
Torchy: A Tracing JIT
Compiler for
NUNO P. LOPES

UNIVERSITY OF LISBON (IST -UL) & INESC-ID

Computing demand for ML is exploding

2012 2013 2014 2015 2016 2017 2018

FLOPS doubling
every 3.4 months!

Dropout

AlexNet

ConvNets

VGG

Seq2Seq

GoogleNet

Deep Speech 2

ResNets

NMT

Xception

NAS

TI7 Dota 1v1

AlphaGoZero

AlphaZero

0.001

0.01

0.1

1

10

100

1000

10000
P

et
af

lo
p

s/
s-

d
ay

s

ML models run in frameworks
• First generation
o Developer assembles model as a data-flow graph first

o Hard for development & debugging

o No support for dynamic models

o TensorFlow 1

• Second generation / aka eager-mode or imperative
o Instructions executed straight away

o Easier

o PyTorch, TensorFlow 2

Eager-mode frameworks are amazing!
x = torch.tensor(((1.,2.), (3.,4.)))
y = torch.tensor(((5.,6.), (7.,8.)))

z = x.mul(y)
z = z.add(y)
x.add_(z)

print(x)

tensor([[11., 20.],
[31., 44.]])

Eager-mode frameworks are slow! 🙄
x = torch.tensor(((1.,2.), (3.,4.)))
y = torch.tensor(((5.,6.), (7.,8.)))

z = x.mul(y)
z = z.add(y)
x.add_(z)

print(x)

tensor([[11., 20.],
[31., 44.]])

tensor([[11., 20.],
[31., 44.]])

tensor([[5., 12.],
[21., 32.]])

tensor([[10., 18.],
[28., 40.]])

Is PyTorch inherently inefficient?

Torchy
A TRACING JIT COMPILER FOR PYTORCH

Most Tensors are not observed

w = x.mul(y)
w = w.add(y)
w.add_(x)

print(w)

• Function from 2 tensors to another tensor
• Intermediate values of w not observed

Tensors are only observed:
• Data access, e.g., for branching on

data-dependent models

• Printing

• Some PyTorch functions query layout, size, etc
for pre-dispatch optimization (a hack)

Idea: delay execution until observation
x = torch.tensor(((1.,2.), (3.,4.)))
y = torch.tensor(((5.,6.), (7.,8.)))

w = x.mul(y)
w = w.add(y)
x.add_(w)

print(x)

tensor([[11., 20.],
[31., 44.]])

w0 = x.mul(y)
w1 = w0.add(y)
x1 = x.add_(w1)

Tracing JIT Compiler

Observable event!
Stop tracing and compute

Torchy

Intercepting PyTorch function calls

Dispatch:
Operation = Add.Tensor
Op0 = Tensor, CPU, Float
Op1 = Tensor, CPU, Float

Global dispatcher state:
Default device = CPU
Default type = Float
Include dispatch key = Torchy

Waterfall dispatcher

VMap

Tracer

Autocast

Batched

Autograd

Backend Select

Devices (CPU, CUDA, etc)

z = x.add(y)

Torchy

import torchy
torchy.enable()

Trace
z = add(x, y)

Microbenchmarks

• Code with 8, 16, 32
elementwise operations

• Square matrices, n=100, 1k,
10k

• Straight-line code & with
control-flow

Experiments with Standard Models
• Run 1,000 inference queries over:

• TorchVision: ResNet-18, ResNeXt, MobileNet v3 Large

• Hungging Face: Bert Base/Large, GPT-2, RoBERTa Large

• PyTorch 1.9+

• 12 CPU cores

Bert from the compiler’s perspective
Weight initialization Model

Embedding

Attention Head

Normalization

Feed Forward

Output result

Normalization

Feedforward

Attention

Early Results

Summary: Torchy
• Acceleration for dynamic PyTorch programs through JIT compilation

• Converts programs into small-ish straight-line programs (traces)

• Optimizes and runs each trace with the best backend

• Zero code changes! Just run ‘pip install’

Trace sizes

Without shape inference With shape inference (partial)

Tracing JIT compilers
• A tremendous success for JavaScript in the past decade

• Peek into the future as execution is delayed

• Detect which tensors are temporaries to help optimization

• Traces can be optimized before execution, or in background

• Traces repeat; optimization cost amortized

• Work with any codebase unmodified!

Flush Reasons

Without shape inference With shape inference (partial)

How many traces?

