoding [5] extends Cohen’s encoding with two
additional data structures to speedup the common cases in Java programs.
PQ-Encoding [30] extends Schubert et al. to support multiple inheritance. It uses PQ trees for

efficiently computing intervals that satisfy the global interval inclusion property for type DAGs. If
no such ordering can be found, it splits the DAG into multiple sub-trees akin to packed encoding.
Perfect hashing has been proposed as an efficient way to do sub-type checks [27]. It computes

a hash value for each class such that all sub-type checks can be implemented with short code
sequences. It supports open type hierarchies by recomputing the hashes when the program starts.
ESE [4] reduces the time to add a new class by increasing the time to do sub-type checks (one per
graph slice). An alternative way of finding an optimal encoding is to use graph coloring [46].

Link-Time Optimization of Dynamic Casts in C++ Programs 167:21

Mach7 [65] is an implementation of type switching for C++ that supports open type hierarchies. It
uses dynamic casts and memoization to speed up subsequent uses. Inline caches are used to precede
indirect calls with a sequence of tests for the most frequent targets [2, 12, 14, 17, 23, 36, 67, 74].

Unlike most of the techniques just described that use custom metadata, our algorithm leverages
the vtable slot that is already present in all C++ polymorphic objects. Hence, our technique requires
no additional memory or binary space. Moreover, our algorithm removes most RTTI data linked
from vtables, thus offering dynamic casts at a very low cost and without major changes to compilers.

Link-Time Optimizations (LTO). LTO is now implemented in many C++ compilers, including
GCC [31, 50], LLVM [41], and MSVC [62]. Several optimizations leverage LTO to obtain a closed
world [6, 13, 32, 68, 73, 76]. In particular, devirtualization [3, 7, 18, 28, 56] attempts to replace virtual
calls with direct calls. Inter-procedural alias analysis can be used to remove dynamic casts, since it
allows one to potentially store-forward the vtable pointer of objects [9, 22, 33, 35, 43, 48, 60].

Security Hardening. Type confusion is a long-standing security problem in C++ programs [45, 66].
Clang’s undefined behavior sanitizer (UBSan) [51] enforces cast safety by converting static casts to
dynamic casts.

Other cast hardening techniques use custom metadata instead of relying on RTTI data in order to
support programs that are compiled without RTTI [24–26, 34, 39, 47, 49, 58, 59]. Libcrunch [44] en-
forces cast safety by checking pointers at creation, using per-allocation typemetadata. T-Prunify [75]
leverages hand-written type checks using custom type information as used in, e.g., Chromium
and LLVM, to prove that some casts are safe. Must [37] checks the types of buffers given to MPI
operations (which are not typed) by keeping a map to store metadata about memory allocations.
Various C++ dialects [8, 21, 40, 53] have been proposed to mitigate type confusion during type
casting operations.

Control-flow integrity (CFI) [1, 54, 70] is a mechanism to protect indirect calls (including through
vtables). There are also mechanisms to ensure integrity of the vtable slot of objects [10, 11, 38, 70].
TRaP randomizes the layout of vtables to prevent ROP attacks [16].

7 Conclusion
Dynamic casts are one of the few features in C++ that violate the language’s design goal of having
users pay only for the features they use. This is because in the traditional compilation setting,
where each file is compiled individually, compilers operate without knowing the full type hierarchy
and thus must always emit run-time type information (RTTI) just in case.

In this paper, we present a novel optimization for dynamic casts in C++ programs.We leverage the
advances in link-time optimizations (LTO) of the past decade to obtain an internal type hierarchy.
We show that our optimization replaces most dynamic casts with short code sequences with
constant-time complexity (unlike the runtime library implementations, which are linear in the size
of the type DAGs). Our optimization also removes most of the unused RTTI data, hence restoring
C++’s design goal of having users only pay for the features they use.

Acknowledgments
The authors thank Richard Smith for providing the example with anonymous namespaces of
Section 2.2, and Teresa Johnson and Reid Kleckner for feedback on earlier drafts.
This work was supported in part by national funds through FCT, Fundação para a Ciência e a

Tecnologia, under project UIDB/50021/2020 (DOI: 10.54499/UIDB/50021/2020), and an unrestricted
gift from Google.

