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Abstract. We present a predicate abstraction and refinement-based al-
gorithm for software verification that is designed for the distributed ex-
ecution on compute nodes that communicate via message passing, as
found in today’s compute clusters. A successful adaptation of predi-
cate abstraction and refinement from sequential to distributed setting
needs to address challenges imposed by the inherent non-determinism
present in distributed computing environments. In fact, our experiments
show that up to an order of magnitude variation of the running time
is common when a naive distribution scheme is applied, often resulting
in significantly worse running time than the non-distributed version. We
present an algorithm that overcomes this pitfall by making determin-
istic the counterexample selection in spite of the distribution, and still
efficiently exploits distributed computational resources. We demonstrate
that our distributed software verification algorithm is practical by an
experimental evaluation on a set of difficult benchmark problems from
the transportation domain.

1 Introduction

There has been a recent rapid growth of the amount of computing resources
clustered in data centers together with their increasing availability for wide ac-
cess. Compute clusters can be found in academic institutions, and today it is
even possible to rent computers from major providers. A typical cluster offers a
large number of compute nodes interconnected via a high throughput and low
latency network. The number of available CPUs can be up to one hundred and
more, however usually they do not share any memory, i.e., the communication
between compute nodes is via message passing over the network.

Such clusters open unprecedented opportunities for amplifying the scalability
of software model checking tools. Software model checking [12] can be abstractly
viewed as a tree construction, where nodes correspond to sets of program states
and edges are labeled by program statements. The goal is to compute a set of
nodes that contains all states that the program can reach, and then check if error
states were included. Computation of child nodes is an expensive task that re-
quires invocation of a decision procedure. This tree construction procedure has a
promising potential for distribution. However, to the best of our knowledge, such
computing infrastructure has not yet been utilized for software model checking.



In this paper we present a distributed version of a software model check-
ing algorithm that is designed for the distributed execution on compute nodes
that communicate via message passing. Our algorithm implements a prominent
approach to software verification that is based on predicate abstraction and its
counterexample-guided refinement [2,3,6,8]. Based on preliminary experiments,
we decided to use a centralized approach with a single master node and a set of
worker nodes. The master node keeps the reachability tree and a queue of nodes
whose successors need to be computed by the workers. In addition, each worker
node maintains a partial reachability tree that is used to locally check if a com-
puted set of program states has been already reached. Although theoretically
the master node is a bottleneck of our approach, our preliminary experiments
indicated that in practice neither CPU nor network usage reach their limits.

A successful adaptation of a predicate abstraction-based model checking algo-
rithm from sequential to distributed setting needs to address challenges imposed
by the inherent non-determinism present in distributed computing environments.
Since the success of predicate abstraction-based verifiers crucially depends on
the choice of counterexamples used to discover predicates, any deviation from
an intended program exploration strategy, and hence a counterexample selection
strategy, e.g., BFS, can significantly impact the verifier running time.

Message queues, different link latencies and CPU speeds make counterex-
ample selection non-deterministic, i.e., different verification runs can discover
different series of counterexamples. Such lack of predictability can have a two-
fold negative impact. First, the verification time can increase due to a suboptimal
exploration strategy. In fact, our experiments with a naive distribution scheme
summarized by the table in Fig. 1 show that up to an order of magnitude varia-
tion of the running time can occur.3 Due to the random counterexample choice,
the running time of the naive distributed algorithm can be up to two times
slower than the sequential algorithm. Second, the outcome of the verification is
practically impossible to reproduce. (Note however that computed proofs can
still be checked, since the proof validity is independent of how it was computed.)

In this paper we present an algorithm that addresses the predictability re-
quirement. Our algorithm overcomes this efficiency pitfall by making determinis-
tic the counterexample selection in spite of the distribution. While achieving the
desired deterministic behavior at the level of abstraction refinement, the algo-
rithm does not impose any synchronization during the reachability computation,
which is necessary to achieve the full utilization of available resources.

