
Semantics for Compiler IRs:
Undefined Behavior is not Evil!

Nuno Lopes (Microsoft Research)

J o i n t wo r k w i t h : J u n eyo u n g L e e , Yo o n s e u n g K i m , Yo u n g j u S o n g , G i l H u r (S N U) ;
D av i d M a j n e m er, S a n j oy D a s (G o o g l e) ; R a l f J u n g (M P I - SWS) ; Z h e n g yan g L i u ,
J o h n Re g e h r (U. U ta h)

With Undefined Behavior, Anything is Possible
Raph Levien’s blog

Nasal demons
From: John F. Woods

Newsgroups: comp.std.c

Subject: Re: Why is this legal?

Date: 25 Feb 1992

In short, you can't use sizeof() on a structure whose elements haven't
been defined, and if you do, demons may fly out of your nose.

OK, OK; so the Standard doesn't *ACTUALLY* mention demons or
noses. Not as such, anyway.

Linux kernel bug in 2009
static unsigned int tun_chr_poll(struct file *file, poll_table * wait)

{

struct tun_file *tfile = file->private_data;

struct tun_struct *tun = __tun_get(tfile);

struct sock *sk = tun->sk;

unsigned int mask = 0;

if (!tun)

return POLLERR;

Implies tun != NULL

Always false

UB is not a demon
•Not at IR level, at least

•UB simply restricts domain of functions

•UB is an efficient way to represent assumptions

•Even “safe” languages benefit from UB in the IR

This talk is about Compiler IRs
NOT SOURCE LANGUAGES

Typical compiler
C++ Swift JavaScript Rust

Optimization n

x86

IR

IR
IRIR

ARM PowerPC Nvidia PTX

Optimization 1

…

IR

IR must be:
• Expressible
• Support desired optimizations
• Block wrong transformations
• Efficient transformations
• Efficient analyses
• Efficient encoding of assumptions

from source language
• Efficiently cache derived facts
• Efficient lowering to ASM

??
UNSAT!

And SSA was born (late 80’s)

x = 2;

x = 3;

y = x + 1;

if (y < 0)

y = 0;

return y;

x0 = 2;

x1 = 3;

y0 = x1 + 1;

if (y0 < 0)

y1 = 0;

y2 = φ(y0, y1)

return y2;

Before: SSA:

?

Pros:
• Fast operand lookup

(caches reaching definitions)
• Avoids mistakes in operand lookup
• Enables sparse flow-sensitive analysis

Cons:
• Takes time to build, maintain & undo
• Consumes more memory

What about sparse path-sensitive?
•SSA only gives sparse flow-sensitive analysis

•SSI is born (1999)!

y0 = x0 + w0;

if (y0 < 0)

y1 = -y0;

y2 = φ(y0, y1)

return y2;

SSA: SSI:
y0 = x0 + w0;

if (y0 < 0)

y1 = π(y0)

y2 = -y1;

else

y3 = π(y0)

y4 = φ(y2, y3)

return y4;

𝑦0 ∈ [−2𝑛−1, 2𝑛−1)

𝑦1 ∈ [−2𝑛−1, 2𝑛−1)

𝑦2 ∈ [−2𝑛−1, 2𝑛−1)

𝑦0 ∈ [−2𝑛−1, 2𝑛−1)

𝑦1 ∈ [−2𝑛−1, 0)

𝑦2 ∈ (0, 2𝑛−1)

𝑦3 ∈ [0, 2𝑛−1)

𝑦4 ∈ [0, 2𝑛−1)

What about overflows?
• ‘0 – INT_MIN’ overflows
• in two’s complement = INT_MIN

• INT_MIN ∉ [0, 2𝑛−1)

•What now? Back to [−2𝑛−1, 2𝑛−1) ?

•But:
• In C++, signed overflow is UB

• In Swift, program crash on overflow

y0 = x0 + w0;

if (y0 < 0)

y1 = π(y0)

y2 = 0 - y1;

𝑦0 ∈ [−2𝑛−1, 2𝑛−1)

𝑦1 ∈ [−2𝑛−1, 0)

𝑦2 ∈ (0, 2𝑛−1)

What about memory?
•SSA/SSI is only about local variables (“registers”)

•GCC (and later LLVM) added MemorySSA

•Memory gets functional

// x, y point to disjoint objects

m1 = store(m0, x0, 3); // *x = 3;

m2 = store(m0, y0, 4); // *y = 4;

w = load(m2, y0); // w = *y;

v = load(m1, x0); // v = *x;

Pros:
• Easier to reorder memory operations
• Easier to detect redundant loads
• Easier to do store forwarding

Cons:
• (Still?) expensive in practice:

