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Abstract. Proving equivalence of programs has several
important applications, including algorithm recognition,
regression checking, compiler optimization verification
and validation, and information flow checking.

Despite being a topic with so many important ap-
plications, program equivalence checking has seen little
advances over the past decades due to its inherent (high)
complexity.

In this paper, we propose, to the best of our knowl-
edge, the first semi-algorithm for the automatic verifica-
tion of partial equivalence of two programs over the com-
bined theory of uninterpreted function symbols and in-
teger arithmetic (UF+IA). The proposed algorithm sup-
ports, in particular, programs with nested loops.

The crux of the technique is a transformation of
uninterpreted functions (UFs) applications into integer
polynomials, which enables the precise summarization
of loops with UF applications using recurrences. The
equivalence checking algorithm then proceeds on loop-
free, integer only programs.

We implemented the proposed technique in CORK,
a tool that automatically verifies the correctness of com-
piler optimizations, and we show that it can prove more
optimizations correct than state-of-the-art techniques.

1 Introduction

Proving equivalence of programs has several important
applications, including, but not limited to, algorithm
recognition [3], regression checking [19, 27, 42], compiler
optimization verification [23, 34, 41] and validation [55,
58,66,70,73,75], and information flow proofs [6, 69].

The objective of algorithm recognition is to identify
known algorithms (such as a sorting algorithm, or even

a specific algorithm like quicksort) out of large and com-
plex programs. This can be useful, for example, to im-
prove code comprehension and for automatic documen-
tation generation. Algorithm recognition can be accom-
plished by searching for an equivalent algorithm in a
database.

Regression verification aims at tracking the func-
tional differences in a program in each code change. The
idea is that a tool that performs regression verification
can pinpoint the parts of the program where the seman-
tics were changed since the previous code revision, so
that the developer can manually confirm if those were
the intended changes. Additionally, these tools can help
the developer confirm if some code refactoring or manual
optimization preserved the semantics or not.

Compiler optimization verification consists in veri-
fying that a given optimization is semantics preserving
for all allowed code inputs, i.e., that the original and
optimized code templates are equivalent. Optimization
validation verifies that an optimization ran correctly by
checking the original and optimized pieces of code for
equivalence (after the optimization was run).

In the domain of information flow, proofs for the non-
existence of information leaks can be accomplished by
establishing the equivalence of the program with itself
(self-composition). Since the programs have some asso-
ciated non-determinism (the private information), a pro-
gram will not be equivalent to itself if some of the non-
determinism may be observable (meaning that it may
leak secure information).

Uninterpreted function symbols (UFs) are frequently
used in software verification tasks, including in the ap-
plications just described. UFs are quite appealing be-
cause they allow certain details of the programs to be
abstracted out by replacing with UFs the parts whose
specifics are irrelevant to the proof being done.

Despite being an important area with several appli-
cations, state-of-the-art software verification tools, such
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as Blast [37, 38], CPAchecker [11], Duality [51],
HSF [30], Slam [4], and UFO [2], are unable to prove
equivalence of most programs containing loops. These
tools are usually not able to automatically derive suf-
ficiently strong loop invariants to complete equivalence
proofs of looping programs, even when limited to the the-
ory of integer arithmetic, let alone the combined theory
of uninterpreted function symbols and integer arithmetic
(UF+IA).

In this paper, we present, to the best of our knowl-
edge, the first semi-algorithm for automatically prov-
ing partial equivalence of programs consisting of integer
arithmetic operations and applications of UFs. The pro-
posed algorithm is applicable, in particular, to programs
containing nested loops.

The algorithm works as follows. Applications of
UFs are first rewritten to integer arithmetic expressions
(polynomials over the inputs of the applications), and
then our equivalence checking algorithm works on purely
integer manipulating loop-free programs. Loops are sum-
marized using recurrences, for which we compute the
closed-form solution. The provably correct conversion of
UF applications to integer expressions makes possible
the representation of loops with UF applications using
recurrences. The algorithm then composes the two pro-
grams sequentially and checks the resulting program for
safety.

The proposed algorithm is sound, but necessarily in-
complete since it is parameterized by a method for com-
puting closed forms of recurrences, which is known to be
an undecidable problem.

We have implemented the proposed algorithm in
CORK, a tool that verifies the correctness of compiler
optimizations, and we show that CORK can prove more
optimizations correct than state-of-the-art techniques.

This paper extends the work presented at the Inter-
national SPIN Symposium on Model Checking of Soft-
ware 2013 [47].

The rest of the paper is organized as follows. Sec-
tion 2 gives an intuition of how our algorithm proves the
equivalence of programs through a simple example. Sec-
tion 3 presents the program model that we consider and
gives preliminary definitions. Section 4 describes our al-
gorithm for automatic partial equivalence checking of
programs over the UF+IA theory. Section 5 presents
CORK, a tool that verifies the correctness of compiler
optimizations automatically, and provides an evaluation
on how CORK compares with PEC [41], a state-of-the-
art tool for compiler optimization verification. Section 6
presents the related work, and Section 7 concludes.

2 Illustrative Example

We illustrate our algorithm for program equivalence
checking on a simple example. Figure 1 shows two equiv-

i := 0
while i < N do
k := f(k, i)
i := i+ 1

i := N
while i ≥ 1 do
k := f(k, N − i)
i := i− 1

if N ≤ 0 then
i := 0

else
i := N

Fig. 1. Example of two equivalent programs.

alent example programs, where f is a UF symbol. 1 Our
objective is to prove that these two programs are indeed
equivalent.

The first step of the algorithm is to do sequential
composition of the two programs, where the second pro-
gram is renamed to operate over a distinct set of vari-
ables from the first. We then add an assertion at the end
of the composed program to verify that the value of the
corresponding variables of the two programs are equal
when the programs terminate. Similarly, we assume that
the corresponding variables of the two programs have the
same value at the beginning of the composed program.
The resulting composed program can be seen in Figure 2.

Now if we prove that the composed program is safe,
i.e., that the condition of the assert command is true for
all inputs, then we have proved that the two input pro-
grams are equivalent. However, state-of-the-art software
verification tools are not able to verify the correctness
of the program of Figure 2, since it requires complex
invariants to be synthesized.

We now show how our algorithm proceeds.
The second step of the algorithm is to replace ap-

plications of uninterpreted functions (UFs) with expres-
sions over integers. In the left program, we replace the
UF application with the following expression (a polyno-
mial of degree one on k and i):

a× k + b× i+ c

where a, b, and c are fresh variables not occurring in
the input programs, and are associated with this specific
UF symbol. Other UF symbols occurring in the program
would have different fresh variables associated with each
input parameter. Similarly, for the UF application of the
right program we obtain:

a× k̄ + b× (N̄ − ī) + c

Intuitively, these expressions (polynomials) have a
unique value for each set of UF symbol and input pa-
rameters (since variables a, b, and c are fresh). There-
fore, no other sequence of commands can always produce

1 As an anecdote, when developing this example, we forgot the if
command in the program on the right. Fortunately, our prototype
quickly pointed out our mistake (of different values of i at the end
of the programs when the loops do not execute).
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assume i = ī ∧ k = k̄ ∧ N = N̄

i := 0
if i < N then
while i < N do
k := f(k, i)
i := i+ 1

ī := N̄
while ī ≥ 1 do
k̄ := f(k̄, N̄ − ī)
ī := ī− 1

if N̄ ≤ 0 then
ī := 0

else
ī := N̄

assert i = ī ∧ k = k̄ ∧ N = N̄

Fig. 2. Sequential composition of the programs of Figure 1. The
program on the right was renamed, so that each variable v becomes
v̄.

the same value without doing the same UF application
with the same inputs, meaning that with this abstrac-
tion we do not lose information necessary for the safety
proof. This is because there always exists an assignment
to fresh variables a, b, and c that leads to different re-
sults for different UF applications, which would therefore
violate the assertion.