167:22 Xufan Lu and Nuno P. Lopes

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow integrity. In CCS. https://doi.org/10.

1145/1102120.1102165
[2] Wonsun Ahn, Jiho Choi, Thomas Shull, María J. Garzarán, and Josep Torrellas. 2014. Improving JavaScript performance

by deconstructing the type system. In PLDI. https://doi.org/10.1145/2594291.2594332
[3] Gerald Aigner and Urs Hölzle. 1996. Eliminating Virtual Function Calls in C++ Programs. In ECCOP. https:

//doi.org/10.1007/BFb0053060
[4] Hamed Seiied Alavi, Seth Gilbert, and Rachid Guerraoui. 2008. Extensible encoding of type hierarchies. In POPL.

https://doi.org/10.1145/1328438.1328480
[5] Bowen Alpern, Anthony Cocchi, and David Grove. 2001. Dynamic type checking in Jalapeño. In JVM. https:

//www.usenix.org/legacy/events/jvm01/full_papers/alpern/alpern.pdf
[6] Bowen Alpern, Anonthy Cocchi, and David Grove. 2012. Some new approaches to partial inlining. In VMIL. https:

//doi.org/10.1145/2414740.2414749
[7] David F. Bacon and Peter F. Sweeney. 1996. Fast static analysis of C++ virtual function calls. In OOPSLA. https:

//doi.org/10.1145/236337.236371
[8] Nicolas Badoux, Flavio Toffalini, Jeon Yuseok, and Mathias Payer. 2025. type++: Prohibiting Type Confusion with

Inline Type Information. In NDSS. https://doi.org/10.14722/ndss.2025.230053
[9] George Balatsouras and Yannis Smaragdakis. 2016. Structure-Sensitive Points-To Analysis for C and C++. In SAS.

https://doi.org/10.1007/978-3-662-53413-7_5
[10] Dimitar Bounov, Rami Gökhan Kici, and Sorin Lerner. 2016. Protecting C++ Dynamic Dispatch Through VTable

Interleaving. In NDSS. https://doi.org/10.14722/ndss.2016.23421
[11] Nathan Burow, Derrick Paul McKee, Scott A. Carr, and Mathias Payer. 2018. CFIXX: Object Type Integrity for C++. In

NDSS. https://doi.org/10.14722/ndss.2018.23279
[12] Brad Calder and Dirk Grunwald. 1994. Reducing indirect function call overhead in C++ programs. In POPL. https:

//doi.org/10.1145/174675.177973
[13] David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. 1986. Interprocedural constant propagation. In

CC. https://doi.org/10.1145/12276.13327
[14] Jiho Choi, Thomas Shull, and Josep Torrellas. 2019. Reusable inline caching for JavaScript performance. In PLDI.

https://doi.org/10.1145/3314221.3314587
[15] Norman H. Cohen. 1991. Type-extension type test can be performed in constant time. ACM Trans. Program. Lang.

Syst. 13, 4 (Oct. 1991), 626–629. https://doi.org/10.1145/115372.115297
[16] Stephen J. Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi,

Thorsten Holz, Bjorn De Sutter, and Michael Franz. 2015. It’s a TRaP: Table Randomization and Protection against
Function-Reuse Attacks. In CCS. https://doi.org/10.1145/2810103.2813682

[17] Jan de Mooij, Matthew Gaudet, Iain Ireland, Nathan Henderson, and J. Nelson Amaral. 2023. CacheIR: The Benefits of
a Structured Representation for Inline Caches. In MPLR. https://doi.org/10.1145/3617651.3622979

[18] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-Oriented Programs Using Static Class
Hierarchy Analysis. In ECOOP. https://doi.org/10.1007/3-540-49538-X_5

[19] Damian Dechev, Rabi Mahapatra, and Bjarne Stroustrup. 2008. Practical and Verifiable C++ Dynamic Cast for Hard
Real-Time Systems. JCSE 2 (12 2008), 375–393. https://doi.org/10.5626/JCSE.2008.2.4.375

[20] Damian Dechev, Rabi Mahapatra, Bjarne Stroustrup, and David Wagner. 2008. C++ Dynamic Cast in Autonomous
Space Systems. In ISORC. https://doi.org/10.1109/ISORC.2008.20