We implemented our distributed algorithm as an extension of the model
checker ARMC [17] by using the DAHL distribution framework [14]. We demon-
strate that our distributed software verification algorithm is practical by an
experimental evaluation on a set of difficult benchmark problems from the trans-
portation domain. For the evaluation we used a compute cluster with 40 CPUs
on commodity workstations. In the experiments we observed a linear scalability
in the number of CPUs with the factor 0.4–0.5, that is, with 40 CPUs our imple-

3 The naive approach distributes the computation of reachable states among workers
without any attempt to control the counterexample discovery.
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Test Slowdown
5 nodes 10 nodes 20 nodes 40 nodes

larger scale1 lb 1.03 1.79 2.63 3.29

larger scale1 ub – – – –

scale1 lb 1.16 1.36 1.22 1.80

scale1 ub 1.63 33.21 13.90 1.04

timing 1.13 1.04 1.00 1.01

gasburner 1.92 2.08 1.71 2.18

rtall tcs 1.48 1.37 1.29 2.94
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Fig. 1. On the left, we show the slowdown – the ratio between the best and the worst
running time – of a naive distributed algorithm computed for three runs for each
example. In larger scale1 ub, the naive distribution did not succeed due to reaching
the memory limit of 2 GB caused by a very large number of predicates collected in
several days of running time. On the right, the summary of our experimental evaluation
is presented. The graph presents the correlation of speedup – ratio between the running
time in the sequential and distributed settings – and the number of compute nodes.

mentation is up to 20 times faster (the median value over all benchmarks) than
the sequential one, see Figure 1 and Section 5 for more details. We also observed
that our algorithm reduces the variation of running time across different model
checker runs to negligible 1–3% (in contrast to 150–3300% as witnessed by the
table of Figure 1 for the naive distribution).

In summary, this paper makes the following contributions:

– To the best of our knowledge, the first distributed model checking algorithm
based on predicate abstraction and its counterexample guided refinement
that offers predictable execution behavior and linear scalability;

– A practical implementation of the proposed algorithm;
– An experimental evaluation of the algorithm on a network of workstations

demonstrating the effectiveness of the approach.

Related work Previous efforts for utilizing distributed computation envi-
ronments were focused on symbolic and explicit model checking algorithms,
[5, 9, 13, 20]. Overcoming memory limitations of a single workstation was their
primary objective, yet some implementations also delivered increase of perfor-
mance. For example, the parallel Murφ verifier [20] achieves near-linear speedups
with up to 60 machines. The algorithm distributes the state space across the ma-
chines using a (static) hash function. The algorithm of [5] also shows near-linear
speedups with up to ten machines. None of these algorithms needed to address
the determinacy issues arising due to iterative abstraction refinement.

Jha [11] proposes d-IRA, a parallel version of refinement based model check-
ing for hybrid systems, and shows near-linear speedups when executed on four
CPUs (on the same machine). Our algorithm is similar to d-IRA in its usage of a
master-slave architecture and counterexample generation entirely performed by
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the master. The crucial difference lies in the granularity of distribution. d-IRA
lets each worker compute a relaxation of the full system for a single counterex-
ample, while our algorithm distributes each abstract reachability computation.

Holzmann et al. [10] exploit the availability of multiple CPUs in the Swarm
tool that runs several instances of a model checker in parallel with different
state space exploration strategies. Each instance runs reachability computation
sequentially, while our algorithm targets its distribution.

Venet and Brat [21] propose an algorithm for distributed pointer analysis that
was shown to scale up to four CPUs. Similarly to our algorithm, the proposed
algorithm uses a master node to distribute the global state and assign the work
pieces. The main difference lies in the distribution scheme, since it uses work
pieces that are individual C source files, while our algorithm distributes at the
level of individual statements.

Monniaux [16] presents an algorithm for distributed abstract interpretation
with widening, and its evaluation on five CPUs. The algorithm uses a master
node to distribute the work pieces that are created at branch or dispatch points
in the source code. The algorithm of [16] makes distributed abstract interpreta-
tion deterministic by requiring the associativity and commutativity of the join
operator. In contrast, our algorithm achieves determinism through a determin-
istic counterexample selection scheme.

Prabhu et al. [18] present a 0CFA specific algorithm that exploits the paral-
lelism and computation power of GPUs, achieving speedups up to 72x.

