
An SMT Encoding of LLVM’s Memory Model for
Bounded Translation Validation

Juneyoung Lee1, Dongjoo Kim1, Chung-Kil Hur1, and Nuno P. Lopes2

1 Seoul National University
2 Microsoft Research

Abstract. Several automatic verification tools have been recently devel-
oped to verify subsets of LLVM’s optimizations. However, none of these
tools has robust support to verify memory optimizations.
In this paper, we present the first SMT encoding of LLVM’s memory
model that 1) is sufficiently precise to validate all of LLVM’s intra-
procedural memory optimizations, and 2) enables bounded translation
validation of programs with up to hundreds of thousands of lines of code.
We implemented our new encoding in Alive2, a bounded translation val-
idation tool, and used it to uncover 21 new bugs in LLVM memory op-
timizations, 10 of which have been already fixed. We also found several
inconsistencies in LLVM IR’s official specification document (LangRef)
and fixed LLVM’s code and the document so they are in agreement.

1 Introduction

Ensuring that LLVM is correct is crucial for the safety and reliability of the
software ecosystem. There has been significant work towards this goal including,
e.g., formally specifying the semantics of the LLVM IR (intermediate represen-
tation). This entails describing precisely what each instruction does and how
it handles special cases such as integer overflows, division by zero, or derefer-
encing out-of-bounds pointers [8, 24, 26, 29, 47]. There has also been work on
automatic verification of classes of optimizations, such as peephole optimiza-
tions [25, 31], semi-automated proofs [48], translation validation [20, 35, 42, 44],
and fuzzing [23,46]. All this work uncovered several hundred bugs in LLVM.

While there has been great success in improving correctness of scalar opti-
mizations, current verification tools only support basic memory optimizations, if
any. Since memory operations can take a significant fraction of a program’s run
time, memory optimizations are very important for performance. The implemen-
tation of these optimizations and related pointer analyses tends to be complex,
which further justifies the investment in verifying them.

Verifying programs with memory operations is very challenging and it is hard
to scale automatic verification tools that handle these. The main issue lies with
pointer aliasing: which objects does a given memory operation access? Without
any prior information, a verifier must consider that each operation may load or
store from any live object (global variables and stack/heap allocations). This
creates a big case split for the underlying constraint solver to (attempt to) solve.

2 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

Since automatic verification of the source code of memory optimizations is
out of reach at the moment, we focus on bounded translation validation [30,
40] (BTV) instead. (Bounded) translation validation consists in verifying that
an optimization was correct for a particular input program (up to a bounded
unrolling of loops) rather than verifying its correctness for all input programs.

In this paper, we present the first SMT encoding of LLVM’s memory model [24]
that is precise enough to validate all of LLVM’s intraprocedural memory opti-
mizations. The design of the encoding was guided by practical insights of the
common aliasing cases in BTV to achieve better performance. For example, we
observed that in most cases we can cheaply infer whether a pointer aliases with
a locally-allocated or a global object (but not both). Therefore, our encoding
case-splits itself on this property rather than leaving that to the SMT solver, as
we can cheaply resolve the case split for over 95% of the cases.

The second contribution of this paper is a new semantics for heap allocation
for the verification of optimizations for real-world C/C++ programs. Although
LLVM’s memory model has a reasonable semantics for heap allocations [24], we
realized it was not suitable for verifying optimizations. In some programming
styles, the result of functions such as malloc is not checked against NULL and
the resulting pointer is dereferenced right away. Since malloc can return NULL
in some executions, we could end up proving that some undesirable optimiza-
tions were correct since the program triggers undefined behavior in at least one
execution. We propose a new semantics for heap allocations in this paper that
is better suited for the verification of optimizations.

The third contribution is the identification of approximations to the SMT
encoding such that it is still sufficiently precise to verify (and find bugs) in
LLVM’s memory optimizations. This is possible since for translation validation
we only need to be as precise as LLVM’s static analyses (e.g., in the encoding
of aliasing rules), and therefore we do not need to consider extremely precise
analyses nor arbitrary transformations. Compilers have limited reasoning power
by construction in order to keep compilation time reasonable.

We implemented our new SMT encoding of LLVM’s memory model in Alive2 [30],
a bounded translation validation tool for LLVM. We used Alive2 to find and re-
port 21 previously unknown bugs in LLVM memory optimizations, 10 of which
have already been fixed.

To summarize, the contributions of this paper are as follows.
1. The first SMT encoding of LLVM’s memory model that is precise enough to

verify all of LLVM’s intraprocedural memory optimizations.
2. A new semantics for heap allocations for the verification of optimizations of

real-world C/C++ programs (§5.1).
3. A set of approximations to the SMT encoding to further improve the perfor-

mance of verification without introducing false positives or false negatives in
practice (§9).

4. Thorough evaluation of LLVM’s memory model against LLVM’s implemen-
tation, which uncovered deviations from the model (§10.3).

5. Identification of 21 previously unknown bugs in LLVM. We present a few
examples in §10.1.

SMT Encoding of LLVM’s Memory Model for Bounded TV 3

2 Overview

Consider the functions below in C:3 a source (original) function on the left and
a target (optimized) function on the right. According to the semantics of high-
level languages, and also of LLVM IR, a pointer received as argument or a callee
cannot guess the address of a memory region allocated within a function. That
is, pointer q is not aliased with p, r, nor touched by g(p+1). Although the caller
of f may guess the address of q in practice, that behavior is excluded by the
language semantics because p’s object (provenance) cannot be a fresh one like q.
If p happens to alias q, accessing such pointer triggers undefined behavior (UB).

1 int f(int *p) {
2 int *q = malloc (4);
3 *q = 42;
4 int *r = g(p+1);
5 *r = 37;
6 return *q;
7 }

1′ int f(int *p) {
2′ // q removed
3′

4′ int *r = g(p+1);
5′ *r = 37;
6′ return 42;
7′ }

The provenance rules allow LLVM to forward the stored value in line 3 to line
6, and therefore line 6′ simply returns 42. As the value stored to *q is not used
anymore and pointer q does not escape, LLVM also removes the heap allocation.

Next we show how to verify this example. Note that we do not require the two
programs to be aligned; the example is aligned to make it easier to understand.

2.1 Verifying The Example Transformation

We start by defining two auxiliary functions that encode the effect of memory
operations on the program state. Let state S = (m,ub) be a pair, where m is a
memory and ub a boolean that tracks whether the program has already executed
UB or not. Let p be the accessed pointer, and v the stored value. The definition
of functions load and store is as follows:

load p S ::= (load(p, S.m) , (S.m, S.ub ∨ ¬ deref(p, sizeof(∗p), S.m)))

store p v S ::= (store(p, v, S.m) , S.ub ∨ ¬ deref(p, sizeof(∗p), S.m))

load returns a pair with the loaded value and the updated state, where ub
is further constrained to ensure that pointer p is dereferenceable for at least the
size of the loaded type. Similarly, store returns the updated state. The gray
boxes (· · ·) encode SMT expressions; we describe these in the next section.
1. Encoding the output states. Table 1 shows the state after executing each of
the programs’ lines. p, m0, and ub0 are SMT variables for the input pointer, and
function f caller’s memory and UB flag, respectively. The target’s corresponding
variables are primed. Meta variables are upper-cased and SMT variables are
lower-cased.
3 We use the syntax of C for many of the examples in this paper to make them easier
to read, even though we consider the semantics of LLVM IR.

4 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

Inputs: p,m0, ub0 # Inputs: p′,m′
0, ub

′
0

2 S1 := (m0, ub0) A1 := q is fresh 2′ -

3 S2 := store q 42 S1 3′ -

4
S3 := (mg, S2.ub ∨ ubg)

A2 := r is not aliased with q ∧ mg agrees with S2.m on q
4′ S′

1 := (m′
g, ub

′
0 ∨ ub′g)

5 S4 := store r 37 S3 5′ S′
2 := store r′ 37 S′

1

6 O := load q S4 6′ O′ := (42, S′
2)

Table 1. States and axioms after executing each of the lines of f.