[21] Christian DeLozier, Richard Eisenberg, Santosh Nagarakatte, Peter-Michael Osera, Milo M.K. Martin, and Steve
Zdancewic. 2013. Ironclad C++: a library-augmented type-safe subset of C++. In OOPSLA. https://doi.org/10.1145/
2509136.2509550

[22] Alain Deutsch. 1994. Interprocedural may-alias analysis for pointers: beyond k-limiting. In PLDI. https://doi.org/10.
1145/178243.178263

[23] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient implementation of the smalltalk-80 system. In POPL.
https://doi.org/10.1145/800017.800542

[24] Gregory J. Duck and Roland H. C. Yap. 2016. Heap bounds protection with low fat pointers. In CC. https://doi.org/10.
1145/2892208.2892212

[25] Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: type and memory error detection using dynamically typed
C/C++. In PLDI. https://doi.org/10.1145/3192366.3192388

[26] Gregory J. Duck, Roland H. C. Yap, and Lorenzo Cavallaro. 2017. Stack Bounds Protection with Low Fat Pointers. In
NDSS. https://doi.org/10.14722/ndss.2017.23287

[27] Roland Ducournau. 2008. Perfect hashing as an almost perfect subtype test. ACM Trans. Program. Lang. Syst. 30, 6,
Article 33 (Oct. 2008). https://doi.org/10.1145/1391956.1391960

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/2594291.2594332
https://doi.org/10.1007/BFb0053060
https://doi.org/10.1007/BFb0053060
https://doi.org/10.1145/1328438.1328480
https://www.usenix.org/legacy/events/jvm01/full_papers/alpern/alpern.pdf
https://www.usenix.org/legacy/events/jvm01/full_papers/alpern/alpern.pdf
https://doi.org/10.1145/2414740.2414749
https://doi.org/10.1145/2414740.2414749
https://doi.org/10.1145/236337.236371
https://doi.org/10.1145/236337.236371
https://doi.org/10.14722/ndss.2025.230053
https://doi.org/10.1007/978-3-662-53413-7_5
https://doi.org/10.14722/ndss.2016.23421
https://doi.org/10.14722/ndss.2018.23279
https://doi.org/10.1145/174675.177973
https://doi.org/10.1145/174675.177973
https://doi.org/10.1145/12276.13327
https://doi.org/10.1145/3314221.3314587
https://doi.org/10.1145/115372.115297
https://doi.org/10.1145/2810103.2813682
https://doi.org/10.1145/3617651.3622979
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.5626/JCSE.2008.2.4.375
https://doi.org/10.1109/ISORC.2008.20
https://doi.org/10.1145/2509136.2509550
https://doi.org/10.1145/2509136.2509550
https://doi.org/10.1145/178243.178263
https://doi.org/10.1145/178243.178263
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.14722/ndss.2017.23287
https://doi.org/10.1145/1391956.1391960

Link-Time Optimization of Dynamic Casts in C++ Programs 167:23

[28] Mary F. Fernández. 1995. Simple and effective link-time optimization of Modula-3 programs. In PLDI. https:
//doi.org/10.1145/207110.207121

[29] Michael Gibbs and Bjarne Stroustrup. 2006. Fast dynamic casting. Softw. Pract. Exper. 36, 2 (Feb. 2006), 139–156.
https://doi.org/10.1002/spe.686

[30] Joseph (Yossi) Gil and Yoav Zibin. 2005. Efficient subtyping tests with PQ-encoding. ACM Trans. Program. Lang. Syst.
27, 5 (Sept. 2005), 819–856. https://doi.org/10.1145/1086642.1086643

[31] Taras Glek and Jan Hubička. 2010. Optimizing real world applications with GCC Link Time Optimization.
arXiv:1010.2196

[32] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Monica S. Lam. 2005. Interprocedural
parallelization analysis in SUIF. ACM Trans. Program. Lang. Syst. 27, 4 (July 2005), 662–731. https://doi.org/10.1145/
1075382.1075385

[33] Mary W. Hall and Ken Kennedy. 1992. Efficient call graph analysis. ACM Lett. Program. Lang. Syst. 1, 3 (Sept. 1992),
227–242. https://doi.org/10.1145/151640.151643

[34] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe. 2016.
TypeSan: Practical Type Confusion Detection. In CCS. https://doi.org/10.1145/2976749.2978405