2 Example

We illustrate our distributed algorithm on a simple example program. First, we
show how the choice of counterexamples for the predicate discovery affects the
overall execution of the reachability computation. Then, we demonstrate what
our algorithm does to make the counterexample selection process deterministic.

Consider the program in Figure 2 for which we want to check the validity
of the assertion in the last line. On the right we present the corresponding
control-flow graph, in which `I is the initial location and `E is the error location.
The edges are annotated with transition relations, i.e., logical formulas over the
program variables and their primed versions that represent the effect of executing
the program statement. Our goal is to prove that the error location `E is not
reachable. Intuitively, the assertion validity can be proved by keeping track of
the following two observations, so-called predicates, about the program: x ≥ 1
and y ≥ 1.

Now we consider how this program is verified by a distributed verification
algorithm. The algorithms keeps track of a fixed set of predicates over variables
and traces how the predicate validity changes when the program state is modified
by executing program statements. For the sake of illustration we omit the details
of how the reachability trees are constructed and focus on counterexamples,
which are paths through a reachability tree that lead to the error locations, and
their use for predicate discovery.
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if (x > 0) {

y = x;

} else if (x == 0) {

y = 2;

} else {

y = 1;

y = y + 1;

}

assert(y >= 1);

`I

`1

`2

`3

`4

`5

`E

τ1 : x > 0

τ2

x = 0

τ3 : x < 0

τ4 : y′ = x

τ5

y′ = 2

τ6

y′ = 1

τ7 : y′ = y + 1

τ8

y < 1

Fig. 2. An example C program and its control-flow graph. To simplify the figure, we
omit update expressions x′ = x and y′ = y in the transition relations.

Naive distribution In the case of naive distribution we do not impose any con-
straints on the counterexample selection. First, we attempt to prove the program
correct without keeping track of any predicates. In this case we could discover
any of the three counterexamples π1 = τ1τ4τ8, π2 = τ2τ5τ8, and π3 = τ3τ6τ7τ8,
since any path through the program that leads to the assertion appears to be
feasible when we omit any reasoning about the values of program variables. By
applying a predicate discovery procedure on these counterexamples, e.g., the one
based on interpolation [7, 19], we obtain the following set of predicates, respec-
tively: P1 = {x ≥ 1, y ≥ 1}, P2 = {y ≥ 2}, and P3 = {y ≥ 1, y ≥ 2}.

Now we continue by considering each possible counterexample, i.e., we sim-
ulate how the verification proceeds if π1, π2, or π3 was discovered and provided
predicates. For each of the scenarios we now assume that the algorithm keeps
track of the discovered set of predicates P1, P2, or P3 respectively.

In the first case, no further counterexample is found, which means that the
program is proved correct using P1. For the cases 2 and 3, the algorithm can
discover either π2.1 = τ1τ4τ8 or π2.2 = τ3τ6τ7τ8, and π3.1 = τ1τ4τ8, respectively.
For these paths the predicate discovery yields the following sets of predicates,
respectively: P2.1 = {y ≥ 2, x ≥ 1, y ≥ 1}, P2.2 = {y ≥ 2, y ≥ 1}, and P3.1 =
{y ≥ 1, y ≥ 2, x ≥ 1}.

Taking the sets of predicates P2.1 or P3.1 into consideration leads to the
completion of the correctness proof in the respective cases. For the scenario that
discovered the predicates P2.2, another refinement iteration is needed, which
discovers and analyzes the counterexample π2.2.1 = τ1τ4τ8 producing the predi-
cates P2.2.1 = {y ≥ 2, y ≥ 1, x ≥ 1}.

In summary, we have the following four scenarios of executing the naive dis-
tribution, which are determined by the discovered sequences of counterexamples:
π1, (π2, π2.1), (π2, π2.2, π2.2.1), and (π3, π3.1).

Our simple example indicates that depending on the choice of counterexam-
ples to perform refinement, which is non-deterministic in a naive distribution,
the verification algorithm can take one, two, or three iterations, which results
in a significant variation of the execution time. For complex, large program, the
difference in behavior can be significantly bigger.
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Predictable distribution Now we demonstrate how our deterministic coun-
terexample selection can be enforced. First, we define a total ordering ≺ on
counterexample paths, which can be the lexicographic ordering where individ-
ual transitions are compared by considering their names. Assume that we define
τ1 ≺ · · · ≺ τ8, which yields for example that τ1τ4τ8 ≺ τ2τ3τ8.