On line 2, q is assigned a pointer to a new object (encoded in axiom A1). On
line 3, ‘*q = 42’ updates the state using store.

On line 4, the return value, output memory, and UB of g(p+1) are repre-
sented with fresh variables r, mg, and ubg, respectively. Axiom A2 encodes the
provenance rules: the return value cannot alias with locally non-escaped point-
ers (q) and only the remaining objects are modified. Line 4′ does not need these
axioms because there are no locally-allocated objects in the target function.

Finally, the outputs O and O′ are a pair of return value and state.
2. Relating the source and target’s states. To prove correctness of a trans-
formation, we must first establish refinement between the input states of the
source/target functions. Refinement (w) is used rather than equality because it
is allowed for the source’s caller to give less defined inputs than the target’s.

Ain := p w p′ ∧ m0 w m′
0 ∧ (ub′0 =⇒ ub0)

The inputs and outputs of function calls are also related using refinement.
For any pair of calls in the source and target functions, if the target’s inputs
refine those of the source, the target’s output also refines the source’s output.
The example only has one function call pair:

Acall :=
(
S2.m w m′

0 ∧ p+ 1 w p′ + 1 =⇒ mg w m′
g ∧ r w r′ ∧ (ub′g =⇒ ubg)

)
We can now state the correctness theorem for the example transformation.

For any input, if the axioms hold, the output of the target must refine that of
the source for some internal nondeterminism in the source (e.g., the address of
pointer q). Output is refined iff (i) the source triggers UB, or (ii) the target trig-
gers no UB, and the target’s return value and memory refine those of the source.

∀p, p′,m0,m
′
0, ub0, ub

′
0,mg,m

′
g, ubg, ub

′
g . ∃q . (A1 ∧A2 ∧Ain ∧Acall) =⇒ O w O′

2.2 Efficiently Encoding LLVM’s Memory Model and Refinement

We now present our key ideas for efficiently encoding LLVM’s memory model
and refinement (the gray boxes) in SMT, which is one of our main contributions.
1. Pointers. We represent a pointer as a pair (bid, o) of a block id (i.e., its
provenance) and an offset within, so that we can easily detect out-of-bound

SMT Encoding of LLVM’s Memory Model for Bounded TV 5

accesses: accessing (bid, o) in memory m triggers UB unless 0 ≤ o < m[bid].size,
from which deref((bid, o), sz,m) naturally follows.

2. Bounding the number of blocks. Our first observation is that we can safely
bound the number of memory blocks for bounded translation validation since
loops are unrolled for a fixed number of iterations. As a result, we can use a
(fixed-length) bit-vector to encode block ids.

For the example source function, four blocks are sufficient: three for pointers
p, q, r as they may all point to different blocks, and an extra to represent all the
other blocks that are not syntactically present but are accessible by function g.

For the sake of simplifying the example, we ignore that p, q, r may be null.
Our model does not make such assumption; we explain later how null is handled.
3. Aliasing rules. Several of the aliasing rules are encoded for free as we can
distinguish most blocks by construction. First, we use the most significant bit of
the block ids to distinguish local (1) from non-local (0) blocks. Second, we assign
constant ids whenever possible (e.g., global variables and stack allocations).

For the example source function, (without loss of generality) we set the block
ids of q, p and the extra block to 100(2), 000(2), and 011(2) (in binary format),
respectively. However, we cannot fix the block id of r and instead give the con-
straint that it should be either 000(2) or 001(2) since r may alias with p but not
with q. This establishes the alias constraints in A1 and A2 for free.
4. Memory accesses. In order to leverage the fact that each pointer may range
over a small number of blocks as seen above, we use one SMT array per block
(from an offset to a byte) instead of using a single global array (from a pointer
to a byte). For the latter, it becomes harder to exploit non-aliasing guarantees
since all stores to different blocks are grouped together.

For the example source function, m0 consists of four arrays m(100)
0 , m(000)

0 ,
m

(001)
0 , m(011)

0 for the four blocks. Then since q’s block id is 100(2), store q 42 S1

at line 3 only updates the array m(100)
0 , leaving the others unchanged. Similarly,

store r 2 S3 at line 5 only updates m(000)
0 and m(001)

0 using the SMT if-then-else
expression on r’s block id. Finally, load q S4 at line 6 reads from the updated
array at 100(2), thereby easily realizing that the read value is 42.

5. Refinement. The value/memory refinement w is defined based on a mapping
between source and target blocks, which we efficiently encode leveraging the
alignment information between source and target as much as possible (§7).

3 LLVM’s Memory Model

In this section, we give a brief introduction to LLVM’s memory model [24]. In
this paper we only consider logical pointers (i.e., integer-to-pointer casts are not
supported) and a single address space.
Memory Block A memory block is the unit of memory allocation: each stack or
global variable has a distinct block, and heap allocation functions like malloc
create a fresh block each time they are called. Each block is uniquely identified

6 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

with a non-negative integer (bid), and has associated properties, including size,
alignment, whether it can be written to, whether it is alive, allocation type (heap,
stack, global), physical address, and value.

Pointer. A pointer is defined as a triple (bid, off, attrs), where off is an offset
within the block bid, and attrs is a set of attributes that constrain dereference-
ability and which operations are allowed.

Pointer arithmetic operations (gep) only change the offset, with bid and attrs
being carried over. Unlike C, an offset is allowed to go out-of-bounds (OOB). Such
pointer, however, cannot be dereferenced like in C (triggers undefined behavior—
UB), but can be used for pointer comparisons for example.

LLVM supports several pointer attributes. For example, a readonly pointer
p cannot be used to store data. However, it is possible to use a non-readonly
pointer q to store data to the same location as p (provided the block is writable).
A nocapture pointer cannot escape from a function. For example, when a func-
tion returns, no global variable may have a nocapture pointer stored (otherwise
it is UB).

LLVM has three constant pointers. The null pointer is defined as (0, 0, ∅).
Block 0 is defined as zero sized and not alive. The undef4 pointer is defined
as (β, δ, ∅), with β, δ being fresh variables for each observation of the pointer.
There is also a poison5 pointer.

Instructions. We consider the following LLVM memory-related instructions:

– Memory access: load, store
– Memory allocation: malloc, calloc, realloc, alloca (stack allocation)
– Lifetime: start_lifetime (for stack blocks), free (stack/heap deallocation)
– Pointer-related: gep (pointer arithmetic), icmp (pointer comparison)
– Library functions: memcpy, memset, memcmp, strlen
– Others: ptrtoint (pointer-to-integer cast), call (function call).

Unsupported memory instructions are: integer-to-pointer casts, and atomic
and volatile memory accesses.

4 Encoding Memory Blocks and Pointers in SMT

We describe our new encoding of LLVM’s memory model in SMT over the next
few sections. We use the theories of UFs (uninterpreted functions), BVs (bit-
vectors), and arrays with lambdas [7], with first order quantification. Moreover,
we consider that the scope of verification is a single function without loops (or
where loops have been previously unrolled).
4 In LLVM, undef values are arbitrary values of a given type with the additional
property that they can yield a different value each time they are observed. undef
values can be replaced with any value of the same type, except poison values.

5 A poison value taints whole expression trees (e.g., poison + 1 = poison), and
branching on it is UB. Similarly, dereferencing a poison pointer is UB.