[35] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. 1999. Interprocedural pointer alias analysis. ACM
Trans. Program. Lang. Syst. 21, 4 (July 1999). https://doi.org/10.1145/325478.325519

[36] Urs Hölzle and David Ungar. 1994. Optimizing dynamically-dispatched calls with run-time type feedback. In PLDI.
https://doi.org/10.1145/178243.178478

[37] Alexander Hück, Jan-Patrick Lehr, Sebastian Kreutzer, Joachim Protze, Christian Terboven, Christian Bischof, and
Matthias S. Müller. [n. d.]. Compiler-aided Type Tracking for Correctness Checking of MPI Applications. In Correctness.
https://doi.org/10.1109/Correctness.2018.00011

[38] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2014. SafeDispatch: Securing C++ Virtual Calls from Memory
Corruption Attacks. In NDSS. https://doi.org/10.14722/ndss.2014.23287

[39] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung Lee, and Mathias Payer. 2017. HexType: Efficient Detection of
Type Confusion Errors for C++. In CCS. https://doi.org/10.1145/3133956.3134062

[40] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and Yanling Wang. 2002. Cyclone: A Safe
Dialect of C. In USENIX ATC. https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/
jim/jim.pdf

[41] Teresa Johnson, Mehdi Amini, and Xinliang David Li. 2017. ThinLTO: Scalable and incremental LTO. In CGO.
https://doi.org/10.1109/CGO.2017.7863733

[42] Timothy M. Jones, Sandro Bartolini, Jonas Maebe, and Dominique Chanet. 2011. Link-time optimization for power
efficiency in a tagless instruction cache. In CGO. https://doi.org/10.1109/CGO.2011.5764672

[43] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for points-to analysis. In PLDI. https:
//doi.org/10.1145/2491956.2462191

[44] Stephen Kell. 2016. Dynamically diagnosing type errors in unsafe code. In OOPSLA. https://doi.org/10.1145/2983990.
2983998

[45] Ofek Kirzner and Adam Morrison. 2021. An Analysis of Speculative Type Confusion Vulnerabilities in the Wild. In
USENIX Security. https://www.usenix.org/system/files/sec21-kirzner.pdf

[46] Andreas Krall, Jan Vitek, and R. Nigel Horspool. 1997. Near optimal hierarchical encoding of types. In ECOOP.
https://doi.org/10.1007/BFb0053377

[47] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight, and Andre DeHon. 2013. Low-fat pointers: compact
encoding and efficient gate-level implementation of fat pointers for spatial safety and capability-based security. In
CCS. https://doi.org/10.1145/2508859.2516713

[48] J. M. Larchevêque. 1992. Interprocedural type propagation for object-oriented languages. In ESOP. https://doi.org/10.
1007/3-540-55253-7_19

[49] Byoungyoung Lee, Chengyu Song, Taesoo Kim, andWenke Lee. 2015. Type Casting Verification: Stopping an Emerging
Attack Vector. In USENIX Security. https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-
lee.pdf

[50] David Xinliang Li, Raksit Ashok, and Robert Hundt. 2010. Lightweight feedback-directed cross-module optimization.
In CGO. https://doi.org/10.1145/1772954.1772964

[51] LLVM. 2025. UndefinedBehaviorSanitizer, a fast undefined behavior detector. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html

[52] Sadie J. Macintyre-Randall. 2023. Enforcing C++ type integrity with fast dynamic casting, member function protections and
an exploration of C++ beneath the surface. Ph. D. Dissertation. The University of Kent. https://kar.kent.ac.uk/102955/

[53] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe
retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526. https://doi.org/10.1145/