This transformation is closely related to polynomial
interpolation, which consists in determining a polyno-
mial of a certain degree that passes through a given set
of points.

As we shall see later, the degree of the polynomials
that replace UF applications is not always one. We give
a lower bound for this degree in Section 4.2.2.

The third step that the algorithm performs is sum-
marizing and subsequently removing the loops. This is
accomplished by replacing each loop with a set of as-
signments to the variables modified in the loop. The ex-
pressions assigned to each variable are expressed over
the closed-form solution of a system of recurrences that
summarizes the loop precisely.

For the left program, we obtain the following system
of recurrences:

Ri(n) = Ri(n− 1) + 1

Ri(0) = 0

Rk(n) = a×Rk(n− 1) + b×Ri(n− 1) + c

Rk(0) = k0

where n represents the loop iteration number, and k0

is the (arbitrary) value of k when the program starts
(required since k is not initialized before its first usage).

assume i = ī ∧ k = k̄ ∧ N = N̄

i := 0
if i < N then

assume Ri(n− 1) < N ∧ Ri(n) ≥ N
k := Rk(n)
i := Ri(n)

ī := N̄
if ī ≥ 1 then

assume Rī(n̄− 1) ≥ 1 ∧ Rī(n̄) < 1
k̄ := Rk̄(n̄)
ī := Rī(n̄)

if N̄ ≤ 0 then
ī := 0

else
ī := N̄

assert i = ī ∧ k = k̄ ∧ N = N̄

Fig. 3. Program of Figure 2 after removing the loops and the UF
applications.

A recurrence for N is not needed, since it is not modified
in the loop.

The recurrence Rx(y) represents the value of variable
x at iteration number y. For example, the recurrence
Ri(n) defined previously means that the value of i in any
given iteration is equal to the value of i in the previous
iteration plus one. Moreover, before the loop starts, i has
the value zero.

Similarly, for the right program we obtain the follow-
ing system of recurrences:

Rī(n) = Rī(n− 1)− 1

Rī(0) = N̄

Rk̄(n) = a×Rk̄(n− 1) + b× (N̄ −Rī(n− 1)) + c

Rk̄(0) = k0

Figure 3 shows the programs of Figure 2 after both
transformations (elimination of loops and UF applica-
tions) have been applied. The references to recurrences
were not replaced with their closed-form solutions to
avoid cluttering the example.

The assume command ensures that its input
boolean expression is satisfiable, or the program exe-
cution is blocked otherwise. We use this command to
implicitly compute the trip count of loops.

Intuitively, if m is the number of iterations performed
by a loop, in the iterations numbered 0 . . . (m − 1) the
loop guard is true, and it is false in the following iteration
(m). Therefore, m is the first iteration when the loop
guard becomes false.

After the assume command in the example is eval-
uated, the value of n is the number of times that the
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corresponding loop would have been executed and there-
fore Rx(n) represents the value of the variable x after the
loop terminates.

The expression used in this example to compute the
trip count is correct only for linear loop conditions, since
in that case there is only one solution for the specified
expression. For non-linear loop conditions, we need to
compute the minimum positive n that satisfies the ex-
pression, which can be accomplished for instance using
optimizing solvers or with multiple calls to regular con-
straint solvers.

We can now compute the closed-form solution of the
previously given systems of recurrences. For the left pro-
gram we obtain the following solution (computed by
Wolfram Mathematica 8):

Ri(n) = n

Rk(n) =
b (an − an+ n− 1)

(a− 1)2
+
an((a− 1)k0 + c)− c

a− 1

For the right program, the solution for Rk̄(n) is equal
to Rk(n) of the left program, and for Rī is:

Rī(n) = N̄ − n

The fourth and final step of the algorithm is to prove
that the composed program after the described transfor-
mations (which is now only over integer arithmetic and
loop-free) is correct.

To prove program safety, we can use standard soft-
ware verification techniques (e.g., software model check-
ing [40]). Since the number of control-flow paths of the
composed programs is always finite (as we remove the
loops), we can use a simple algorithm that enumerates
all paths and checks if the assertion is violated in any of
them.

3 Program Model

We assume that programs are specified in the WHILE
language, whose syntax is given in Figure 4. Expressions
are side-effect free and are over the combined theory of
uninterpreted function symbols and integer arithmetic
(UF+IA). The evaluation of expressions is parameter-
ized on an interpretation for each UF symbol.

For the sake of ease of reading, in the examples given
throughout this paper, we relax the syntax of expressions
(e.g., to accept more operators than ≤), but those exam-
ples can be trivially converted to the WHILE language
we present. Additionally, we use two additional com-
mands, assume and assert, as syntactic sugar, which
are defined as follows:

assume b ≡ if b then skip else (while 0 ≤ 0 do skip)

assert b ≡ if b then skip else abort

Let σ be a program state, which is a map from pro-
gram variables to integers and from UF symbols to maps

e ::= n | v | e1 ⊕ e2 | f(e1, . . . , en)

b ::= e ≤ 0 | b1 ⊗ b2
c ::= skip | v := e | c1 ; c2 | if b then c1 else c2

| while b do c1 | assume b | assert b | abort

Fig. 4. WHILE language syntax. n is an integer number, v is a
variable name, f is an uninterpreted function symbol, ⊕ is a binary
operator over integer expressions (e.g., +, −), and ⊗ is a binary
operator over boolean expressions (e.g., ∧, ∨).

from tuples of integers (of the same arity as the func-
tion) to integers (an interpretation of the UFs). Let
σ(v) be the value of variable v in program state σ. Let
σ(f)(v1, . . . , vn) be the value of the interpretation of the
UF symbol f in σ applied to v1, . . . , vn. This notation
is extended for expressions, such that σ(e) is the value
of expression e with each variable evaluated in σ. Let
σ[v 7→ n] be a program state that is identical to state σ,
except for the value of variable v, which is n. Let σ0 be
the initial state of an execution of a program. We have
that σ0(v) = v0 and σ0(f) = f0 for each variable v and
UF symbol f used in the program, with fresh variables
v0 and arbitrary maps f0.

A configuration 〈c, σ〉 is a pair where c is a command
and σ is a state. Let 〈c, σ〉 → 〈c′, σ′〉 be the reduction
of the configuration 〈c, σ〉 to the configuration 〈c′, σ′〉
in one step. Let 〈c, σ〉 → σ′ be the reduction in one
step of the configuration 〈c, σ〉 to the state σ′ when
there are no further commands left to execute. Finally,
let 〈c, σ〉 →∗ σ′ be the reduction in one or more steps
of the configuration 〈c, σ〉 to the state σ′.