Now we can use the ordering to select the shortest minimal discovered coun-
terexample. However, when committing to the selection of a candidate coun-
terexample we need to take into consideration the possibility that a smaller
counterexample – currently under construction in the distributed environment –
can be discovered later on. This means that we need to wait until the reachability
tree construction reaches the depth of the candidate.

For example, assume that the counterexamples π2 and π3 are already discov-
ered and π2 is the candidate for selection, since π2 is shorter than π3. We still
need to wait until the reachability tree construction reaches the depth 3, which
is the length of π2. Finally, π1 will be discovered and since π1 ≺ π2, it will be
selected for the predicate discovery.

Thus, the deterministic selection approach leads to the predictable execution
of the verification algorithm while leaving unconstrained the order on which the
reachability tree is explored. The induced cost of waiting for the completion of the
tree construction up to the depth determined by the candidate counterexample
does not lead to a significant overhead in practice, as our experiments indicate.

In the remaining sections we provide a detailed description of our distributed
verification algorithm, which is based on the idea illustrated in this section.

3 Preliminaries

In this section we define programs and computations, and provide a brief descrip-
tion of predicate abstraction-based approach to program verification together
with a counterexample-guided abstraction refinement procedure.

Programs and computations We assume an abstract representation of pro-
grams by transition systems [15]. A program P = (Σ, sI , T , sE) is given by a
set of program states Σ, an initial state sI ∈ Σ, a set of transitions T , and
an error state sE ∈ Σ. Each transition τ ∈ T has a corresponding transition
relation ρτ ⊆ Σ×Σ. The error state sE is used to represent assertion statements
commonly present in programming languages. Each failed assertion leads to sE .

A computation of P is a sequence of states s1, s2, . . . such that s1 is the
initial state, i.e., s1 = sI , and there is a transition τ ∈ T between each pair of
consecutive states s and s′, i.e., (s, s′) ∈ ρτ . A state s is reachable if it appears
in some computation. The program is safe if the error state is not reachable.

A path is a sequence of transitions. Let ◦ be the relational composition
function for binary relation over states, i.e., for X,Y ⊆ Σ × Σ we have
X ◦ Y = {(s, s′) | ∃s′′ ∈ Σ : (s, s′′) ∈ X ∧ (s′′, s′) ∈ Y }. Then, a path rela-
tion ρπ is a relational composition of transition relations along the path, i.e., for
π = τ1 . . . τn we have ρπ = ρτ1 ◦ · · · ◦ ρτn

. A path is feasible if its path relation
is not empty.
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Predicate abstraction Our goal is to verify if a given program is safe. To
achieve this, we need to consider all reachable states and check if the error state
appears among them. The set of all reachable states can be computed iteratively
using the function post : (T × 2Σ) → 2Σ such that post(τ, S) = {s′ | ∃s ∈ S :
(s, s′) ∈ ρτ}. Its least fixed point above {sI} is the set of reachable states, i.e.,

s is reachable if and only if s ∈ lfp(λS.
⋃
τ∈T

post(τ, S), {sI}) .

The exact computation of the set of reachable states is a undecidable problem,
however for the verification purposes a sufficiently close abstraction is enough.
The framework of abstract interpretation [4] provides a formal foundation for
the approximate, yet sound abstraction of reachable states, where abstraction is
defined as an over-approximation. Given an abstraction function α : 2Σ → 2Σ

such that ∀S ⊆ Σ : S ⊆ α(S), we construct an abstraction post# of post as
follows: post#(τ, S) = α(post(τ, S)). Our abstraction puts together and operates
on sets of program states. We call such sets abstract states and let Σ# = 2Σ be
the set of all abstract states. The least fixed point of post# above the abstraction
of the initial state is an over-approximation of the reachable states, i.e.,

lfp(λS.
⋃
τ∈T

post#(τ, S), α({sI})) ⊇ lfp(λS.
⋃
τ∈T

post(τ, S), {sI}) .