SMT Encoding of LLVM’s Memory Model for Bounded TV 7

4.1 Memory Blocks

Each memory block is assigned a distinct identifier (a bit-vector number). We
further split memory blocks into local and non-local. Local blocks are all those
that are allocated within the function under consideration, either on the stack
or the heap. Non-local blocks are the remaining ones, including global variables,
heap/stack allocations in callers and heap allocations in callees (stack allocations
in callees are not observable, since they are deallocated when the called function
returns, hence there is no need to consider them).

We use the most significant bit (MSB) to encode whether a block is local (1)
or non-local (0). This representation allows the null block to have bid = 0 and
be non-local. We refer to the short block id, or b̃id, to refer to bid without the
MSB. This is used in cases where it has already been established whether the
block is local or not. Example with 4-bit block ids:

int g; // bid(g) = 0001
void f(int *p) { // bid(p) = 0xyz (with xyz = arbitrary)

int a[2]; // bid(a) = 1000
int *q = malloc(4); // bid(q) = 1001

}

The separation of local and non-local block ids is an efficient way to encode
the constraint that pointers of these groups cannot alias with each other. In the
example above, argument p cannot alias with either a or q.

As we only consider functions without loops, block ids can be statically as-
signed for each allocation site.

4.2 Pointers

A pointer ptr = (bid, off, attrs) is encoded as a single bit-vector consisting in
the concatenation of the three elements. The offset is interpreted as a signed
number (which is why blocks cannot be larger than half of the address space).
Each attribute (such as readonly) is encoded with a bit. Example with 2-bit
block ids and offsets, and a single attribute (we use . to visually separate the
elements):

void f(char readonly *p, char *q) { // p = 0x.ab.1, q = 0y.cd.0
char *r = p + 2; // r = 0x.(ab+2).1
char *s = q + 3; // s = 0y.(cd+3).0
char *t = malloc(4); // t = 10.00.0

}

Let õff be a truncated offset where the least significant bits corresponding to
the greatest common divisor of the alignment and sizes of all memory operations
are removed. For example, if all operations are 4-byte aligned and they access
either 4- or 8-byte values, then õff has less 2 bits than off (as these are guaranteed
to be always zero when accessing the memory).

8 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

4.3 Block Properties

Each block has seven associated properties: size, alignment, read-only, liveness,
allocation type (heap, stack, global), physical address, and value. Block proper-
ties are looked up and updated by memory operations. For example, when doing
a store, we need to check if the access is within the bounds of the block.

Except for liveness and value, properties are fixed at allocation time. Liveness
is encoded with a bit-vector (one bit per block), and value with arrays (indexed
on õff). We use a multi-memory encoding, where we have one array per bid.

The encoding of fixed properties differs for local and non-local blocks. For
non-local blocks, we use a UF symbol per property, taking b̃id as argument.
For local blocks, we cannot use UFs because for the refinement check some of
these would have to be quantified (c.f. §7) and most, if not all, SMT solvers
do not support quantification of UF symbols. Therefore, we encode each of the
remaining properties of local blocks as an if-then-else (ITE) expression, which is
tailored for each use (e.g., each time an operation needs to lookup a local block’s
size, we build an ITE expression for the given b̃id).

Using ITE expressions to encode properties is less concise than using UFs.
However, it is not a disaster for two reasons. Firstly, we only need to consider
the local blocks that have been allocated beforehand, since the program cannot
access blocks allocated afterward. Secondly, pointers are usually not fully arbi-
trary. Oftentimes we know statically which type of block they refer to, and even
what is the block id, given that pointer arithmetic operations do not change the
block id. Therefore, the ITE expressions are usually small in practice. Example
with 4-bit block ids and offsets of a source program:

int g; // g = 0001.0000, size_src(001) = 4
void f() {

char p[2]; // p = 1000.0000
char q[3]; // q = 1001.0000
char *r = ... p or q or g ...
r[2] = 0;
char t[1]; // t = 1010.0000

}

The store in this program is only well defined if the size of block pointed by
r is greater than 2. This is encoded in SMT as follows:

ite(islocal(r), ite(b̃id(r) = 0, 2, 3), sizesrc(b̃id(r))) > 2

Function islocal(p) is encoded with the SMT extract expression to fetch the
MSB of the pointer. Similarly, b̃id(p) extracts the relevant bits from a pointer.
The expression for local blocks only needs to consider local blocks 0 and 1, since
block 2 (t) is only allocated afterward. This allows a simple single pass through
the code to generate optimized ITE expressions.

Value Value is defined as an array from short offset to byte (described later
in §6.1). For non-local blocks, only those that are constant are initialized with

SMT Encoding of LLVM’s Memory Model for Bounded TV 9

the respective value. The remaining blocks are allowed to take almost any value.
The exception is for pointers: non-local blocks cannot initially have local pointers
stored, since the calling environment cannot fabricate local pointers.

Local blocks are initialized with poison values using a constant array (i.e.,
an array that yields the same value for all indexes).

4.4 Physical Addresses

If a program observes addresses (through, e.g., pointer-to-integer casting), we
need additional constraints to ensure that addresses of blocks that overlap in
time are disjoint. Since we are doing translation validation, we have two programs
with potentially different sets of locally allocated blocks. Therefore, we need to
ensure that non-local blocks’ addresses are disjoint from those of local blocks of
both programs. This makes the disjointness constraints quite complex.

As an optimization, we split the address space in two: local blocks have
MSB=1 and non-locals have MSB=0. Since the encoding of address disjointness
is quadratic in the worst case (cross-product of blocks), halving the number
of blocks is significant. This optimization, however, is an under-approximation
of the program’s behavior (§9). After investigating LLVM’s optimizations, we
believe it is highly unlikely this approximation will cause false negatives.

If a program does not observe any pointer’s physical address, neither the
block’s physical address property nor the disjointness axioms are instantiated.
However, when dereferencing a pointer, we need to check if the physical address
is sufficiently aligned. When physical addresses are not created, we resort to
checking alignment of both of the pointer’s block and offset. Since in this case
physical addresses are not observed (and therefore not constrained by the pro-
gram using, e.g., pointer comparisons), a block’s physical address can take any
value, and therefore blocks and offsets must be both sufficiently aligned to en-
sure that physical pointers are aligned in all program executions. This argument
justifies why we can soundly discard physical addresses.

4.5 Pointer Comparison

Given two pointers p and q, if a program learns that q is placed right after
p in memory, the program can potentially change the contents of q without
the compiler realizing it. Detecting the existence of such code is impossible in
general, hence restricting the ways a program can learn the layout of objects in
memory is important to make pointer analyses fast yet precise.

A way the memory layout can leak is through pointer comparison. For ex-
ample, what should p < q return if these point to different memory blocks? If it
is a well-defined operation (i.e., simply compares their integer values), it leaks
memory layout information. An alternative is to return a non-deterministic value
to prevent layout leaks, the formal semantics of which is defined at [24].

We found that there are pros and cons of both semantics for the comparison of
pointers of different blocks, and that neither of them covers all optimizations that
LLVM performs. Table 2 summarizes the effects on each of the optimizations.

10 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

Integer comparison Non-deterministic
Fold p = q to false if p.bid 6= q.bid No Yes
Fold p + i = q + i to p = q Yes No
Fold (int)p = (int)q to p = q Yes No
Fold p < q ∧ p 6= q to p < q Yes No
Fold p < q ∧ q 6= null to p < q Yes Potentially
Run-time aliasing checks Yes Correct, but not useful
Analysis of pointers cast from integers Harder Easy

Table 2. Comparison of two semantics for pointer comparison.

We decided to implement the integer comparison semantics, as LLVM per-
forms all the optimizations above and its alias analyses (AA) mostly give up
when they encounter an integer-to-pointer cast. In summary, we have to remove
the first optimization from LLVM to make it sound. Additionally, we make it
harder to improve LLVM’s AA algorithms w.r.t. to pointers cast from integers.