The operational semantics of the commands of the
WHILE language is shown in Figure 5. The command
abort is irreducible, and therefore there is no corre-
sponding reduction rule for it.

A program P (a command) is said to be safe iff there
is no initial state σ0 such that P terminates in an irre-
ducible command, i.e., P is safe iff

¬∃σ0 : 〈P, σ0〉 →∗ 〈abort, σ′〉

Let Vars(P) be the set of variables of program P.
A variable v is fresh in program P if v /∈ Vars(P). Let
Out(P) ⊆ Vars(P) be the set of output observable vari-
ables of program P (defined by the user). Let σ ↓ V be
the projection of state σ over the set of variables V and
let σ ↓ Out(P) be the observable state of σ of program
P.

Two programs are considered partially equivalent iff
starting in the same arbitrary state, they terminate in
the same observable state for all possible UF interpre-
tations, i.e., P1 and P2 are partially equivalent iff the
following holds (with V = Out(P1) = Out(P2)):

〈P1, σ0〉 →∗ σ1 ∧ 〈P2, σ0〉 →∗ σ2 =⇒ σ1 ↓ V = σ2 ↓ V
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〈skip, σ〉 → σ 〈v := e, σ〉 → σ[v 7→ σ(e)]

〈c1, σ〉 → 〈c′1, σ′〉
〈c1 ; c2, σ〉 → 〈c′1 ; c2, σ′〉

〈c1, σ〉 → σ′

〈c1 ; c2, σ〉 → 〈c2, σ′〉

〈abort ; c, σ〉 → 〈abort, σ〉

σ(b) = true

〈if b then c1 else c2, σ〉 → 〈c1, σ〉

σ(b) = false

〈if b then c1 else c2, σ〉 → 〈c2, σ〉

σ(b) = true

〈while b do c, σ〉 → 〈c ; while b do c, σ〉

σ(b) = false

〈while b do c, σ〉 → σ

Fig. 5. Operational semantics of the WHILE language.

4 Program Equivalence Checking

In this section, we present the new algorithm to check if
two programs over the combined theory of uninterpreted
function symbols and integer arithmetic (UF+IA) are
partially equivalent.

4.1 Restrictions

We impose the following restrictions on the programs
that our equivalence checking algorithm can handle:

1. UFs must have exactly one output parameter.
2. There can be no branching (i.e., if statements) inside

loops. Nested loops, however, are allowed.
3. The trip count of inner loops may not depend on the

outer loops, i.e., the number of times that inner loops
iterate is constant relative to outer loops.

4. Loop conditions cannot include UF applications nor
depend on variables whose value may depend directly
or indirectly on the evaluation of an UF application.

Restriction 1 can be lifted by splitting UFs with more
than one output into newly created UFs (one per out-
put).

Restriction 2 can be relaxed by allowing branching
conditions that always evaluate to the same value in all
loop iterations. In that case, the program can be rewrit-
ten to move the branches out of the loop (transforma-
tion commonly known as loop unswitching [1]). Simi-
larly, phase-change loops can be rewritten as multiple
loops, using, e.g., splitter predicates [64].

We speculate that Restriction 4 could be lifted, and
give a brief discussion in Appendix A.

4.2 Algorithm

The algorithm has four steps:

1. Sequential composition of the two programs.
2. Eliminate UF applications.
3. Replace loops with recurrences.
4. Check the correctness of the resulting program.

Applications of UFs are abstracted using polynomials
in order to obtain programs with integer operations only.
This allows us to compute the closed-form of loops using
recurrences.

Although our algorithm is sound and relatively com-
plete (under the stated restrictions and for certain vari-
able domains), computing the closed-form solution of
recurrences is undecidable, and therefore the overall
method is incomplete. A thorough discussion on the
completeness of the algorithm is given in Appendix A.

In the following sections, we describe each step of the
algorithm separately.

4.2.1 Sequential Composition

The first step of the algorithm is to do the sequential
composition of the two input programs that we would
like to check for equivalence. The second program is re-
named so that it operates over a different set of variables
from the first.

Let P1 and P2 be the two input programs. The com-
posed program is as follows.

assume ∀v ∈ Vars(P1) ∩ Vars(P2) : v = v̄

P1

P̄2

assert ∀v ∈ Out(P1) : v = v̄

Program P̄2 is the same as the program P2, but where
each variable v was renamed to v̄. Moreover, we assume
that Out(P1) = Out(P2).

4.2.2 Eliminate UF applications

The second step of the algorithm is to eliminate UF
applications. This is accomplished by replacing each
UF application with a polynomial over its inputs. This
rewriting must only preserve program safety (i.e., the
program is safe iff the rewritten program is safe). The
program transformation T shown in Figure 6 implements
such a replacement.

The polynomial p (f, e1, . . . , en) can be defined in
multiple ways in order to accomplish our goal of preserv-
ing safety. For the domain of rationals, reals or complex
numbers, we can use a standard polynomial usually used
to interpolate functions with multiple inputs [25, 56],
which is as follows: ∑

α·1≤d

CαX
α
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T(e) =


n if e = n

v if e = v

T(e1)⊕ T(e2) if e = e1 ⊕ e2

p (f,T(e1), . . . ,T(en)) if e = f(e1, . . . , en)

T(b) =

{
T(e) ≤ 0 if b = e ≤ 0

T(b1)⊗ T(b2) if b = b1 ⊗ b2

T(c) =



skip if c = skip

v := T(e) if c = v := e

T(c1) ; T(c2) if c = c1 ; c2

if T(b) then T(c1) else T(c2) if c = if b then c1

else c2

while T(b) do T(c1) if c = while b do c1

abort if c = abort

Fig. 6. Definition of the program transformation T.

where C =
(
f1 · · · fm

)
is an m-tuple containing vari-

ables fi associated with the given UF symbol f , X =(
e1 · · · en

)
is an n-tuple with the input values of

the given UF application, the exponent vector α =(
α1 · · · αn

)
is an ordered partition with nonnegative en-

tries, and α·1 =
∑n
i=0 αi is the usual vector dot product.

Xα =
∏n
i=1X

αi
i is a monomial of degree

∑n
i=0 αi, with

Xi = ei, and Cα being the element of C corresponding
to α.

This summation produces a polynomial where each
term (a monomial) has a degree up to d. The degree of
a monomial is the sum of the exponents of its variables.
For example, x3 and x y2 both have degree three. Poly-
nomial p is, therefore, a summation of all combinations
of monomials of degree up to d with n variables (the
number of inputs to the UF application). For example,
if we have d = 3, p (f, x, y) would be equal to:

f1 x
3 + f2 y

3 + f3 x
2 y + f4 x y

2 + f5 x
2 + f6 y

2+

f7 x y + f8 x+ f9 y + f10

The maximum degree d of the monomials is the
smallest nonnegative integer that satisfies the following
constraint:

u(f) ≤
(
n+ d

n

)
where

(
n
k

)
=

n!

k! (n− k)!
is the binomial coefficient. We

use m =
(
n+d
n

)
to denote the number of monomials of p.