https://doi.org/10.1145/207110.207121
https://doi.org/10.1145/207110.207121
https://doi.org/10.1002/spe.686
https://doi.org/10.1145/1086642.1086643
https://arxiv.org/abs/1010.2196
https://doi.org/10.1145/1075382.1075385
https://doi.org/10.1145/1075382.1075385
https://doi.org/10.1145/151640.151643
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/325478.325519
https://doi.org/10.1145/178243.178478
https://doi.org/10.1109/Correctness.2018.00011
https://doi.org/10.14722/ndss.2014.23287
https://doi.org/10.1145/3133956.3134062
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/jim/jim.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/jim/jim.pdf
https://doi.org/10.1109/CGO.2017.7863733
https://doi.org/10.1109/CGO.2011.5764672
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/2983990.2983998
https://doi.org/10.1145/2983990.2983998
https://www.usenix.org/system/files/sec21-kirzner.pdf
https://doi.org/10.1007/BFb0053377
https://doi.org/10.1145/2508859.2516713
https://doi.org/10.1007/3-540-55253-7_19
https://doi.org/10.1007/3-540-55253-7_19
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-lee.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-lee.pdf
https://doi.org/10.1145/1772954.1772964
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://kar.kent.ac.uk/102955/
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/1065887.1065892

167:24 Xufan Lu and Nuno P. Lopes

1065887.1065892
[54] Ben Niu and Gang Tan. 2014. RockJIT: Securing Just-In-Time Compilation Using Modular Control-Flow Integrity. In

CCS. https://doi.org/10.1145/2660267.2660281
[55] Rohan Padhye and Koushik Sen. 2019. Efficient fail-fast dynamic subtype checking. In VMIL. https://doi.org/10.1145/

3358504.3361229
[56] Piotr Padlewski, Krzysztof Pszeniczny, and Richard Smith. 2020. Modeling the Invariance of Virtual Pointers in LLVM.

arXiv:2003.04228
[57] Krzysztof Palacz and Jan Vitek. 2003. Java Subtype Tests in Real-Time. In ECOOP. https://doi.org/10.1007/978-3-540-

45070-2_17
[58] Chengbin Pang, Yunlan Du, Bing Mao, and Shanqing Guo. 2018. Mapping to Bits: Efficiently Detecting Type Confusion

Errors. In ACSAC. https://doi.org/10.1145/3274694.3274719
[59] Chengbin Pang, Yunlan Du, Bing Mao, and Shanqing Guo. 2018. Mapping to Bits: Efficiently Detecting Type Confusion

Errors. In ACSAC. https://doi.org/10.1145/3274694.3274719
[60] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. 2007. Efficient field-sensitive pointer analysis of C. ACM Trans.

Program. Lang. Syst. 30, 1 (Nov. 2007), 4–es. https://doi.org/10.1145/1290520.1290524
[61] Constantin Cezar Petrescu, Sam Smith, Rafail Giavrimis, and Santanu Kumar Dash. 2023. Do names echo semantics?

A large-scale study of identifiers used in C++’s named casts. Journal of Systems and Software 202 (2023). https:
//doi.org/10.1016/j.jss.2023.111693

[62] Patrick W. Sathyanathan, Wenlei He, and Ten H. Tzen. 2017. Incremental whole program optimization and compilation.
In CGO. https://doi.org/10.1109/CGO.2017.7863742

[63] L. K. Schubert, M. A. Papalaskaris, and J. Taugher. 1983. Determining Type, Part, Color, and Time Relationships.
Computer 16, 10 (Oct. 1983), 53–60. https://doi.org/10.1109/MC.1983.1654198

[64] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz. 2015.
Counterfeit Object-oriented Programming: On the Difficulty of Preventing Code Reuse Attacks in C++ Applications.
In S&P. https://doi.org/10.1109/SP.2015.51

[65] Yuriy Solodkyy, Gabriel Dos Reis, and Bjarne Stroustrup. 2012. Open and efficient type switch for C++. In OOPSLA.
https://doi.org/10.1145/2384616.2384686

[66] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per Larsen, and Michael Franz. 2019.
SoK: Sanitizing for Security. In SP. https://doi.org/10.1109/SP.2019.00010

[67] Benoît Sonntag and Dominique Colnet. 2014. Efficient compilation strategy for object-oriented languages under the
closed-world assumption. Softw. Pract. Exper. 44, 5 (May 2014), 565–592. https://doi.org/10.1002/spe.2174

[68] Amitabh Srivastava and David W. Wall. 1994. Link-time optimization of address calculation on a 64-bit architecture.
In PLDI. https://doi.org/10.1145/178243.178248

[69] Bjarne Stroustrup. 2020. Thriving in a crowded and changing world: C++ 2006–2020. Proc. ACM Program. Lang. 4,
HOPL, Article 70 (June 2020). https://doi.org/10.1145/3386320