4.6 Bounding the Maximum Number of Blocks

Since we assume that programs do not have loops, we can statically bound the
maximum number of both local and non-local blocks a program may observe.

The maximum number of local blocks in the source and target programs,
respectively, Nsrc

local and N
tgt
local, is computed by counting the number of heap and

stack allocation instructions. Note that this is an upper-bound because not all
allocation sites may be reachable in practice.

For non-local blocks, we cannot see their definitions as with local blocks, ex-
cept for global variables. Nevertheless, we can still bound the maximum number
of observed blocks. It is sufficient to count the number of instructions that may
return non-local pointers, such as function calls and pointer loads. In addition,
we consider a null block when needed (if the null pointer may be observed).

To encode the behavior of source and target programs, we need Nsrc
nonlocal +

N tgt
nonlocal non-local blocks in the worst case, as all referenced pointers may be

distinct. However, correct transformations will not have the target program ob-
serve more blocks than the source. If the target observes a pointer to a non-local
block that was not observed in the source, we can set that pointer to poison
because its value is not restricted by the source. Therefore, Nsrc

nonlocal non-local
blocks are sufficient to allow the target to exhibit an incorrect behavior.

The bit-width of b̃id is: w
b̃id

= dlog2(max(Nsrc
nonlocal,max(N

src
local, N

tgt
local)))e.

When only local or non-local pointers are used, wbid = w
b̃id

, as we know statically
if the pointer is local or not. Otherwise, wbid = w

b̃id
+ 1.

5 Memory Allocation

In LLVM, memory blocks can be allocated on the stack (alloca), in the heap
(e.g., malloc, calloc, etc), or as global variables. It is surprisingly non-trivial to
find a semantics for memory allocations that allows all of LLVM’s optimizations,

SMT Encoding of LLVM’s Memory Model for Bounded TV 11

and rejects undesired transformations. For example, we have to support alloca-
tion removal and splitting, introduce new stack allocations and new constant
global variables, etc. We explore multiple semantics and show their merits and
shortcomings in the context of proving correctness of program transformations.

5.1 Heap Allocation

Heap allocation is done through functions such as malloc, calloc, C++’s new
operator, etc. We describe semantics for malloc; remaining functions can be
described in terms of it.

First of all, it is important to note that there are two common idioms used
in practice by C programmers when doing memory allocation:

int *p = malloc(4);
*p = 0;

int *p = malloc(4);
if (p) { *p = 0; }

In some programs, like the example on the left, malloc is assumed to never
return null, say non-null assumption. This is mainly because the program does
not consume too much memory and it is expected that the computer has enough
memory/swap space. In other programs like the one on the right, malloc is
expected to sometimes return null, say may-null assumption. Therefore, the
program performs null-ness checks.

Since both programming styles are prevalent, we would like optimizations to
be correct for both. This is non-trivial, as the two assumptions are conflicting:
with the non-null assumption, it is sound to eliminate null checks, but not with
the may-null assumption. We now explore several possible semantics to find one
that works for both programming styles.

A. Malloc always succeeds. Based on the non-null assumption, in this seman-
tics we only consider executions where there is enough space for all allocations
to succeed. Regardless of whether the target uses more or less memory than
the source, all calls to malloc yield non-null pointers. Therefore, for example,
deleting unused malloc calls is allowed.

However, removing null checks of malloc is also allowed in this semantics.
For example, optimizing the right example above into the left one is sound. This
transformation, however, is obviously undesirable.

B. Malloc only succeeds if there is enough free space. To solve the problem just
described, based on the may-null assumption, we can simulate the behavior of
dynamic memory allocation and define malloc to return a pointer to a newly
created block if there is an empty space in memory, and null otherwise. This
semantics prevents the removal of null checks of malloc as it may return null.

However, this semantics does not explain removal of unused allocations. It
aligns both source and target programs’ allocations such that any change in the
allocation sequence disrupts the program alignment and thus makes verification
fail. For example, the following transformation removing unused malloc instruc-
tions and replacing comparisons of their output with null is not supported:

12 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

int *x = malloc(4);
if (x != nullptr) { ... } ⇒

// remove x (unused)
if (true) { ... }

In case there were 0 bytes left in memory, x would be null, but since LLVM
assumes that the program cannot observe the state of the allocator it folds
the comparison x != nullptr to true after eliminating the allocation. This
optimization would be flagged as incorrect in this semantics.

LLVM assumes very little about the run-time behavior of memory allocators.
This is to support, for instance, garbage collectors, where an allocation may fail
but if repeated it may succeed because memory was reclaimed in between. This
explains why LLVM folds comparisons with null of unused memory blocks, and
also contradicts the linear view of allocations of this semantics.

C. Malloc non-deterministically returns null. This semantics abstracts the be-
havior of the memory allocator by (1) allowing malloc to non-deterministically
return null even if there is available space, and (2) only considering execu-
tions where there is enough space for all allocations to succeed. This semantics
prevents the removal of null checks of malloc, which fixes the shortcomings of
semantics A, and also allows the removal of unused allocations, which fixes those
of semantics B. However, this semantics is too weak and therefore allows other
undesirable transformations, like the following:

p = malloc(4);
*p = 0; ⇒ exit();

For the sake of proving refinement (§7), we need just one trace triggering
UB (i.e., one particular realization of the non-deterministic choices) for a given
input to be able to transform the source program into anything for that input.
Informally speaking, refinement always picks the worst-case execution for each
input. Since the source program executes UB when p is null, it is correct to
transform the source into any program although that is obviously undesirable.

This semantics is too weak in practice since many programs are written
without null checks, either assuming the program will not run out of memory,
or assuming the program will terminate if it runs out memory. It is not reasonable
in practice to allow compilers to break all such programs.

Our solution. As we have seen, there is no single semantics that both allows all
desired transformations and rejects undesired ones. While semantics B prevents
desired optimizations like allocation removal, semantics A and C allow undesired
optimizations, but in a complementary way. For example, removing null checks of
malloc is allowed in A but not in C. On the other hand, transforming an access
of a malloc-allocated block without a null check beforehand into arbitrary code
is allowed in C but not in A.

Therefore, we obtain a good semantics by requiring both A and C: an op-
timization is correct if it passes the refinement criteria with each of the two
semantics. Intuitively, this definition requires the compiler to support the two
considered coding styles: semantics A supports the non-null assumption, while
semantics C the may-null assumption.

SMT Encoding of LLVM’s Memory Model for Bounded TV 13

Pointer representation Byte offset1 p?

0 Integral valuePoison bits Padding

Pointer byte:

Non-pointer byte:

MSB LSB

Fig. 1. Bit-wise representation of a byte. A pointer byte is poison if ‘p?’ is zero. A
non-pointer byte tracks poison bit-wise.

5.2 Stack Allocation

The semantics of alloca, the stack-allocation instruction, is slightly different
from that of malloc. LLVM assumes that stack allocations always succeed, since
the program will likely crash if there is a stack overflow. That is, alloca never
returns a null pointer.

LLVM performs more optimizations on stack allocations than on heap ones.
For example, LLVM can split an allocation into multiple smaller ones or increase
the alignment. These transformations can increase memory consumption.

6 Encoding Loads and Stores in SMT

We encode the value of memory blocks with several arrays (one per bid): from
short offset to byte. We next give the definition of byte and the encoding of
memory accessing instructions in SMT.

6.1 Byte

There are two types of bytes: pointer bytes and non-pointer bytes, cf. Fig. 1.
A pointer byte has the most significant bit (MSB) set to one. The following

bit states whether the byte is poison or not. Next is the pointer representation
as described in §4.2 (bid, off, attrs).

Pointers are often longer than one byte, so when storing a pointer to memory
we write multiple consecutive bytes. Each of these bytes records the same pointer,
but with a different byte offset (the last bits of the byte) to distinguish between
the partial bytes of the pointer.