A discussion of the presented polynomial and of al-
ternatives for p (f, e1, . . . , en) for other domains is given
in Appendix B.

The value of u(f) is the maximum number of times
that the given uninterpreted function f is possibly ap-
plied with a set of distinct values in each and every static

program path. Only function applications whose value is
possibly used in a boolean expression need to be consid-
ered. Function applications appearing in a loop body are
only counted once.

Two UF applications are equivalent iff they are of
the same UF symbol and have the same input values,
for all possible program input. Transformation T cap-
tures this information precisely by replacing each UF
application with a polynomial over the inputs of the ap-
plication. Each UF symbol is assigned a set of fresh vari-
ables fi that is used only by applications of that symbol.
Therefore, and together with results from the domain of
polynomial interpolation (shown in Appendix A), we can
guarantee that the value of an UF application cannot be
reproduced by any sequence of commands for all inputs.

For example, the following boolean expression

f(x, y) = 0 ∧ f(x, z) = 3 ∧ f(w, z) = 1 ∧ f(2, 3) = 0 ∧
g(x) ≤ 0

is translated to (assuming no more applications of f nor
g in the rest of the program):

f1 x
2 + f2 y

2 + f3 x y + f4 x+ f5 y + f6 = 0 ∧
f1 x

2 + f2 z
2 + f3 x z + f4 x+ f5 z + f6 = 3 ∧

f1 w
2 + f2 z

2 + f3 w z + f4 w + f5 z + f6 = 1 ∧
22 f1 + 32 f2 + 6 f3 + 2 f4 + 3 f5 + f6 = 0 ∧
g1 ≤ 0 ∧

where all fi and g1 are fresh variables. These variables
are never written by the program, and are only read
by transformed expressions that originally contained the
same UF symbols (f and/or g).

In this expression we have four applications of f with
(possibly) different input parameters. Therefore, we have
u(f) = 4, and also n = 2 (since f has two input param-
eters). The smallest d such that 4 ≤

(
2+d

2

)
is d = 2,

and so each polynomial has six terms (m =
(

4
2

)
= 6).

The applications of the uninterpreted function f were,
consequently, transformed into summations of all the six
monomials of two variables of degree up to two.

Computing the value of u(f) as defined is hard (and
is in fact undecidable in general), and thus may require
prior static analysis. This value can, however, be safely
over-approximated by the number of syntactic occur-
rences of f in the whole program, at the expense of
generating more complex expressions.

For example, the optimal value for u in the following
program excerpt is u(f) = 3 (assuming no other UF
applications in the rest of the program). Although there
are four applications of f with possibly distinct input
values, only up to three applications are ever statically
encountered and used in a boolean expression in a single
path. Moreover, the application of f in the loop body is
counted only once in u(f), despite that that application
may appear multiple times in a path in which the loop
is traversed more than once.
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while i < n do
k := 2× k
j := 0
while j < m do
k := k + j
j := j + 1

i := i+ 1

Rj(x) = Rj(x− 1) + 1

Rj(0) = 0

Rk(x) = Rk(x− 1) +Rj(x− 1)

Rk(0) = 2Vk(y − 1)

Vi(y) = Vi(y − 1) + 1

Vi(0) = i0

Vk(y) = Rk(x)

Vk(0) = k0

Fig. 7. An example program and the corresponding system of
recurrences that summarizes the two loops, where Rj and Rk rep-
resent the behavior of the inner loop on the variables j and k,
respectively, and Vi and Vk represent the outer loop.

if . . . then
j := f(x)

else
k := f(y)

while . . . do
l := f(l)

if f(z) ≤ 0 ∧ j ≤ 0 ∧ k ≤ 0 ∧ l ≤ 0 then
. . .

The proof of soundness and completeness of transfor-
mation T, i.e., that program P is safe iff program T(P)
is safe is given in Appendix A.

4.2.3 Replace loops with recurrences

The third step of the algorithm is to eliminate loops, by
replacing each loop with a system of recurrences. The
transformation is carried out as follows. Each variable
that is assigned in the loop gets a recurrence over a newly
introduced variable that represents the loop trip count.
For nested loops, the initial value of a recurrence in an
inner loop is the value of the recurrence for the previous
iteration of the outer loop.

An example program and its system of recurrences
is shown in Figure 7. The recurrences Rv(n) and Vv(n)
represent the value of variable v at iteration n of the
inner loop and the outer loop, respectively. For example,
the value of variable k in the iteration x of the inner loop,
Rk(x), is equal to the sum of the values of variables k
and j of the previous (inner loop) iteration. The value
of k in the beginning of the first inner loop iteration,
Rk(0), is equal to twice the value of k in the previous
outer loop iteration.

The closed-form solution for the system of recur-
rences is the following:

Rj(x) = x Rk(x) =
4Vk(y − 1) + x2 − x

2

Vi(y) = i0 + y Vk(y) = k0 2y +

(
x2 − x

)
(2y − 1)

2

We note that while the solution of Rk(x) still includes
a reference to a recurrence — Vk(y−1) — it is only used
to compute the solution of Vk(y) and it is never used
directly by the next steps of the algorithm. We only need
the value of k after the outer loop terminates, which is
represented by Vk(y).

After computing the closed-form solution for the sys-
tem of recurrences, each loop of the form “while b do c”
is replaced with the following code:

if b then
assume σn−1(b) ∧ σn(¬b)
v := σn(v)

else
assume n = 0

The fresh variable n represents the number of itera-
tions performed by the loop. State σn maps each variable
to the closed-form solution of its corresponding recur-
rence at iteration n, or to itself if the variable is not
modified in the loop body c. Variable v ranges over all
variables that are possibly modified in the loop body. For
the previous example, we have for the inner loop that,
e.g., σx(j) = Rj(x) = x and σx(n) = n.

Intuitively, a loop executes n times if the loop guard
is true for the first n iterations (iterations 0 . . . (n − 1))
and false in the following iteration (iteration n). The
number of iterations is implicitly computed when the
assume command of the true branch is evaluated. Its
expression states that the loop guard of iteration n − 1
should be true, and that at iteration n the guard should
be false instead.

We note that there can be multiple solutions for the
expression given to the assume command if the loop
guard is non-linear. In this case, the number of loop it-
erations is the smallest positive n that makes the formula
satisfiable. Computing the smallest n can be achieved,
for example, by using an optimizing solver (e.g., [45]) or
by doing multiple calls to an SMT solver. The condi-
tion for non-linear guards can also be expressed directly
using a quantified formula (with a single quantifier al-
ternation).

For the example in Figure 7, the program after re-
moving the loops is shown in Figure 8. The command
“assume y = 0” at the end can be removed as an opti-
mization, since there are no further uses of y afterward.
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if i < n then
assume Vi(y − 1) < n ∧ Vi(y) ≥ n
j := 0
if j < m then

assume Rj(x− 1) < m ∧ Rj(x) ≥ m
j := Rj(x)

else
assume x = 0

k := Vk(y)
i := Vi(y)

else
assume y = 0

Fig. 8. Program of Figure 7 after replacing the loops with a set of
assignments over the system of recurrences including Vi(n), Vk(n),
and Rj(n).