[70] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, and Geoff Pike.
2014. Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM. In USENIX Security. https://www.usenix.org/
system/files/conference/usenixsecurity14/sec14-paper-tice.pdf

[71] Jan Vitek, R. Nigel Horspool, and Andreas Krall. 1997. Efficient type inclusion tests. In OOPSLA. https://doi.org/10.
1145/263698.263730

[72] Chenyu Wang, Bihuan Chen, Yang Liu, and Hongjun Wu. 2019. Layered Object-Oriented Programming: Advanced
VTable Reuse Attacks on Binary-Level Defense. IEEE Transactions on Information Forensics and Security 14, 3 (2019),
693–708. https://doi.org/10.1109/TIFS.2018.2855648

[73] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant propagation with conditional branches. ACM Trans. Program.
Lang. Syst. 13, 2 (April 1991), 181–210. https://doi.org/10.1145/103135.103136

[74] Zhefeng Wu, Zhe Sun, Kai Gong, Lingyun Chen, Bin Liao, and Yihua Jin. 2020. Hidden inheritance: an inline
caching design for TypeScript performance. Proc. ACM Program. Lang. 4, OOPSLA, Article 174 (Nov. 2020). https:
//doi.org/10.1145/3428242

[75] Yizhuo Zhai, Zhiyun Qian, Chengyu Song, Manu Sridharan, Trent Jaeger, Paul Yu, and Srikanth V. Krishnamurthy.
2024. Don’t Waste My Efforts: Pruning Redundant Sanitizer Checks of Developer-Implemented Type Checks. In
USENIX Security. https://www.usenix.org/system/files/usenixsecurity24-zhai.pdf

[76] Peng Zhao and J.N. Amaral. 2005. Function outlining and partial inlining. In SBAC-PAD. https://doi.org/10.1109/
CAHPC.2005.26

Received 2024-11-15; accepted 2025-03-06

https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/2660267.2660281
https://doi.org/10.1145/3358504.3361229
https://doi.org/10.1145/3358504.3361229
https://arxiv.org/abs/2003.04228
https://doi.org/10.1007/978-3-540-45070-2_17
https://doi.org/10.1007/978-3-540-45070-2_17
https://doi.org/10.1145/3274694.3274719
https://doi.org/10.1145/3274694.3274719
https://doi.org/10.1145/1290520.1290524
https://doi.org/10.1016/j.jss.2023.111693
https://doi.org/10.1016/j.jss.2023.111693
https://doi.org/10.1109/CGO.2017.7863742
https://doi.org/10.1109/MC.1983.1654198
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1145/2384616.2384686
https://doi.org/10.1109/SP.2019.00010
https://doi.org/10.1002/spe.2174
https://doi.org/10.1145/178243.178248
https://doi.org/10.1145/3386320
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tice.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tice.pdf
https://doi.org/10.1145/263698.263730
https://doi.org/10.1145/263698.263730
https://doi.org/10.1109/TIFS.2018.2855648
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/3428242
https://doi.org/10.1145/3428242
https://www.usenix.org/system/files/usenixsecurity24-zhai.pdf
https://doi.org/10.1109/CAHPC.2005.26
https://doi.org/10.1109/CAHPC.2005.26

	Abstract
	1 Introduction
	2 Run-Time Type Information (RTTI)
	2.1 Dynamic Cast Algorithm
	2.2 RTTI Data Comparison
	2.3 Implementing Dynamic Casts: Itanium ABI

	3 Dynamic Casts in the Wild
	3.1 Inheritance and Type Hierarchies
	3.2 RTTI Overhead
	3.3 Dynamic Cast Usage

	4 Optimizing Dynamic Casts
	4.1 Link-Time Optimizations (LTO)
	4.2 Algorithm For Optimizing Dynamic Casts with LTO
	4.3 Efficient Membership Checks for Large Type Hierarchies
	4.4 Removing Unused RTTI Data
	4.5 Extension for Lightweight LTO (ThinLTO)

	5 Evaluation
	5.1 End-to-End Performance, Binary Size, and Peak Memory Impact
	5.2 Benchmark Programs Profiling
	5.3 LLVM Case Study: Hand-Rolled Casts vs dynamic_cast
	5.4 Chromium Case Study: Hardening Static Casts

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