Model Unique Traces wo/
inference

With Shape Inference

BERT Base 87 33

BERT Large 87 33

RoBERTa Large 87 42

GPT-2 246 138

ResNet-18 1048 1035

ResNeXt 1065 1050

MobileNet v3 large 1124 1098

ResNet trace explosion

Life of a PyTorch function call

Dispatch:
Operation = Add.Tensor
Op0 = Tensor, CPU, Float
Op1 = Tensor, CPU, Float

Global dispatcher state:
Default device = CPU
Default type = Float
Include dispatch key = None

Waterfall dispatcher

VMap

Tracer

Autocast

Batched

Autograd

Backend Select

Devices (CPU, CUDA, etc)

z = x.add(y)

What’s a Tensor?

Python
Tensor

PyTorch
Tensor

TensorImpl Storage StorageImpl

PyTorch C++’14 code
pybind / C Python API

Ref counted Ref counted

Other Languages

Interpretation of the data (aka view) The data

Multiple tensor implementations:
• Dense
• Sparse
• Batched
• …

Tensor creation
Python
Tensor

PyTorch
Tensor

TensorImpl Storage StorageImpl
Ref counted Ref counted

x = torch.tensor(((1.,2.), (3.,4.)))
y = torch.tensor(((5.,6.), (7.,8.)))

z = x.mul(y)

x.add_(z)

w = x.to(torch.float, copy=False)

z = x.transpose(0, 1)

New Tensor/TensorImpl/Storage/StorageImpl
w/ default type & placed on default device

New Tensor/TensorImpl/Storage/StorageImpl
w/ same type & device as inputs

Nothing new; override StorageImpl’s data

New Tensor/TensorImpl; bump Storage ref count

Bump Tensor ref count if types match;
new Tensor/Storage otherwise

TorchScript Compilation
• Compiler from Python AST to an SSA-based IR (the same used by tracing)

• Supports functions with control-flow

• But no support for too many Python features (only tensor inputs, no lambdas, no union types,
etc, etc) – by design!

• Many real codebases are too pythonic. Will never work with TorchScript!

TorchScript Tracing
• Function/module is executed (twice) with concrete inputs & operations recorded

def f(x, y):
z = x.add(y)
z.add_(x)
return x.mul(z)

w = torch.tensor(…)
z = torch.tensor(…)
torch.jit.trace(f, (w, z))

SSA-based IR:

def f(x: Tensor, y: Tensor) -> Tensor:
z = torch.add(x, y, alpha=1)
z0 = torch.add_(z, x, alpha=1)
return torch.mul(x, z0)

Tracing input-dependent code

def RAdam(wd, N_sma, …):
if wd != 0:
p_data_fp32.add_(p_data_fp32, alpha=-wd * lr)

more conservative since it's an approximated value
if N_sma >= 5:
denom = exp_avg_sq.sqrt().add_(eps)
p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size)

else:
p_data_fp32.add_(exp_avg, alpha=-step_size)

• There are 4 possible different traces depending on the input!
• But TorchScript Tracing only supports single-trace functions.

Intercepting non-dispatched events

Python
Tensor

PyTorch
Tensor

TensorImpl Storage StorageImplTorchy
Tensor

print(x) x.storage() x.storage()

Is tensor materialized?
- Yes: behave like a normal tensor
- No: flush trace & act normally

Eager-frameworks “hacks”
x = torch.tensor(((1.,2.), (3.,4.)))

z = x.transpose(0, 1)

z[0,0] = 42

print(z)
print(x)

tensor([[42., 3.],
[2., 4.]])

tensor([[42., 2.],
[3., 4.]])

Transpose fuses marvelously with matmul!

+ ever-increasing list of fused ops that users
need to call manually

	Slide 1: Torchy: A Tracing JIT Compiler for
	Slide 2: Computing demand for ML is exploding
	Slide 3: ML models run in frameworks
	Slide 4: Eager-mode frameworks are amazing!
	Slide 5: Eager-mode frameworks are slow! 🙄
	Slide 6: Is PyTorch inherently inefficient?
	Slide 7: Torchy
	Slide 8: Most Tensors are not observed
	Slide 9: Idea: delay execution until observation
	Slide 10: Torchy
	Slide 11: Intercepting PyTorch function calls
	Slide 12: Microbenchmarks
	Slide 13: Experiments with Standard Models
	Slide 14: Bert from the compiler’s perspective
	Slide 15
	Slide 16
	Slide 17: Early Results
	Slide 18: Summary: Torchy
	Slide 19: Trace sizes
	Slide 20: Tracing JIT compilers
	Slide 21: Flush Reasons
	Slide 22: How many traces?
	Slide 23: ResNet trace explosion
	Slide 24: Life of a PyTorch function call
	Slide 25: What’s a Tensor?
	Slide 26: Tensor creation
	Slide 27: TorchScript Compilation
	Slide 28: TorchScript Tracing
	Slide 29: Tracing input-dependent code
	Slide 30: Intercepting non-dispatched events
	Slide 31: Eager-frameworks “hacks”