If the error state is not included in the over-approximation then the program is
safe, that is, we obtain a sound method for verifying program safety.

The abstraction function α can be constructed automatically from a given
set of basic building blocks, called predicates, where a predicate represents a set
of program states. Given a set of predicates P = {P1, . . . , Pn}, where Pi ⊆ Σ,
and a theorem prover that can decide validity of subset inclusion between sets
of states represented in a logical language, we obtain an implementation of an
abstraction function αP : 2Σ → 2Σ as follows: αP(S) = ∩{P ∈ P | S ⊆ P}.

Abstraction refinement In order to verify program safety using predicate
abstraction, we need to supply a set of predicates. Predicates can be derived in
a goal-oriented way by using the counterexample-guided abstraction refinement
approach [3]. The crux of this approach to predicate discovery lies in leveraging
spurious counterexamples, which are program paths that expose the coarseness
of the abstraction function determined by the currently used set of predicates.

A path π = τ1 . . . τn is a spurious counterexample if the abstract reachability
computation along the path leads to the error states, i.e.,

sE ∈ post#(τn, post#(τn−1, . . . post#(τ1, αP({sI}))) ,

but the actual, not abstracted path does not lead to the error state, i.e.,
(sI , sE) 6∈ ρπ. By analyzing a spurious counterexample using automated rea-
soning techniques, e.g., proofs [8] and interpolation [7], we extract a set of new
predicates that excludes the spurious counterexample. Let Refine : T + → 2Σ
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be a refinement function that extracts predicates from spurious counterexamples.
Then, after adding the extracted set of predicates to the abstraction function
and obtaining αP∪Refine(π), the error state is no longer reachable via abstract
reachability computation along π.

4 Predictable distributed verification algorithm

This section presents our distributed algorithm for the predicate abstraction-
based verification of program safety together with counterexample guided ab-
straction refinement. Our algorithm is parametrized. Its first parameter is the
function Refine, which takes a spurious counterexample and returns a set of
predicates that, when used by the abstraction function, leads to the elimination
of the counterexample during the abstract reachability computation. The second
parameter is a total ordering on program paths ≺, which can be defined by the
lexicographic extension of a total order on program transitions’ names.

We designed our algorithm for the execution in a centralized environment
that consists of a master node and a set of worker nodes, where there is a
bidirectional communication link between the master and each of the workers.
We assume that messages are received in the same order they were sent with
respect to a single sender. This assumption greatly simplifies the algorithm and
does not impose any practical restriction, since it can be established by using
the TCP transport protocol which is ubiquitously available.

Our algorithm consists of four building blocks given by the procedures Main-
Master, MainWorker, AddNode, and the function SelectCounterex-
ample. The master node executes the procedure MainMaster as the main
event processing loop, which in turn can invoke AddNode and SelectCoun-
terexample. Each worker executes MainWorker, which in turn can execute
AddNode. The procedure AddNode takes as the first input parameter a flag
indicating whether AddNode is executed on the master or on a worker.

We describe each building block of our algorithm in details, while referring
to the program in Figure 2 as a running example.

Procedure MainMaster Figure 3 shows the implementation of MainMas-
ter. This procedure maintains the central reachability tree by keeping the nodes
whose successors need to be computed in an outgoing queue, which is processed
by workers, and putting the computed successors to the tree.

The master starts by adding the abstraction of the initial program state to
the queue (line 4), and then waits (while idling at line 7) for workers to join the
system and ask for work.

The master handles three kinds of events. “EventJoin w” indicates that a
worker node w wants to join the system, “EventAskForNode w” is sent by a
worker w if it asks for work, and “EventReachedNode n” delivers a computed
successor to the master.