For non-pointer bytes, we track whether each of the bits is poison or not.
This is not required for pointers, since LLVM does not allow pointer values to
be manipulated bit-wise. Non-pointer values can be manipulated bit-wise (e.g.,
using vectors with element types smaller than 8 bits). Each bit of the integral
value is only significant if the corresponding poison bit is zero.

6.2 Load and Store Instructions

Load and store instructions are trivially encoded using SMT arrays. These arrays
store bytes as described in the previous section. We next describe how LLVM
values are encoded to and decoded from our byte representation.

We define two functions, ty⇓(v) and ty⇑(b), which convert a value v into a
byte array and a byte array b back to value, respectively. We show below ty⇓(v)

14 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

when v 6= poison. isz stands for the integer type with bit-width sz. If sz is not
a multiple of 8 bits, v is zero-extended first. When v is poison, all poison bits
are set to one. BitVec(n, b) stands for number n with bit-width b. Pointer’s byte
offset is 3 bits because we assume 64-bit pointers.

isz⇓(v) or float⇓(v) = λi. 0 ++ 08 ++ bitrepr(v)[8×i . . . 8×(i+ 1)− 1] ++ padding
ty∗⇓(v) = λi. 12 ++ bitrepr(v) ++ BitVec(i, 3)

isz⇑(b) and float⇑(b) return poison if any bit is poison, or if any of the
bytes is a pointer. Otherwise, these functions return the concatenation of the
integral values of the bytes.

ty∗⇑(b) returns poison if any of the bytes is poison or not a pointer, there
is more than one distinct pointer value in b, or one of the bytes has an incorrect
byte offset (they have to be consecutive, from zero to byte size minus one).
An exception is reading a non-pointer zero byte, which is interpreted as a null
pointer byte. This allows initialization of, e.g., arrays with null pointers with
memset (which is an idiom commonly used in LLVM IR).

6.3 Multi-Array Memory

As already described, we use a multi-array encoding for memory, with one array
per block id, each indexed on õff. A simpler encoding would have used a single
array indexed on ptr. The multi-array encoding is beneficial when we can cheaply
compute small aliasing sets for each memory access. In that case, we reduce the
case-splitting work on bid that the SMT solver needs to do, and it enables further
formula simplifications like store forwarding.

The multi-array encoding may, however, end up in a larger encoding overall if
several of the accesses may alias with too many blocks. For load operations that
alias multiple blocks the resulting expression is a linear combination of the loads
of each block, e.g., ite(bid = 0, load(m0, õff), ite(bid = 1, load(m1, õff), . . .)).
In this case, it would be more compact to use the single-array encoding. Note
that even if we do not know the specific block id, we often know whether a
pointer refers to a local or non-local block (e.g., pointers received as argument
have unknown block id, but are known to be non-local), and hence splitting the
memory in two is usually a good idea (c.f. §10).

We perform several optimizations that are enabled with this multi-array en-
coding. We do partial-order reduction (POR) to shrink the potential aliasing
of pointers with unknown block id. For example, consider a function with two
pointer arguments (x and y) and one global variable. We assign bid = 1 to the
global variable. Then, we estipulate that x can only alias blocks with bid ≤ 2,
which is sufficient to access the global variable or another unknown block. Argu-
ment y is also constrained to only alias blocks with bid ≤ 3, allowing it to alias
with the global variable, the same block as x, or a different block. The same is
done for function calls that return pointers. This POR technique greatly reduces
the potential aliasing of unknown pointers without losing precision.

SMT Encoding of LLVM’s Memory Model for Bounded TV 15

Num(sz) ::= {i | 0≤ i<2sz} BlockID ::= N Addr ::= Num(64) Offset ::= Num(64)

PtrAttr ::= {nocapture, readonly, readnone} Pointer ::= BlockID×Offset×2PtrAttr

Value ::= Aggregate] Int] Pointer] Float] {poison} Aggregate ::= list Value

PtrByte ::= (Pointer×{i | 0≤ i<8})] {poison} NonPtrByte ::= Num(8)×Num(8)

Byte ::= PtrByte]NonPtrByte Bytes ::= Offset→Byte Size ::= Num(64)

Align ::= {i | 0≤ i<64} Kind ::= {stack, malloc, new, global} Live ::= bool

Writable ::= bool MemBlock ::= Addr×Align×Kind×Live×Writable×Size×Bytes

Memory ::= BlockID→MemBlock UB ::= bool FinalState ::= Value×Memory×UB

p ∈ Pointer ag ∈ Aggregate v ∈ Value pb ∈ PtrByte nb ∈ NonPtrByte

b ∈ Byte mb ∈ MemBlock M ∈ Memory ub ∈ UB µ ∈ BlockID 7→BlockID

Fig. 2. Type Definitions and Variable Naming Conventions.

(value-poison)
v ∈ Value

poison wµ v

(value-nonptr)
v ∈ Int] Float

v wµ v

(value-ptr)
p wµptr p

′

p wµ p′

(value-aggregate)
|ag| = |ag′| ∀i, ag[i] wµ ag′[i]

ag wµ ag′

(final-state-ub)

(v,M, true) wst (v′,M ′, ub′)

(final-state)
ub = ub′ ∃µ, v wµ v′ ∧M wµmem M ′

(v,M, ub) wst (v′,M ′, ub′)

Fig. 3. Refinement of value and final state.

7 Verifying Correctness of Optimizations

To verify correctness of LLVM optimizations, we establish a refinement relation
between source (or original) and target (or optimized) functions. Equivalence is
not used due to undefined behavior and nondeterminism. Compilers are allowed
to reduce the set of possible behaviors from the source.

Given functions fsrc and ftgt, set of input and output variables Isrc/Itgt and
O (which include, e.g., memory and the return value), and set of non-determinism
variables Nsrc/Ntgt, fsrc is refined by ftgt iff:

∀Isrc, Itgt, Otgt . valid(Isrc, Itgt) ∧ Isrc w Itgt ∧ ∃Nsrc .presrc(Isrc, Nsrc) ∧(
∃Ntgt .pretgt(Itgt, Ntgt) ∧ JftgtK(Itgt, Ntgt) = Otgt

)
=⇒ (∃Nsrc .presrc(Isrc, Nsrc) ∧ JfsrcK(Isrc, Nsrc) wst Otgt)

Predicate valid(Isrc, Itgt) encodes the global precondition of the input mem-
ory and arguments such as disjointness of non-local blocks. Function’s precon-
ditions, presrc and pretgt, include the constraint for disjointness of local blocks.
The existential presrc constrains the input such that the source function has at
least one possible execution. wst is the refinement between final states.

Fig. 2 shows the definition of final program state which is a tuple of return
value, return memory, and UB. A memory is a function from block id to a
memory block. A memory block has seven attributes that are described in §4.3.

16 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

(pointer)
p.block.live⇒ p′.block.live

p.offset = p′.offset[
(isNonLocal({p, p′}) ∧ p.block.id = p′.block.id)
∨ (isLocal({p, p′}) ∧ p.block.id = µ[p′.block.id])

]
p wµptr p

′

(memory-map)[
∀bid, isNonLocal(bid)
=⇒ M [bid] wµblk M

′[bid]

]
[
∀bid, isLocal(bid) ∧ µ[bid] defined
=⇒ M [µ[bid]] wµblk M

′[bid]

]
M wµmem M ′

(byte-ptr)
pb.byteoff = pb′.byteoff
pb.ptr wµptr pb

′.ptr

pb wµbyte pb
′

(byte-nonptr)
nb′.p | nb.p = nb.p

nb.v | nb.p = nb′.v | nb.p
nb wµbyte nb

′

(byte-zero)
isZeroByte(b)
isZeroByte(b′)

b wµbyte b
′

(byte-poison)

isPoisonByte(b)

b wµbyte b
′

(bytes)[
∀ 0 ≤ i < mb.size,
mb.bytes[i] wµbyte mb

′.bytes[i]

]
mb wµbytes mb

′

(block)
mb.live⇒ mb′.live mb.size = mb′.size

mb.kind = mb′.kind mb.writable = mb′.writable
mb.align ≤ mb′.align mb.live⇒ mb wµbytes mb

′

mb wµblk mb
′

Fig. 4. Refinement of memory and pointers.