GCC & LLVM implement only a
lightweight version

What’s next?
• I don’t know! ☺ Research ongoing

•This talk: exploiting UB as an efficient
means to encode assumptions

IR must be:
• Expressible
• Support desired optimizations
• Block wrong transformations
• Efficient transformations
• Efficient analyses
• Efficient encoding of assumptions

from source language
• Efficiently cache derived facts
• Efficient lowering to ASM

What’s undefined behavior (UB)?
There are two mainstream definitions:

•C/C++/GCC/LLVM: If the program executes UB, it has no specified semantics
• UB can travel back in time

•CompCert: Program is defined until UB is executed

printf("foo\n");
y = x / 0;

C++:
UB

CompCert:
print “foo!”
UB

UB restricts domain of functions
int f(int x, int y) {

return x / y;

}

•What’s the value of f(3, 0)?

•What’s the value of f(INT_MIN, -1) ?
• Range of int is [−2𝑛−1, 2𝑛)

• E.g., with 3 bits is: [−4, 3], so -4/-1 not in range

UB

UB

C/C++ uses of UB
•For operations that trap on some ISA (e.g., division by 0)

•For operations with different results in different ISAs (e.g., shift overflow)

•To enable optimizations (e.g., memory model)

performance

performance

performance

Importing all of C++’s UB to IR…
•… is not a good idea!

•Semantics for source languages have different goals than for IRs

for (int i = 0; i < n; ++i) {
a[i] = x + 1;

}

• We want to hoist x + 1

• In C++, x + 1 is UB if x = INT_MAX

• Take n = 0, x = INT_MAX
• Original: well defined
• Hoisted: UB

UB constrains movement
• Instructions that may raise UB are hard to move

•So: get rid of UB?

for (int i = 0; i < n; ++i) {
a[i] = x + 1;

}

We cannot get rid of UB!
• It’s easy for arithmetic
• E.g., define semantics division by zero and pay the price when lowering to ASM

•But not for memory (in IRs supporting non-memory safe languages)
• Easy: load from NULL

• Nearly impossible: load from non-allocated memory
• Unless you make the language memory safe…

int f(int *p) {
return *p;

}

• Is p in bounds?
• Is the object pointed by p still alive?
• Is the access properly aligned?

LLVM’s design
•UB: operations that trap in mainstream ISAs
• Arithmetic errors (division by zero, INT_MIN/-1, etc)

• Memory operations (out-of-bounds accesses, etc)

• “Delayed” UB (allows free movement):
• Signed arithmetic overflows: for loop optimizations

• Shift overflows: ISA result mismatch

• Uninitialized memory reads: for performance

Delayed UB
•At least 3 forms in current compilers:
• Poison value [LLVM]: Taint value like NaN (“undef” in CompCert)

• Undef value [LLVM]: arbitrary value of the type; different value every time it’s read

• Arbitrary value [ICC]: consistent arbitrary value of the type (“freeze poison” in LLVM)

poison * x → poison

undef + x → undef
undef * x → ? (not undef)

x = undef
x + x → undef

x = freeze poison
x + x → even number (not undef)

Benefits of delayed UB
•Still constrains domain of functions like immediate UB

•Allows free movement

•Allows speculative execution

Undef values are nice!
•They make local transformations really easy

•Freeze poison is harder

x = undef;
a = x * y;
b = x | y;
return a + b;

x = undef;
a = 0;
b = x | y;
return a + b;

x = undef;
a = 0;
b = -1;
return a + b;

return -1;
assume

x = 0

assume

x = -1

constant

fold

x = freeze poison;
a = x * y;
b = x | y;
return a + b;

x = 0;
a = 0;
b = y;
return a + b;

return y;
assume

x = 0

constant

fold

(BTW ‘return -1’ isn’t necessarily better/faster/smaller than ‘return y’)

But undef values are tricky

Wrong:
• x * 2 → x + x // even number vs any number if x is undef
• x ? undef : y → y // y may be poison

OK:
• x * 2 → x << 1
• x + x → x * 2
• x ? poison : y → y

Trying to get rid of undef values in LLVM ATM…

Hoisting with undef

if (k != 0) {

while (...) {

use(1 / k);

}

}

k != 0, so safe to hoist division?
If k = undef
“k != 0” may be true and
“1 / k” trigger UB

if (k != 0) {

int tmp = 1 / k;

while (...) {

use(tmp);

}

}

Poison taints too much sometimes
• Bitfields of C are tricky to implement

struct t {
int a:2;
int b:3;

}

x->a = y;

tmp = load x // load a, b
tmp = tmp & ~3; // discard old a
tmp = tmp | (y & 3) // add new a
store tmp, x // store new a, old b

What if x->b was poison?