When a worker w wants to join the system, it sends a EventJoin w event to
the known address of the master node. Upon reception, the master registers the
worker (line 9) and sends the current set of predicates to the worker (line 10).
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9
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
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28
29
30
31
32
33
34
35
36

procedure MainMaster
input
P = (Σ, sI , T , sE) - program

vars
P ⊆ 2Σ - finite set of predicates over states
Reach ⊆ Σ# - reachable abstract states
Parent ⊆ Σ# × T ×Σ# - parent relation between abstract states
Depth : Σ# → IN - depth of abstract states
DepthBound ∈ IN ∪ {∞} - minimal depth of reachable error abstract state
Queue ∈ (Σ#)∗ - queue of abstract states
Workers, IdleWorkers - worker nodes and their idle subset

begin
Reach := {αP({sI})}
Depth := λx.0
DepthBound := ∞
Queue := αP({sI})
P := Parent := Workers := IdleWorkers := ∅
repeat

match InputEvent() with
| EventJoin w ->

Workers := {w} ∪Workers
send (w, EventPreds P)

| EventAskForNode w ->

if Queue is not empty then
n := take from Queue
send (w, EventDoNode (n,Depth(n)))

else
IdleWorkers := {w} ∪ IdleWorkers
if IdleWorkers = Workers then

if DepthBound =∞ then
return “program P is safe”

else
π := SelectCounterexample()
if ρπ = ∅ then
P := Refine(π) ∪ P
for each w′ ∈Workers do

send (w′, EventPreds P)
send (w, EventDoNode (αP({sI}), 0))
Reach := {αP({sI})}
Depth := λx.0
DepthBound := ∞
Parent := Queue := ∅

else
return “counterexample π”

| EventReachedNode(n, d,m, τ) ->

AddNode(“master”, n, d, m, τ)
if n ∈ sE ∧ Depth(n) < DepthBound then

DepthBound := Depth(n)
end.

Fig. 3. Procedure MainMaster.
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The master handles workers requests for work according to two scenarios
depending on the work availability, either (lines 12–14) or (lines 15–32). If there
is work available, then the master sends a piece of work to the worker. Other-
wise, the worker is queued in the list of idle workers (line 16). If all the registered
workers become idle, then it means the reachability computation has terminated,
either by exploring the full tree or reaching the depth bound. The program is
correct if no counterexamples have been found upon termination (lines 18–19).
Otherwise, the master selects a counterexample by calling the function Select-
Counterexample and checks its feasibility (lines 21–22). If the counterexam-
ple is not feasible, then it is analyzed by applying Refine and the discovered
predicates are broadcasted to all workers (lines 23–25). Finally, we restart the
reachability computation by initializing the relevant data structures.

When a new abstract state is computed by a worker and the worker deter-
mines that the state might have not been reached before, the state is sent to the
master, where the final decision if the state should be added to the tree is made
(line 34). If the added abstract state contains the error state of the program and
its depth is less than the current depth bound, then the algorithm adjusts the
counterexample depth bound (lines 35–36).

Procedure MainWorker We present the implementation of MainWorker
in Figure 4.

When a worker is started, first it joins the system by sending a join message
to the master (line 3), and then asks for a piece of work (line 4). Afterwards, the
worker processes the events received from the master (lines 5–15).

Workers handle two kinds of events. “EventPreds P” is received before the
abstract reachability computation begins. This event is used to update the set
of predicates, as well as to reset the relevant data structures (lines 7–10). The
other event kind processed by workers is “EventDoNode n”, which comes from
the master and contains an abstract state whose immediate successors should
be computed by the worker. Upon receiving such an event, the worker applies
the one-step abstract reachability operator on the received abstract state, adds
the result to its local reachability tree (lines 12–14), and, if a computed abstract
state appears to have not been discovered previously, sends it to the master.
Finally, the worker asks for a new piece of work.

Procedure AddNode See Figure 5 for the implementation of the proce-
dure AddNode. This procedure is used to add an abstract state to the ab-
stract reachability tree and is responsible for discarding those abstract states
that represent program states already appearing in the tree.