Fig. 3 shows the definition of refinement of value and final state. For pointers,
we cannot simply use equality because local pointers in source and target are
internal to each of the functions. Even if they have the same block identifier, they
may refer to different allocation sites in the functions (value-ptr). Similarly,
the refinement of the final state should consider this difference between local
pointers. To address this, we track a mapping µ between escaped local blocks of
the two functions (described next).

7.1 Refinement of Memory

Checking refinement of non-local memory blocks is simple as blocks are the same
in the source and target functions (e.g., global variables have the same ids in the
two functions). Therefore, one just needs to compare blocks of source and target
functions with the same id pairwise.

Checking refinement of local blocks is harder but needed when, e.g., the
function returns a locally-allocated heap block. This is legal, but block ids in the
two functions may not be equal as allocations may have happened in a different
order. Therefore, we cannot simply compare local blocks with the same ids.

To check refinement of local blocks, we need to align the two functions’
allocations, i.e., we need to find a correspondence between local blocks of the
two functions. We introduce a mapping µ ∈ BlockID 7→ BlockID between target
and source local block ids.

Local blocks become related on function calls and return statements, which
is when local pointers may be observed. For example, if a function is called with
a pointer to a local block as the first argument, µ should relate that pointer with
the first argument of an equivalent function call in the target function.

SMT Encoding of LLVM’s Memory Model for Bounded TV 17

(nonptr
-arg)[
v, v′ /∈
Pointer

]
v wµ v′

v wµ,szarg v′

(ptr
-arg
-mapped)

p wµptr p
′

p wµ,szarg p′

(ptr-arg-unmapped)

isLocal({p, p′})
p.offset = p′.offset

M [p.bid] wµblk M
′[p′.bid]

p wµ,szarg p′

(ptr-arg-byval)
sz > 0 o = p.offset o′ = p′.offset
mb = M [p.bid] mb′ = M ′[p′.bid][
∀0 ≤ i < sz,
mb.bytes[o+i] wµbytemb

′.bytes[o′+i]

]
p wµ,szarg p′

Fig. 5. Refinement between function arguments.

Fig. 4 gives the definition of memory refinement, M wµmem M ′, as well as
other related relations between memory blocks and pointers. The first rule
pointer describes refinement between source pointer p and target pointer p′
with respect to µ. The following four rules define refinement between bytes b and
b′. In rule byte-nonptr, ‘a | b’ is the bitwise OR operation, and it is used to
check the equality of only those bits that are not poison. Predicate isZeroByte(b)
holds if b is a null pointer or if it is a zero-valued non-pointer byte. This is needed
because stores of null pointers can be optimized to memset instructions.

Rules bytes and block define refinement between memory blocks’ values
and memory blocks, respectively. Rule memory-map describes memory refine-
ment with respect to local block mapping µ.M [bid] stands for the memory block
with block id bid.

The well-formedness of µ is established in the refinement rules for function
calls and return statements. We show these for function calls in the next section.
We note that there might be multiple well-formed µ due to non-determinism.

8 Function Calls

A call to an unknown function may change the memory arbitrarily (except for,
e.g., constant variables and non-escaped local blocks). The outputs in the source
and target are, however, related: if the target’s inputs refine those of the source,
refinement holds between their outputs as well. Alive2 already supported func-
tion calls; this section shows how it was extended to support memory.

Let (Min, vin) and (Mout, vout) be the input and output of a function call
in the source, and their primed versions, (M ′

in, v
′
in) and (M ′

out, v
′
out), those of a

function call in the target. Let µin be a local block mapping before executing
the calls. To state that the outputs are refined if the inputs are refined, we add
the following formula to the target’s precondition:(
Min wµin

mem M ′
in ∧ ∀i . vin[i] wµin,sz[i]

arg v′in[i]
)

=⇒
(
Mout wµout

mem M ′
out ∧ vout wµout v′out

)
A call to a function with a pointer to a local block as argument escapes this

block, as the callee may, e.g., store that pointer to a global variable. Moreover,
any pointer stored in this block also escapes as the callee may traverse the block
and grab any pointer stored there, and do so transitively. The updated mapping
µout = extend(µin,Min,M

′
in, vin, v

′
in) returns µin updated with the relationship

between the newly escaped blocks in source and target functions.

18 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

Fig. 5 shows the definition of refinement between function call arguments
in source and target programs. The first rule relates non-pointer arguments.
The second one handles pointers that have escaped before these calls. The third
rule handles local pointers of blocks that did not escape before these calls, and
therefore we need to check if the contents of these block are refined.

The fourth refinement rule handles byval pointer arguments. These argu-
ments get a freshly allocated block and the contents of the pointer are copied
from the pointer’s offset onwards.

9 Approximating Program Behavior

In order to speedup verification, we approximate programs’ behaviors, which can
result in false positives and false negatives. We believe none of these approxima-
tions has a significant impact for two reasons: (1) we only need to be as precise as
LLVM’s static analyses, i.e., we do not need to support arbitrary optimizations,
and (2) we do not consider the compiler to be malicious (which may not be true
in certain contexts). Moreover, we conducted an extensive evaluation to support
these claims, on which we report in the next section.

Under-Approximations

1. Physical addresses of local memory blocks have the MSB set to 1, and non-
locals set to 0. This is reasonable if we assume the compiler is not malicious
and therefore will not exploit our approximation.

2. We do not consider the case where a (portion of a) global variable is initially
undef , only poison or a regular value.

3. Library functions strlen, memcmp, and bcmp are unrolled for a constant
number of times. A precondition is added to constrain the input to be smaller
than the unroll factor. In the case of strlen, the input pointer is often a
constant array. We compute the result straight away in this case.

Over-Approximations. The set of local blocks that escape (e.g., whose address is
stored into a global variable) is computed per function. This may over-approximate
the set of escaped pointers at times because, e.g., a pointer may only escape in a
particular branch. LLVM also computes the set of escaped pointers per function.

10 Evaluation

We implemented our new memory model in Alive2 [30]. The implementation of
the memory model consists in about 3.0 KLoC plus an additional 0.4 KLoC for
static analyses for optimization.

We run two set of experiments to both validate our implementation and
the formal semantics, and to identify bugs in LLVM. First, we did translation
validation of LLVM’s unit tests (test/Transforms) to increase confidence that

SMT Encoding of LLVM’s Memory Model for Bounded TV 19

Program LoC Pairs Time (hours) Correct Incorrect TO OOM Unsupported pairs
bzip2 5.1k 2.3k 1.9 316 9 574 175 1.2k
gzip 5.3k 2.6k 2.0 908 4 922 45 737
oggenc 48k 1.8k 2.0 433 5 617 49 701
ph7 43k 5.6k 3.4 1.2K 23 1.5K 15 2.8k
sqlite3 141k 12k 7.5 2.2k 38 2.2K 48 7.8k

Table 3. Statistics and results for the single-file benchmarks.

we match LLVM’s behavior in practice. Second, we run five benchmarks: bzip2,
gzip, oggenc, ph7, and SQLite3.

Benchmarks were compiled with -O3. Moreover, we disabled type-based alias-
ing because there is no formal model for this feature yet. During compilation, we
emitted pairs of IR files before and after each intra-procedural optimization. We
discarded syntactically equal pairs as well as pairs without memory operations.