4.2.4 Safety Checking

The fourth and final step of the algorithm is to prove
the resulting composed program correct. If the composed
program is safe, i.e., if the condition of the assert com-
mand is true for all inputs, then the two original pro-
grams are partially equivalent.

To prove program safety, we can use standard soft-
ware verification techniques (e.g., model checking [40]).
Since the number of paths is finite, we can also use an
algorithm that enumerates all paths and tests if any of
those makes the condition of the assert command falsi-
fiable.

5 Verification of Compiler Optimizations

To evaluate the proposed algorithm, we implemented a
prototype to prove the correctness of compiler optimiza-
tions. This is an important topic, since all mainstream
compilers were shown recently to have several bugs in
the optimization passes [43,72]. Moreover, if the compiler
is not proved correct, properties verified on the source-
code level of a program are not carried to the binary
code, since the compiler may introduce bugs during the
translation process.

5.1 From Compiler Optimizations to Program
Equivalence

We specify a compiler optimization as a transforma-
tion function from a source template program to a tar-
get template program. These template programs can be
modeled as UF+IA programs, where UFs represent arbi-
trary statements, expressions, or conditions that should
be matched within a program under optimization.

We show an example optimization (loop unrolling)
in Figure 9. This optimization transforms a loop into a
new loop that performs only half of the iterations of the

while I < N do
S
I := I + 1

⇒

while (I + 1) < N do
S
I := I + 1
S
I := I + 1

if I < N then
S
I := I + 1

Fig. 9. Loop unrolling: the source template is on the left, and the
transformed template on the right. Template statement S cannot
modify template variables I and N .

original loop, but where each iteration of the new loop
performs twice the work of an iteration of the original
loop.

The template statement S is a placeholder for an ar-
bitrary statement (e.g., variable assignments, function
calls, or other loops) that may be present in a loop under
optimization. Template variables I and N are placehold-
ers for arbitrary program variables. The transformation
function states how each template statement/expression
is transformed (e.g., moved, duplicated, eliminated) to
produce the optimized program.

As an example, we apply the loop unrolling opti-
mization to the following program.

while i < n do
x := i+ 2
i := i+ 1

Running the optimization with S instantiated to
“x := i+ 2”, I to “i”, and N to “n” yields the following
program:

while i < n do
x := i+ 2
i := i+ 1
x := i+ 2
i := i+ 1

if i < n then
x := i+ 2
i := i+ 1

To verify a compiler optimization correct, we split the
transformation function into two programs (the source
and target templates), and then we convert the template
programs into UF+IA programs. Finally, we use the pro-
posed equivalence checking algorithm to prove that the
source and target templates are equivalent, which im-
plies that the optimization is correct.

Preconditions of optimizations are specified as read
and write sets of the template statements/expressions,
which contain the variables that the template state-
ments/expressions may read and write, respectively. For
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example, the read set of S in loop unrolling is R(S) =
{c1, I,N}, and the write set is W (S) = {c1}, since the
precondition is that S cannot modify variables I and N .

The conversion of a template program to an UF+IA
program is done by replacing each template statement S
with a set of assignments of the following form:

v := Si(r1, . . . , rn)

where v ∈ W(S) and R(S) = {r1, . . . , rn}. Template ex-
pressions are replaced with a single UF application over
their read set.

In the loop unrolling example, S is replaced with a
single assignment (with S1 being a fresh UF symbol):

c1 := S1(c1, I,N)

Variable c1 is what we call a context variable. These
fresh variables ci represent the variables that are possibly
in scope where a template may be instantiated (possibly
none) and that do not appear in the template function.

In our example, c1 represents the effects of S on x.
While variable x does not appear explicitly in the trans-
formation function, S does indeed modify x in the ex-
ample instantiation.

At least one context variable is added to each pro-
gram. Moreover, the read and write sets of each template
statement must include at least one context variable,
unless the precondition of the optimization states that,
e.g., a given statement does not read any other variable
than x. Similarly, template expressions may read a vari-
able that is not present in the transformation function
(again, unless stated otherwise in the precondition), and
therefore their read set must include a context variable.

We may add more than one context variable to a
program to express certain preconditions over template
statements. For example, if a statement S is idempotent,
we have that R(S) ∩W (S) = ∅. Therefore, we have to
have at least two distinct context variables c1 and c2 to
have, e.g., R(S) = {c1} and W (S) = {c2} to state that S
cannot read a variable that it writes to, nor vice versa.

Similarly, to state that template statements S and
T commute, we have W (S) ∩ R(T) = W (T) ∩ R(S) =
W (S)∩W (T) = ∅. In this case, we also need at least two
distinct context variables.

5.2 Evaluation

We implemented a prototype named CORK2, which
stands for Compiler Optimization coRrectness checKer.
CORK is implemented in OCaml (with approximately
1,100 lines of code), and uses Wolfram Mathemat-
ica 8.0.4 for both constraint and recurrence solving.

CORK takes as input a transformation function in
the format of the example in Figure 9. CORK then de-
rives two programs over the UF+IA theory as described

2 Prototype and benchmarks available from
http://web.ist.utl.pt/nuno.lopes/cork/.

in the previous section, and subsequently checks if they
are equivalent. The equivalence check is done by enu-
merating each path of the composed program, since the
number of paths is finite and small, and then using Math-
ematica to check validity of the equivalence assertion. If
the equivalence check fails, CORK prints a counterex-
ample path.

CORK performs three optimizations to improve the
performance. First, CORK reduces the number of satis-
fiability queries issued to Mathematica by discharging it-
self equality tests of syntactically equal expressions. Sec-
ond, CORK performs equality propagation on the sat-
isfiability queries sent to Mathematica. Finally, CORK
checks the equality of program variables (arising from
the assert command at the end of the composed pro-
gram) one-by-one, instead of just one satisfiability query
per path. CORK then uses the established equalities in
the following queries. Moreover, variable equality checks
are ordered so that first are checked the induction vari-
ables, and the remaining variables are ordered by the
length of their value expressions. Establishing first the
equality of expressions involving induction variables im-
proves the performance significantly.

We ran CORK over a set of optimizations (mostly
loop-manipulating). The experiments were run on a ma-
chine running Linux 3.6.2 with an Intel Core 2 Duo
3.00 GHz CPU, and 4 GB of RAM. The results are shown
in Table 1.

We first note that the number of recurrence solving
queries is higher than expected (more than one per loop),
since we compute the recurrences per path and we do not
cache any information across paths. Optimizations that
do not manipulate loops explicitly do not generate any
recurrence.

We compare the results of CORK with the state-of-
the-art tool PEC [41]. Since PEC is not publicly avail-
able, we compare only with the published results.