AddNode starts by pruning nodes that are subsumed by the abstract state
that we are trying to add (line 1). The checks for the depth are part of the
implementation to enforce deterministic execution. So, we only allow a node to
prune other if its depth is smaller. As an optimization, if the abstract state that
we are trying to add is already present in the tree at the same depth, then we
only update the parent relation, as the recomputation of the node is unnecessary
(lines 2–3). Finally, if the abstract state is not subsumed by any other one present
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procedure MainWorker
input
P = (Σ, sI , T , sE) - program
self - this node
master - master node

vars
P ⊆ 2Σ - finite set of predicates over states
Reach ⊆ Σ# - reachable abstract states
Parent ⊆ Σ# × T ×Σ# - parent relation between abstract states
Depth : Σ# → IN - depth of abstract states

begin
Depth := λx.0
P := Parent := Reach := ∅
send (master , EventJoin self )
send (master , EventAskForNode self )
repeat

match InputEvent() with
| EventPreds P ′ ->
P := P ′
Depth := λx.0
Parent := Reach := ∅

| EventDoNode (m, d) ->

for each τ ∈ T do
n := αP(post(τ,m))
AddNode(“worker”, n, d+ 1, m, τ)

send (master , EventAskForNode self )
end

Fig. 4. Procedure MainWorker.

in the tree (again, with a lower depth), then it is added to the tree (lines 4–7).
The last step of AddNode involves putting the recently added node to the work
queue. As the work queue is maintained by the master, the worker has to send
the abstract state to the master for further processing (line 15), while the master
directly adds it to its queue (line 10–14). If there is an idle worker, the master
immediately sends the state to such a worker for processing (lines 10–12).

Function SelectCounterexample Figure 6 presents the implementation of
the function SelectCounterexample. This function deterministically selects
one counterexample from the reachability tree.

SelectCounterexample generates all the counterexample paths, and then
selects the minimal path according to total order ≺. It works in a breadth-first
way and traverses the reachability tree backwards from the reachable error states.

First, SelectCounterexample initializes the paths list with the reachable
error states (line 1) and then expands these paths iteratively by following the
parent relation (lines 4–7). Then, when all shortest counterexample paths are
found (i.e., when the start state is first reached), the loop terminates (lines 8–9).
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procedure AddNode
input
mode ∈ {“master”, “worker”} - execution mode
n ∈ Σ# - node to add
d ∈ IN - depth of node n
m ∈ Reach - parent of node n
τ ∈ T - transition from m to n

begin
Reach := Reach \ {n′ ∈ Reach | n′ = n ∧ Depth(n′) > d ∨

n′ ⊂ n ∧ Depth(n′) ≥ d}
if n ∈ Reach ∧ Depth(n) = d then

Parent := {(m, τ, n)} ∪ Parent
else if ∀n′ ∈ Reach : ¬(n ⊆ n′ ∧ d ≥ Depth(n′)) then

Reach := {n} ∪ Reach
Parent := {(m, τ, n)} ∪ Parent
Depth := Depth[n 7→ d]
match mode with
| “master” ->

if IdleWorkers 6= ∅ then
w := pick and remove one from IdleWorkers
send (w, EventDoNode (n, d))

else
Queue := add n to Queue

| “worker” -> send (master , EventReachedNode (n, d,m, τ))
end

Fig. 5. Procedure AddNode.

The set of paths in ErrorPaths is then guaranteed to include counterexample
paths of equal, shortest length. Finally, the minimal counterexample wrt. ≺ is
selected from the list and returned to the caller.

Correctness In order to state the correctness of our algorithm, we present the
following statements.

Invariant 1 A node n with depth d cannot be subsumed by a larger node n′ with
depth d′ if d < d′.

Lemma 1 SelectCounterexample is deterministic.

Proof. (Sketch) As the algorithm uses a total ordering function and it works
only with data that is independent of the execution (transition identifiers), the
algorithm is deterministic.

Lemma 2 Workers are deterministic.

Proof. (Sketch) First, assuming no messages are lost, every worker updates its
set of predicates when an iteration begins. Second, the computation done by a
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function SelectCounterexample
vars

PathsSofar ,ErrorPaths ⊆ Σ# ×T ∗ - partial counterexamples with start state
begin

PathsSofar := {(n, ε) | n ∈ Reach ∧ sE ∈ n}
ErrorPaths := ∅
do

for each (n, π) ∈ PathsSofar do
PathsSofar := PathsSofar \ {(n, π)}
for each (m, τ, n) ∈ Parent such that m ∈ Reach do

PathsSofar := {(m, τ · π)} ∪ PathsSofar
ErrorPaths := {(n, π) ∈ PathsSofar | sI ∈ n}

while ErrorPaths = ∅
return min(≺,ErrorPaths)

end

Fig. 6. Function SelectCounterexample.

worker is itself deterministic, which depends only on the input state and the
predicates set.