We used a machine with two Intel Xeon E5-2630 v2 CPUs (total of 12 cores).
We set Z3’s timeout to 1 min and memory limit to 1 GB. Loops were unrolled
once. We used LLVM from 11/Dec (5e31e22) and Z3 [33] from 16/Dec (11477f).

10.1 LLVM Unit Tests

LLVM’s Transforms unit test suite consists in 6,600 tests totaling 36,600 func-
tions. Alive2 takes about 2.5 hours (in parallel) to validate these. By running
LLVM’s unit tests, we found 21 new bugs in memory optimizations.

We show below an example of a bug we found. This optimization was shrink-
ing the store from 64 to 32 bits, which is incorrect since the last 32 bits were not
copied. This happened because of the mismatch in the load/store’s sizes.

// i32 *x, *y, *z;
i32 *p = (*x < *y ? x : y);
(i64)z = *(i64*)p;

6⇒
// i32 *x, *y, *z;
i32 r = (*x < *y ? *x : *y);
*z = r;

10.2 Benchmarks

Table 3 shows the statistics and results for translation validation. The Pairs
column indicates the number of source/optimized function pairs considered for
validation. We discarded pairs where the two functions were syntactically equal,
as the transformation is then trivially correct. The last column indicates the
number of skipped pairs because they use features Alive2 does not yet support.

All the 79 incorrect pairs are due to mismatches between LLVM and the
formal semantics. Of these, 74 are related with incorrect handling of undef and
poison values, and the remaining 5 are caused by incorrect load type punning
optimizations. This shows that our tool has no false positives.

10.3 Specification Bugs

While testing our tool, we found a mismatch in the semantics of the nonnull at-
tribute between LLVM’s documentation and LLVM’s code. The documentation

20 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

specified that passing a null pointer to a nonnull argument triggered UB. How-
ever, as illustrated below, LLVM adds nonnull to a pointer that may be poison.
This is incorrect because poison can be optimized into any value including null.

p = gep inbounds q, 1
f(p) ⇒

p = gep inbounds q, 1
f(nonnull p) ; UB if p poison

We proposed a new semantics to the LLVM developers, where non-conforming
pointers would be considered poison rather than UB. This was accepted and
we have contributed patches to fix the docs and the incorrect optimizations.

10.4 Alias Sets

To show that splitting the memory into multiple arrays is beneficial, we gathered
statistics of the alias sets in our benchmarks. More than 96% of the dereferenced
pointers turned out to be only local or non-local, but not both. This shows that
splitting the memory into local and non-local simplifies the memory encoding.

We also counted the number of memory blocks pointers may alias with. Half
of the pointers were aliased with just one block. About 80% of the pointers
aliased with at most 3 blocks. This is much less than the median number of
blocks functions have. The median of the number of memory blocks was 7 ∼ 13
(varying over programs), and only 10% of the functions had fewer than 3 blocks.

11 Related Work

Semantics of LLVM IR. The official LLVM IR’s specification is written in
prose [1]. Vellvm [47] and K-LLVM [29] formalized large subsets of the IR in
Coq and K, respectively. [26] clarifies the semantics of undef and poison and
proposes a new freeze instruction. [24] formalizes various memory instructions
of LLVM. [32] presents a C memory model that supports compilation to that
LLVM model.

Translation validation. [38] presents a translation validation infrastructure for
GCC’s intermediate language, using a set of arithmetic/aliasing rules for show-
ing equivalence. LLVM-MD [44] and Peggy [42] verify LLVM optimizations by
showing equivalence of source and targets with rewrite rules/equality axioms.
They suffer, however, from incomplete axioms for aliasing.

In order to simplify the work of translation validation tools, it is possible
to extend the compiler to produce hints (witnesses) [18,36,38,41]. One of these
tools, Crellvm [20], is formally verified in Coq.

Verifying programs with memory using SMT solvers. SMT solvers have been
used before to check equivalence of programs with memory [11, 14, 21, 25, 31].
[12] give an encoding of some (but not all) aliasing constraints needed to do
translation validation of assembly generated by C compilers.

SMT Encoding of LLVM’s Memory Model for Bounded TV 21

Other memory models encoded in SMT include one for Solidity (Etherium
smart contracts) [16], and for separation logic [37, 39]. Several verification tools
include SAT/SMT-based (partial) memory models for C [2,9,10] and Java [43].

Several automatic software verification tools, often based on CHCs (con-
strained Horn clauses), support memory programs [6,13]. For example, both Sea-
Horn and Cascade use a field-sensitive alias analysis to split the memory [15,45].
SLAyer [4] is an automatic tool for analyzing memory safety of a C program
using Z3. Smallfoot [3] verifies assertions written in separation logic.

There have been recent advances in speeding up verification of (SMT) array
programs [17,22], from which we could likely benefit.

CompCert [27] splits the memory into local (private) and non-local (public)
blocks, similarly to what we do, but assumes that allocations never fail [28]. Work
on verifying peephole optimizations for CompCert does not support memory [34].

To support integer-to-pointer casts in CompCert, [5] proposes extending in-
teger values to carry block ids as well. In this model, arithmetic on pointer values
yields a symbolic expression. [19] makes the pointer-to-integer cast an instruction
that assigns a physical address to the block. Neither of these models supports
several optimizations performed by LLVM.

12 Conclusion

We presented the first SMT encoding of LLVM’s memory model that is suffi-
ciently precise to validate all of LLVM’s intra-procedural memory optimizations.

Using our new encoding, we found and reported 21 previously unknown bugs
in LLVM memory optimizations, 10 of which have already been fixed.

Acknowledgements This work was supported in part by the Basic Science
Research Program through the National Research Foundation of Korea (NRF-
2020R1A2C2011947).

References

1. LLVM language reference manual, https://llvm.org/docs/LangRef.html
2. Ball, T., Bounimova, E., Levin, V., de Moura, L.: Efficient evaluation of pointer

predicates with Z3 SMT solver in SLAM2. Tech. Rep. MSR-TR-2010-24, Microsoft
Research (2010), https://www.microsoft.com/en-us/research/publication/
efficient-evaluation-of-pointer-predicates-with-z3-smt-solver-in-slam2/

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular au-
tomatic assertion checking with separation logic. In: FMCO (2006).
https://doi.org/10.1007/11804192_6

4. Berdine, J., Cook, B., Ishtiaq, S.: Slayer: Memory safety for systems-level code. In:
CAV (2011). https://doi.org/10.1007/978-3-642-22110-1_15

5. Besson, F., Blazy, S., Wilke, P.: A concrete memory model for CompCert. In: ITP
(2015). https://doi.org/10.1007/978-3-319-22102-1_5

https://llvm.org/docs/LangRef.html
https://www.microsoft.com/en-us/research/publication/efficient-evaluation-of-pointer-predicates-with-z3-smt-solver-in-slam2/
https://www.microsoft.com/en-us/research/publication/efficient-evaluation-of-pointer-predicates-with-z3-smt-solver-in-slam2/
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-642-22110-1_15
https://doi.org/10.1007/978-3-319-22102-1_5

22 Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

6. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: SAS (2013). https://doi.org/10.1007/978-3-642-38856-9_8

7. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: CAV (2002). https://doi.org/10.1007/3-540-45657-0_7

8. Chakraborty, S., Vafeiadis, V.: Formalizing the concurrency semantics of an LLVM
fragment. In: CGO (2017). https://doi.org/10.1109/CGO.2017.7863732

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS (2004). https://doi.org/10.1007/978-3-540-24730-2_15

10. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded
model checking for embedded ANSI-C software. In: ASE (2009).
https://doi.org/10.1109/ASE.2009.63

11. Dahiya, M., Bansal, S.: Black-box equivalence checking across compiler optimiza-
tions. In: APLAS (2017). https://doi.org/10.1007/978-3-319-71237-6_7