Summary so far
• Immediate UB is a necessary evil, but inhibits movement

•Delayed UB enables movement but:
• undef has surprising effects

• freeze poison is hard to optimize locally

• poison taints too much sometimes

Let’s get rid of delayed UB?
•That’s possible, unlike immediate UB

•But… it’s a good way of expressing assumptions

Compiling shift
int f(int x, int y) {

return x << y;

}

• What’s the value of f(1, 32)?
• X86: 1 (x << (y & 31))

• ARM: 0 (x >= 32 ? 0 : x << y)

• C/C++: UB

What should be the semantics of shift left in an IR?

Compiling shift #2
• If the result of x << 32 is defined in source language as 0, then on x86 we need:
• x >= 32 ? 0 : x << y;

mov %edx, %eax
shl %cl, %eax
cmp $0x20, %edx
mov $0x0, %edx
cmovge %edx, %eax

•Languages like C++ don’t want this cost, so define this case as UB

Shift in LLVM/CompCert
•Overflow yields poison: x << 32 → poison

•Pushes semantics of overflow case to front-ends

•Benefits: efficient lowering & free movement

for (int i = 0; i < n; ++i) {
a[i] = x << y;

}

tmp = x << y;
for (int i = 0; i < n; ++i) {
a[i] = tmp;

}

Undef/Poison for SSA construction

if (c)
x = f();

if (c2)
g(x);

if (c)
x0 = f();

x1 = φ(x0, undef)
if (c2)
g(x1);

if (c)
x0 = f();

x1 = φ(x0, 0)
if (c2)
g(x1);

C code: SSA: SSA without undef:

Code size increases by 2 bytes:
“xorl %eax, %eax”

Poison as cache for inferred facts

int w, x, y;

if (x >= 0 && y >= 0) {
w = x - y;
...

}

1. Range analysis proves x – y
doesn’t overflow

2. How to cache this information?
• In a side map?
• In the instruction?

LLVM has overflow attributes:
• nsw: no signed overflow (wrap)
• nuw: no unsigned overflow

No signed overflow

int w, x, y;

if (x >= 0 && y >= 0) {
w = x - y;
...

}

int w, x, y;

if (x >= 0 && y >= 0) {
w = x -nsw y;
...

}

𝑥 −nsw 𝑦 = ቊ
𝑥 − 𝑦, if no signed overflow
poison, otherwise

• Analyses only need to tag instructions
with derived facts

• No invalidation of on-the-side metadata
• Tags are first-cast citizens: front-ends

can also insert them

Integer overflow in C++
IR for x86-64:

for (int i = 0; i <= n; ++i) {
*(a + sign_ext64(i)) = 42;

}

for (int i = 0; i <= n; ++i) {
a[i] = 42;

}

Mismatch between pointer and
index types on x86-64

Index increment can overflow in 32 bits
So cannot be trivially changed to 64 bits

Hoisting sext gives 39%
speedup on my desktop!

32 bits / 64 bits:
i = 1 1
i = 2 2
…
i = INT_MAX INT_MAX
i = INT_MIN INT_MAX+1
…

C++ pointers: data-flow provenance
char *p = malloc(4);
char *q = malloc(4);
char *q2 = q + 2;
char *p6 = p + 6;

*q2 = 0;
*p6 = 1;

print(*q2);

UB

print(0)

p[0]

0
p[2] q[0] q[2]

p+6 ← out-of-bounds

Pointer must be inbounds of object found in use-def chain!

C++ pointers: simple no-alias detection
char *p = malloc(4);
char *q = malloc(4);

char *p2 = p + ...;
char *q2 = q + ...;

If 2 pointers are derived from different objects, they don’t alias!

Programs cannot guess the memory layout,
but can observe (with pointer-to-integer casts)

Don’t alias

Tradeoffs
B EC AU S E T H E R E’S N O F R E E LU N C H

Associativity w/ NSW

v = (a +nsw b) + nsw c v = a + nsw (b + nsw c)

(with 8 bits)
a = 50
b = -50
c = -100

v = -100 v = a + nsw (-150)
v = a + nsw poison
v = poison

Goals for select in LLVM
select %c, %a, %b // (c ? a : b)

Should allow:

•control-flow → select

• select → control-flow

• select → arithmetic

• select removal

• select hoisting through arithmetic

•easy movement

Which one?