Theorem 1 Every execution of the MainMaster algorithm on a given pro-
gram computes the same fixpoint in the same number of iterations.

Proof. (Sketch) First, the AddNode procedure ensures that every subsumed
node in the tree gets pruned and every non-subsumed node gets added (w.r.t.
Invariant 1), disregarding the order that the input is given. Second, MainMas-
ter ensures that all non-subsumed nodes up to the lowest height are computed.
Therefore all shortest counterexamples are found in an iteration. Finally, by
Lemmas 1 and 2 and the previous observations, we have that the algorithm
picks counterexamples deterministically.

5 Experiments

In this section we describe our experiments with an implementation of our dis-
tributed algorithm as an extension of the model checker ARMC [17].

Benchmarks For the experimental evaluation we used a set of benchmarks
from the transportation domain [1] and a standard hybrid system example, gas-
burner. Our benchmarks are automata-theoretic models compiled from complex
specifications that describe communication, timing and data manipulation as-
pects and are represented using a combination of CSP, Duration Calculus, and
Object-Z. Table 1 provides some details about the size of the benchmarks.

As a baseline for our evaluation we used the results obtained by executing
the sequential model checker ARMC. As Table 2 demonstrates, our benchmarks
are difficult (for the sequential algorithm) and require verification time in order
of hours.
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Test Program size # Predicates Max. length of Refinement
# Variables # Transitions counterexamples iterations

larger scale1 lb 16 6127 154 15 32

larger scale1 ub 16 6127 217 25 46

scale1 lb 15 3337 98 15 20

scale1 ub 15 3337 182 25 37

timing 47 99093 17 17 14

gasburner 19 3124 209 41 64

rtall tcs 20 18757 50 15 30

Table 1. Size of benchmark programs and details their verification in sequential setting.

Running time, hours Speedup
Test Sequential Distributed

10 nodes 20 nodes 40 nodes 10 nodes 20 nodes 40 nodes

larger scale1 lb 1.8 2.9 1.4 0.7 0.62 1.33 2.66

larger scale1 ub 50.9 9.8 4.6 2.3 5.18 11.06 22.13

scale1 lb 0.3 0.2 0.1 0.1 1.15 2.37 4.24

scale1 ub 5.9 2.7 1.3 0.6 2.17 4.67 9.24

timing 0.7 0.1 0.1 0.04 5.64 10.95 16.73

gasburner 5.5 1.1 0.6 0.3 4.75 9.90 18.35

rtall tcs 1.0 0.1 0.1 0.04 9.44 19.13 28.76

Median 4.75 9.90 16.73

Table 2. Running time, in hours, for the sequential (BFS) and distributed cases for
10, 20, and 40 nodes, together with the speedup.

Setup The tests were run on a cluster of AMD Opteron 252 (2.6 Ghz) machines,
with 3 GB of RAM, 64 KB of L1 caches, and 1 MB of L2 cache each, running
Linux kernel version 2.6.24. The computers were connected through a gigabit
LAN with an average round-trip time (RTT) of 0.14 ms.

Our implementation of the distributed model checker was compiled using the
SICStus Prolog compiler 4.0.5 and the DAHL distribution framework [14].

We verified our benchmarks in five configurations using 5, 10, 20, and 40
compute nodes. Each of the experiments was executed three times to investigate
the predictability of our distributed algorithm.

Results Our experiments show encouraging results, see Table 2. We observe a
reduction in order of magnitude of the running time, which decreased hours to
minutes. The speedup – ratio between the running times in the sequential and
distributed setting – is on par with the number of utilized compute nodes and
grows linearly with the number of worker nodes.

Besides the overall positive outcome of the running time evaluation, the ex-
periments also show that our implementation can still be improved. We observe
that the efficiency of our algorithm – the ratio between the speedup and the
number of compute nodes – is between 40 and 50%, which leaves significant
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space for improvement. We also observed that the difference between running
times of the same example across multiple runs is below 1–3%, which indicates
the predictability of our algorithm.
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