The table is divided in four sets of optimizations (de-
scribed in, e.g., [1,52]). The first part is a set of optimiza-
tions that do not manipulate loops explicitly. These op-
timizations are trivially proven correct by both CORK
and PEC. The second part is a set of optimizations that
PEC can prove correct without the help of heuristics.
The third part is a set of optimizations that PEC can
only prove correct by using the permute heuristic [28,75],
since otherwise it could not find a bisimulation relation
automatically. The fourth and last part of the table con-
tains a set of optimizations that PEC cannot prove cor-
rect, since it cannot find a bisimulation automatically,
even with the permute heuristic. CORK, on the other
hand, is able to prove correct the loop strength reduction
and loop tiling optimizations. CORK fails to prove cor-
rect the loop flattening optimization, since Mathematica
could not finish the satisfiability check of a constraint
within the timeout of 15 minutes.

The execution times of PEC and CORK are within
the same order of magnitude, but CORK advances the
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Optimization PEC Queries Rec. Time

Code hoisting X 2 0 0.32s
Constant propagation X 0 0 0.33s
Copy propagation X 0 0 0.33s
If-conversion X 2 0 0.34s
Partial redundancy elim. X 2 0 0.34s

Loop inv. code motion X 7 5 3.48s
Loop peeling X 9 5 3.26s
Loop unrolling X 13 8 12.17s
Loop unswitching X 14 14 8.19s
Software pipelining X 9 5 8.02s

Loop fission Xp 10 12 23.45s
Loop fusion Xp 10 12 23.34s
Loop interchange Xp 15 24 29.30s
Loop reversal Xp 7 5 8.41s
Loop skewing Xp 16 24 8.50s

Loop flattening × — — T/O
Loop strength reduction × 6 4 5.63s
Loop tiling × 7 9 10.94s

Table 1. List of compiler optimizations [1,52], how PEC performs
(Xp means PEC needs the permute heuristic), the number of sat-
isfiability and recurrence solving queries issued to Mathematica,
and the time that CORK took to prove each optimization correct.

state-of-the-art by being able to prove correct more op-
timizations than PEC.

6 Related Work

Proving the equivalence of programs is known to be un-
decidable in general. However, there has been some ad-
vances over the last decades to solve the problem under
certain assumptions.

Several alternative approaches exist to prove the
equivalence of programs, namely manual or semi-
automated (with the help of an iterative theorem prover)
approaches, bisimulation relation synthesis, symbolic
execution, recurrence equivalence, and software model
checking based techniques (including invariant and in-
terpolant generation, loop trip counting, and so on).

Manual and Semi-Automated Proofs Relational
Hoare logic [8] is a proof system that enables the ver-
ification of equivalence between two programs. However,
the system only supports the verification of structurally
equivalent programs (while many optimizations do not
obey this constraint). Barthe et al. [5] lift some of the
restrictions of this work through the usage of product
programs. The set of possible verifiable transformations
is still dependent on the set of built-in proof rules.

Liang et al. [46] adapted relational Hoare logic to the
setting of concurrent programs. Proofs were mechanized
in the interactive theorem prover Coq [9].

Bisimulation Parameterized equivalence checking
(PEC [41,68]) is a technique to verify the correctness of

compiler optimizations automatically. It works by au-
tomatically finding a bisimulation relation [62] between
the original and the optimized template programs.
For structurally different loops, PEC relies on a set of
heuristics inspired in [28,75].

Recurrence Equivalence Barthou et al. [7] and
Shashidhar et al. [65] present different algorithms to
prove the equivalence of systems of affine recurrence
equations that are structurally similar.

Verdoolaege et al. [71] propose an algorithm to prove
the equivalence of integer affine programs where loops
are described as recurrences. The algorithm does not
compute the closed-form solution for the recurrences,
but instead uses widening to reach a fixed point. The
algorithm handles commutative operators by trying all
possible permutations.

Symbolic Execution Matsumoto et al. [49] and Per-
son et al. [57] present different techniques to detect dif-
ferences between two programs that are mostly equal.

Ramos and Engler [59] present an algorithm to
check for program equivalence automatically. The imple-
mented tool is based on KLEE [15] and can only prove
equivalence up to a bounded number of loop unrollings.

Software Verification and Invariant Synthesis
State-of-the-art software verification tools, such as
Blast [37, 38], CPAchecker [11], Duality [51],
HSF [30], Slam [4], and UFO [2], are unable to
prove equivalence of most programs containing loops,
since they are usually unable to automatically de-
rive sufficiently strong loop invariants to complete the
proof, even when limited to the theory of integer
arithmetic, let alone the combined theory of uninter-
preted function symbols and linear integer arithmetic
(UF+LIA). Similar problems have been faced by tech-
niques doing information flow proofs through program
self-composition [69].

Beyer et al. [10] present an algorithm to synthe-
size loop invariants over the UF+LIA theory, and Ry-
balchenko and Sofronie-Stokkermans [61] present an al-
gorithm to synthesize interpolants over the same theory.
McMillan [50] introduced an algorithm to generate inter-
polants from the unsatisfiability proofs of the Z3 SMT
solver [22]. Gulwani et al. [32] present a technique to
synthesize invariants based on constraint solving. How-
ever, the language of interpolants/invariants supported
by these algorithms is not able to express an unbounded
number of UF applications, which is often required to
prove equivalence of programs that have UF applications
inside loops.

Polynomial loop invariant generation techniques
(e.g., [14, 21, 53,60, 63]) can only generate non-linear in-
variants with bounded exponents. However, this is not
sufficient for the verification of the non-linear integer
programs generated by the algorithm proposed in this
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paper (after removing the UF applications), since these
programs often require loop invariants with unbounded
exponents (arising from, e.g., UF applications with self-
feedback). Other invariant synthesis techniques, such as
the ones based on abstract interpretation (e.g., [20]),
usually only support linear arithmetic.

Acceleration (e.g., [13, 18, 29, 39]) is a set of tech-
niques to summarize periodic relations (arising from,
e.g., loops) in a precise way. The resulting relation has
usually to be expressible either in Presburger arithmetic
or in an appropriate abstract domain. However, transi-
tive closures of loops arising from the verification of com-
piler optimizations are usually not expressible in Pres-
burger arithmetic.

Gupta et al. [35] present an algorithm to solve
recursion-free Horn clauses in the theory of UF+LIA.
Grebenshchikov et al. [30] extend this work to recursive
Horn clauses in order to support the verification of pro-
grams with loops and recursive functions. The interpo-
lation algorithm used by the corresponding tool suffers
from the same limitations as the others.

Gulwani and Tiwari [33] present an algorithm for
the verification of programs over the UF+LIA theory.
However, only equalities over UF applications are sup-
ported, and conditional branches are abstracted non-
deterministically, which is too weak for the application
of equivalence checking.

Blanc et al. [12] and Gulwani et al. [31] present algo-
rithms to compute symbolic bounds of loop trip counts.
However, the computed trip counts may not be suffi-
ciently precise for equivalence checking proofs.

Godlin and Strichman [26] propose a set of proof
rules to prove equivalence of programs and to prove mu-
tual termination using UFs to abstract recursive func-
tion calls. Loops are encoded as recursive functions.

The technique of Godlin and Strichman is later ex-
tended with the introduction of mutual summaries [36],
which consists in logical relations between the in-
put/output relation of the two implementations of each
function present in both programs under equivalence
checking.