12. Dahiya, M., Bansal, S.: Modeling undefined behaviour semantics for
checking equivalence across compiler optimizations. In: HVC (2017).
https://doi.org/10.1007/978-3-319-70389-3_2

13. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Syn-
thesizing software verifiers from proof rules. In: PLDI (2012).
https://doi.org/10.1145/2254064.2254112

14. Gupta, S., Saxena, A., Mahajan, A., Bansal, S.: Effective use of SMT
solvers for program equivalence checking through invariant-sketching and query-
decomposition. In: SAT (2018). https://doi.org/10.1007/978-3-319-94144-8_22

15. Gurfinkel, A., Navas, J.A.: A context-sensitive memory model for verification of
C/C++ programs. In: SAS (2017). https://doi.org/10.1007/978-3-319-66706-5_8

16. Hajdu, Á., Jovanović, D.: SMT-friendly formalization of the solidity memory
model. In: ESOP (2020)

17. Ish-Shalom, O., Itzhaky, S., Rinetzky, N., Shoham, S.: Putting the squeeze on
array programs: Loop verification via inductive rank reduction. In: VMCAI (2020).
https://doi.org/10.1007/978-3-030-39322-9_6

18. Kanade, A., Sanyal, A., Khedker, U.P.: Validation of GCC optimizers through trace
generation. SP&E 39(6), 611–639 (Apr 2009). https://doi.org/10.1002/spe.913

19. Kang, J., Hur, C.K., Mansky, W., Garbuzov, D., Zdancewic, S., Vafeiadis, V.:
A formal C memory model supporting integer-pointer casts. In: PLDI (2015).
https://doi.org/10.1145/2737924.2738005

20. Kang, J., Kim, Y., Song, Y., Lee, J., Park, S., Shin, M.D., Kim, Y., Cho, S., Choi,
J., Hur, C.K., Yi, K.: Crellvm: Verified credible compilation for LLVM. In: PLDI
(2018). https://doi.org/10.1145/3192366.3192377

21. Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression verification of
pointer programs by predicate abstraction. Formal Methods in System Design
52(3), 229–259 (Jun 2018). https://doi.org/10.1007/s10703-017-0293-8

22. Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional ver-
ification of procedural programs using horn clauses over integers and arrays. In:
FMCAD (2015). https://doi.org/10.1109/FMCAD.2015.7542257

23. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In:
PLDI (2014). https://doi.org/10.1145/2594291.2594334

24. Lee, J., Hur, C.K., Jung, R., Liu, Z., Regehr, J., Lopes, N.P.: Reconciling high-
level optimizations and low-level code in LLVM. Proc. of the ACM on Programming
Languages 2(OOPSLA) (Nov 2018). https://doi.org/10.1145/3276495

25. Lee, J., Hur, C.K., Lopes, N.P.: AliveInLean: A verified LLVM peephole optimiza-
tion verifier. In: CAV (2019). https://doi.org/10.1007/978-3-030-25543-5_25

https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/3-540-45657-0_7
https://doi.org/10.1109/CGO.2017.7863732
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/ASE.2009.63
https://doi.org/10.1007/978-3-319-71237-6_7
https://doi.org/10.1007/978-3-319-70389-3_2
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-319-94144-8_22
https://doi.org/10.1007/978-3-319-66706-5_8
https://doi.org/10.1007/978-3-030-39322-9_6
https://doi.org/10.1002/spe.913
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1007/s10703-017-0293-8
https://doi.org/10.1109/FMCAD.2015.7542257
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/3276495
https://doi.org/10.1007/978-3-030-25543-5_25

SMT Encoding of LLVM’s Memory Model for Bounded TV 23

26. Lee, J., Kim, Y., Song, Y., Hur, C.K., Das, S., Majnemer, D., Regehr,
J., Lopes, N.P.: Taming undefined behavior in LLVM. In: PLDI (2017).
https://doi.org/10.1145/3062341.3062343

27. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (Jul 2009). https://doi.org/10.1145/1538788.1538814

28. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model,
version 2. Tech. Rep. RR-7987, INRIA (Jun 2012), http://hal.inria.fr/
hal-00703441

29. Li, L., Gunter, E.L.: K-LLVM: A relatively complete semantics of LLVM IR. In:
ECOOP (2020). https://doi.org/10.4230/LIPIcs.ECOOP.2020.7

30. Lopes, N.P., Lee, J., Hur, C.K., Liu, Z., Regehr, J.: Alive2: Bounded translation
validation for LLVM. In: PLDI (2021). https://doi.org/10.1145/3453483.3454030

31. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Prov-
ably correct peephole optimizations with Alive. In: PLDI (2015).
https://doi.org/10.1145/2737924.2737965

32. Memarian, K., Gomes, V.B.F., Davis, B., Kell, S., Richardson, A., Watson, R.N.M.,
Sewell, P.: Exploring C semantics and pointer provenance. Proc. ACM Program.
Lang. 3(POPL) (Jan 2019). https://doi.org/10.1145/3290380

33. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS (2008).
https://doi.org/10.1007/978-3-540-78800-3_24

34. Mullen, E., Zuniga, D., Tatlock, Z., Grossman, D.: Verified peephole optimizations
for CompCert. In: PLDI (2016). https://doi.org/10.1145/2908080.2908109

35. Namjoshi, K.S., Tagliabue, G., Zuck, L.D.: A witnessing compiler: A proof of con-
cept. In: RV (2013). https://doi.org/10.1007/978-3-642-40787-1_22

36. Namjoshi, K.S., Zuck, L.D.: Witnessing program transformations. In: SAS (2013).
https://doi.org/10.1007/978-3-642-38856-9_17

37. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In:
APLAS (2013). https://doi.org/10.1007/978-3-319-03542-0_7

38. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI (2000).
https://doi.org/10.1145/349299.349314

39. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
CAV (2013). https://doi.org/10.1007/978-3-642-39799-8_54

40. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: TACAS (1998).
https://doi.org/10.1007/BFb0054170

41. Rinard, M.C., Marinov, D.: Credible compilation with pointers. In: RTRV (1999)
42. Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for LLVM. In:

CAV (2011). https://doi.org/10.1007/978-3-642-22110-159
43. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: Checking axiomatic specifications of

memory models. In: PLDI (2010). https://doi.org/10.1145/1806596.1806635
44. Tristan, J.B., Govereau, P., Morrisett, J.G.: Evaluating value-graph translation

validation for LLVM. In: PLDI (2011). https://doi.org/10.1145/1993316.1993533
45. Wang, W., Barrett, C., Wies, T.: Partitioned memory models for program analysis.

In: VMCAI (2017). https://doi.org/10.1007/978-3-319-52234-0_29
46. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C

compilers. In: PLDI (2011). https://doi.org/10.1145/1993498.1993532
47. Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formalizing the LLVM

intermediate representation for verified program transformations. In: POPL (2012).
https://doi.org/10.1145/2103656.2103709

48. Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formal ver-
ification of SSA-based optimizations for LLVM. In: PLDI (2013).
https://doi.org/10.1145/2491956.2462164

https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/1538788.1538814
http://hal.inria.fr/hal-00703441
http://hal.inria.fr/hal-00703441
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3290380
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2908080.2908109
https://doi.org/10.1007/978-3-642-40787-1_22
https://doi.org/10.1007/978-3-642-38856-9_17
https://doi.org/10.1007/978-3-319-03542-0_7
https://doi.org/10.1145/349299.349314
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/978-3-642-22110-159
https://doi.org/10.1145/1806596.1806635
https://doi.org/10.1145/1993316.1993533
https://doi.org/10.1007/978-3-319-52234-0_29
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2491956.2462164

	An SMT Encoding of LLVM's Memory Model for Bounded Translation Validation