UB if c poison +
conditional poison

UB if c poison +
poison if either

a/b poison

Conditional
poison + non-det
choice if c poison

Conditional poison
+ poison if c poison

Poison if any of
a/b/c poison

control-flow → select ✓ ✓ ✓

select → control-flow ✓ ✓

select → arithmetic ✓ ✓

select removal ✓ ✓ ✓ ✓

select hoisting ✓ ✓ ✓

easy movement ✓ ✓ ✓

select %c, %a, %b

(assuming branch on poison is UB)

GVN vs Loop unswitching
while (c) {

if (c2) { foo }
else { bar }

}

if (c2) {
while (c) { foo }

} else {
while (c) { bar }

}

Loop unswitch

Branch on poison cannot be UB
Otherwise, wrong if loop never executed

GVN vs Loop unswitching
t = x + 1;
if (t == y) {

w = x + 1;
foo(w);

}

t = x + 1;
if (t == y) {

foo(y);
}

GVN

Branch on poison must be UB
Otherwise, wrong if y poison but not x

Contradiction with loop unswitching!

Fixing loop unswitch

GVN doesn’t need any change!

while (c) {
if (c2) { foo }
else { bar }

}

if (freeze(c2)) {
while (c) { foo }

} else {
while (c) { bar }

}

Malloc and pointer comparison
• Pointer comparison should move freely

• It’s only valid to compare pointers with overlapping liveness ranges

• Potentially illegal to trim liveness ranges

char *p = malloc(4);
char *q = malloc(4);

// valid
if (p == q) { ... }

free(p);

char *p = malloc(4);
free(p);

char *q = malloc(4);

// poison
if (p == q) { ... }

invalid

There’s no perfect semantics
•Must balance tradeoffs

•Enable most useful optimizations (which?)

•Change semantics throughout the pipeline
• Later stages do different optimizations

• May confuse compiler developers?

UB is not only for unsafe languages
•1/8 of additions in Swift have nsw/nuw attributes

• If a language is memory safe: use UB in memory operations

•Type-based alias analysis

•Actually: the safer the language, the more assumptions can be given by the
front-end!

UB is awesome, but…

UB May Result in Security Vulnerabilities

Preventing accidental UB
•Formal spec in K – covers most UB in C99 spec

•Clang Ubsan: -fsanitize=undefined – runtime verification; covers many things
that compilers exploit at the moment

•GCC 4.9+ also includes a version of ubsan

Compiler developers also get confused
“Every transformation above seems of no
problem, but the composition result is wrong.
It is still not clear which transformation to
blame.”

LLVM developer

Result: LLVM miscompiled itself!

PR36228: miscompiles Android:
API usage mismatch between AA
and AliasSetTracker

pub fn test(gp1: &mut usize, gp2: &mut usize, b1:
bool, b2: bool) -> (i32, i32) {
let mut g = 0;
let mut c = 0;
let y = 0;
let mut x = 7777;
let mut p = &mut g as *const _;

{
let mut q = &mut g;
let mut r = &mut 8888;

if b1 {
p = (&y as *const _).wrapping_offset(1);

}

if b2 {
q = &mut x;

}

*gp1 = p as usize + 1234;
if q as *const _ == p {
c = 1;
*gp2 = (q as *const _) as usize + 1234;
r = q;

}
*r = 42;

}
return (c, x);

}

Safe Rust program miscompiled by GVN

PR34548: incorrect Instcombine
fold of inttoptr/ptrtoint

The need for tools
•We need tools to validate conformance with specified semantics

•Otherwise:
• Bugs in the compiler

• Specification is worthless

• Impossible to ensure correctness of spec & tools

•Anecdote:
• First run of Alive2 TV found a bug in LLVM’s own unit tests!

• Unit test was checking for an invalid optimization

The need for tools: select in LLVM
•Select has many possible reasonable semantics

•We found all of them implemented in different parts of
LLVM

•We did exhaustive test case generation
• ~45M programs of 3 instructions & 2-bits
• Found dozens of bugs in LLVM
• Found dozens of semantics inconsistencies

•Secret: We choose one semantics and implemented in
on-line Alive, which is now the de facto oracle

UB if c
poison +
condition
al poison

UB if c
poison

+
poison

if either
a/b

poison

Condition
al poison
+ non-det
choice if c

poison

Condition
al poison

+ poison if
c poison

Poison if
any of
a/b/c

poison

control-
flow →
select

✓ ✓ ✓

select →
control-
flow

✓ ✓

select →
arithmetic

✓ ✓

select
removal

✓ ✓ ✓ ✓

select
hoisting

✓ ✓ ✓

easy
movement

✓ ✓ ✓

Compiler bugs may be security hazards

Conclusions
•There are no demons in UB!

•Undefined behavior is an efficient way for:
• Passing assumptions from the front-end to optimizers

• Cache derived facts

• Restrict domain of functions

•Further research needed to find better IRs