Compiler Correctness Many approaches have been
proposed to improve the correctness of compilers. We
briefly present the ones we have not described yet.

CompCert [44] is a compiler that aims to provide
end-to-end correctness guarantees (from a program’s
source code down to the resulting binary). CompCert
was written from scratch with verification in mind, and
its correctness proofs are done in Coq. Vellvm [74] is a
Coq-based framework that enables the development and
verification of compiler optimizations for LLVM.

Translation validation (e.g., [28, 55,58,66,70,73,75])
is a technique for establishing the correctness of compiler
optimizations after the optimization was run by check-
ing the original and optimized programs for equivalence.
Namjoshi and Zuck [54] propose augmenting transforma-

tion functions so that they generate auxiliary invariants
to help the translation validation process, which other-
wise could fail to derive those invariants automatically.

Guo and Palsberg [34] present a bisimulation-based
technique to reason about the correctness of trace op-
timizations. Dissegna et al. [23] present a more general
framework to reason about the correctness of trace op-
timizations based on abstract interpretation.

PSyCO [48] is a tool that can automatically synthe-
size weakest preconditions of compiler optimizations in
the form of read and write sets as used in this paper.

7 Conclusion and Future Work

In this paper we presented, as far as we know, the first
semi-algorithm for the equivalence checking of looping
programs over the combined theory of uninterpreted
function symbols and integer arithmetic (UF+IA).

For evaluation purposes, we developed CORK, a tool
that proves the correctness of compiler optimizations,
which is based on the proposed equivalence checking al-
gorithm. CORK proves correct more optimizations than
other tools known as state-of-the-art.

In the future, we plan to study the precise charac-
terization of how the limitations of recurrence solving
algorithms reflect on the equivalence verification tasks
that the proposed algorithm can effectively handle, as
well as how to lift some of the restrictions of the algo-
rithm.
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A Proof of Soundness and Completeness

Let SP (σ) be a copy of state σ where the interpretation
of every uninterpreted function (UF) symbol is replaced
with values for variables fi used in Section 4.2.2. More-
over, the values for variables fi and the initial variables
values v0 are chosen such that for every boolean expres-
sion b appearing in program P, it is guaranteed that
σ(b) = SP (σ)(T(b)). The justification of the existence of
such an assignment is given in Theorem 1.

In this section, we use the term free variable to de-
note logic or program variables (depending on the con-
text) that are not constrained and therefore can take
any value. In particular, a free program variable is never
assigned to and cannot be constrained in any program
path.

Let Q, R, and C be, respectively, the set of rational,
real, and complex numbers.
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Lemma 1 (Solution for nested f(x)). For a func-
tion f(x) = an x

n + . . . + a1 x + a0, an arbitrary num-
ber of nested applications of f to x can take any value
in the codomain (R or C) if x and an are free, i.e.,
f(f(. . . f(x) . . .)) = b always has a solution for fixed
an−1, . . . , a0, b and free an and x.

Proof. The maximum degree of the polynomial given by
p = f(f(. . . f(x) . . .)) − b in x is nk, where k > 0 is the
number of applications of f . If n (the degree of x in f(x))
is odd, then nk will be odd as well. Therefore, if n is odd,
it follows from the intermediate value theorem [67] that
there always exists a value for x for arbitrary an, . . . , a0, b
such that p = 0.

The maximum degree of an in p is given by the follow-
ing recurrence: d(k) = nd(k − 1) + 1 and d(0) = 0. The

closed-form solution for this recurrence is d(k) =
nk − 1

n− 1
.

Now assume that n is even, since we already proved the
lemma for n odd. We can then conclude that d(k) is odd
for any nonnegative k, and therefore there exists an for
arbitrary an−1, . . . , a0, b, x such that p = 0. ut

Lemma 2 (Solution for conjunction of nested
f(x)). For a function f(x) = an x

n + . . . + a1 x + a0,
a conjunction of nested applications of f of the form
f(f(. . . f(x1) . . .)) = b1 ∧ . . . ∧ f(f(. . . f(xq) . . .)) = bq
is satisfiable if any of the following statements holds:

1. Coefficients ai range over C and at least q ≤ n + 1
of those are free.

2. Variables xi range over C and are free.
3. n is odd and variables xi range over R and are free.
4. q = 1 and an and x1 range over R and are free.

Proof. For condition 1, we note that there is at least
one free coefficient ai for each polynomial in the con-
junction. Then it follows from the fundamental theorem
of algebra [67] that it is always possible to find values for
the free ai that satisfy the equalities. Similar reasoning
apply for condition 2, where each equality can be solved
in order of its respective xi.

Conditions 3 and 4 follow directly from Lemma 1.
ut

We now state under which conditions the transforma-
tion T as given in Section 4.2.2 is sound and complete,
which we will use later to prove Theorems 1 and 2.

Definition 1. T is sound and complete if one of the
following statements holds:

1. There are no nested applications of UFs in loops and
program variables range over Q, R, or C.

2. Variables fi range over C.
3. There is only one nested UF application produced by

a loop, say f(f(. . . f(x) . . .)), with x being free, and
variables fi and x ranging over R.

4. u(f) is odd for all f appearing in nested applications
in loops, and the input to these applications are vari-
ables that are free and range over R.

We note that u(f) can always be arbitrarily increased
(to, e.g., become odd) if need be. Also, in order to guar-
antee soundness, program variables and polynomial co-
efficients can be changed to take values in larger domains
(say, convert from Z to R), by giving up on completeness.
With such a change, the algorithm remains sound, i.e., if
it proves that two programs are equivalent then they are.
However, losing completeness means that the algorithm
may fail to prove equivalence of two equivalent programs
because a larger variable domain may increase the set of
possible behaviors/outcomes of a program, which can
lead to the loss of equivalence.

Definition 2. We define statically implied equalities of
UF symbols as the set of all equalities involving appli-
cations of UFs that are implied by any static path in a
given program (e.g., f(x) = 3). Nested applications of
UFs arising from loops are not unfolded. For example,
for a program “while . . . do x := f(x)” and a path
that traverses the loop three times, we only consider the
equality x = f(f(f(x0))).

Theorem 1 (Existence of SP (σ0)). For every pro-
gram P respecting Definition 1, σ0 is a possible initial
state of P iff SP (σ0) also is.

Proof. If P does not contain any application of UF
symbols, then the statement is trivially correct, since
P = T(P) and therefore σ0 = SP (σ0).

Otherwise, we consider the set of statically implied
equalities of UF symbols. Let c be the conjunction of
the elements of said set that refer only to non-nested
UF applications, and r the conjunction of the remain-
ing elements (arbitrarily nested applications from loops).
Moreover, we trivially have that σ0(b) = σ0(c ∧ r).

We now assume that all UFs have only one input pa-
rameter and that there is only one UF symbol f . There-
fore, T(c) can be seen as a linear system Ax = b, where
A is a square matrix of size n× n with the powers 0 to
(n− 1) of the input parameters of the UF applications,
and x is a vector with fresh variables fi. Moreover, A is
a Vandermonde matrix [67].

For example, for c = f(x1) = b1 ∧ · · · ∧ f(xn) = bn,
T(c) results in the following linear system:1 x1

1 · · · xn−1
1

1
...

. . .
...

1 x1
n · · · xn−1

n


f1

...
fn

 =

b1...
bn


If xi 6= xj for all i 6= j, then c is satisfiable. More-

over, the lines and the columns of the coefficient matrix
A are linearly independent, which guarantees that the
system has a solution (by the unisolvence theorem [67]).
Therefore, T(c) is also satisfiable.

If there are i, j with i 6= j such that xi = xj , and c is
satisfiable, then bi = bj . In this case, the corresponding
system of T(c) has infinitely many solutions, and there-
fore T(c) is satisfiable as well.
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Finally, if c is unsatisfiable, then there are i, j with
i 6= j such that xi = xj and bi 6= bj . The linear system of
T(c) has no solution, and therefore T(c) is unsatisfiable
as well.

If c is unsatisfiable, then there is no interpretation
for the UF symbols that makes c be true, and therefore
we have σ0(c) = SP (σ0)(T(c)) = false. If c is satisfiable,
then σ(c) may or may not be true depending on the inter-
pretation of the UFs in σ0, but we are always guaranteed
to be able to find coefficients for SP (σ0) either way such
that σ0(c) = SP (σ0)(T(c)).

If c contains UFs symbols with more than one pa-
rameter, then the resulting polynomials in T(c) are more
complex. Similar reasoning can be done by using general-
ized versions of the unisolvence theorem for multivariate
polynomial interpolation (c.f., [25, 56]).

If c contains multiple UF symbols, the evaluation of
c can be split in multiple linear systems, one per symbol.

If r is empty, then the proof is completed.
Otherwise, let #c and #r be, respectively, the num-

ber of equalities in c and r. By definition of u, we have
for any f that #c+ #r ≤ u(f). Moreover, only the first
f1, . . . , f#c coefficients are defined by c, and the remain-
ing f#c+1, . . . , fu(f) remain free. Therefore, the proof fol-
lows immediately from Lemma 2.

For UFs with more than one input parameter,
Lemma 2 also applies by observing that the degree of
the polynomial obtained by nested applications is domi-
nated by the nested input variable and the coefficient of
that parameter. ut

From Theorem 1, it follows that if u(f) is odd, then
u(f) does not need to count with applications with free
variables as input. This fact can be used as an optimiza-
tion to reduce the degree of polynomials to the smallest
odd number that is greater than or equal to the number
of applications with non-free inputs.

Theorem 2 (Soundness and completeness of T).
Transformation T preserves safety of programs, i.e., for
any state σ0 and program P respecting Definition 1, the
following holds:

〈P, σ0〉 →∗ σ ⇐⇒ 〈T(P), SP (σ0)〉 →∗ σ′

Proof. The proof goes by structural induction on the
syntax of P.

The base cases are: P = skip, P = v := e, and
P = abort, which are all trivially correct.

For the induction step, we need to consider three
cases. As the induction hypothesis, assume that the the-
orem holds for commands c1 and c2.

For P = if b do c1 else c2, we have T(P) =
if T(b) do T(c1) else T(c2). By definition of SP (.), we
know that σ(b) = SP (σ)(T(b)) and therefore P reduces
to c1 (resp. c2) iff T(P) reduces to T(c1) (resp. T(c2)).

For P = while b do c1, we note that since b can-
not include nor depend on UF applications (per re-

striction 4 in Section 4.1), then T(b) = b, and there-
fore T(P) = while b do T(c1). Moreover, we have that
σ1(b) = σ′1(b) for every states σ1 and σ′1 resulting from
the reduction of c1 and T(c1), respectively, since b can-
not depend on the result of any UF symbol. Therefore
we are left to prove that 〈c1 ; . . . ; c1, σ0〉 →∗ σ iff
〈T(c1) ; . . . ; T(c1), SP (σ0)〉 →∗ σ′, which is covered in
the following case.

For P = c1 ; c2, assume that 〈c1, σ0〉 →∗ σ1 and
〈T(c1), SP (σ0)〉 →∗ σ′1. If SP (σ1) = σ′1, then the theo-
rem is trivially correct. Otherwise, and without loss of
generality, consider that SP (σ1) and σ′1 differ only in the
value of variable v because c1 contained an assignment
of the form v := f(x). Let c′2 be a copy of c2 where refer-
ences to v were replaced with f(x). Therefore, our proof
goal of 〈c2, σ1〉 →∗ σ2 ⇐⇒ 〈T(c2), σ′1〉 →∗ σ′2 is equiv-
alent to 〈c′2, σ1〉 →∗ σ′′2 ⇐⇒ 〈T(c′2), Sc

′
2(σ1)〉 →∗ σ′′′2 ,

which holds per the induction hypothesis. ut

We speculate, but leave the proof for future work,
that restriction 4 in Section 4.1 could be lifted alto-
gether, i.e., it may be possible to allow UFs in loop
guards. We believe this could be done by counting UF
symbols in loop guards twice when computing u(f) for
any symbol f . Intuitively, we may only need to interpo-
late the values of an UF symbol when the loop guard
flips (i.e., when in one iteration it was true and in the
following it became false).

B Discussion on Polynomial Interpolation

The polynomial for p (f, e1, . . . , en) given in Section 4.2.2
requires coefficients to range over the set of rational (Q),
real (R), or complex numbers (C). Therefore, for the
domain of integers (Z), it is unsound to use the given
polynomial, since in general there may not exist integer
values for variables fi such that Theorem 1 holds.

Integer-valued polynomials are polynomials with co-
efficients in some domain, whose value for every point
(or for every interpolating point) is an integer [16]. In
particular, it is possible to interpolate a set of points
using integer-valued polynomials with rational coeffi-
cients [17, 24]. However, these polynomials can only be
used if the verification tool used in the algorithm sup-
ports rational numbers and their combined operation
with integer variables from the remainder of the pro-
gram.

There is still ongoing research on interpolation by
integer-valued polynomials that may yield interesting re-
sults that could be of use for our algorithm. We leave as a
conjecture that the following polynomial can interpolate
any set of n+ 1 integer points:

f(x) =

n∑
i=0

⌊
ai x

i

bi

⌋
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where ai and bi are integer coefficients, and

⌊
x

y

⌋
is the

integer division. A drawback of this polynomial is that
solving recurrences with integer division is harder than
with, say, division in Q, because the function may be-
come discontinuous. Moreover, it is unclear whether it
would be possible to amend Theorem 1 for such a poly-
nomial.
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P. Rümmer. Accelerating interpolants. In Proc. of the
10th International Conference on Automated Technol-
ogy for Verification and Analysis. Springer Berlin Hei-
delberg, 2012.

40. R. Jhala and R. Majumdar. Software model checking.
ACM Comput. Surv., 41:21:1–21:54, Oct. 2009.

41. S. Kundu, Z. Tatlock, and S. Lerner. Proving optimiza-
tions correct using parameterized program equivalence.
In Proc. of the 2009 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. ACM,
New York, 2009.

42. S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and
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