= Microsoft

Microsoft Research

Microsoft

i —

Automatic Software

Verification with SM

Nuno Lopes

Deadly Software Bugs

Therac-25
Ariane 5

https://www.google.pt/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiO1KOf9LjNAhVPahoKHSq6CuIQjRwIBw&url=http://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/&bvm=bv.124817099,d.d2s&psig=AFQjCNGWiIajM6X3sFcKbERViyliS6TbWQ&ust=1466591235426628

Compiler bugs

« New trend to exploit compiler bugs to
introduce backdoors

« Major projects to verity compilers (LLVM,
Visual Studio C++)

3 Deniable Backdoors Using Compiler Bugs

Do compiler bugs cause computer software to be-
come insecure? We don’t believe this happens very
often in the wild because (1) most code is not mis-
compiled and (2) most code is not security-critical.
In this article we address a different situation: we’ll
play an adversary who takes advantage of a natu-
rally occurring compiler bug.

Do production-quality compilers have bugs?

fm bl

by Scott Bauer, Pascal Cuog, and John Regehr

ery new tool tends to find different bugs. This has
been demonstrated recently by running afl-fuzz
against Clang/LIVM.? A final way to get good com-
piler bugs is to introduce them ourselves by submit-
ting bad patches. As that results in a “Trusting
Trust” situation where almost anything is possible,
we won’t consider it further.

So let’s build a backdoor! The best way to do

Ll i L £ I | Vi LR . | 1

. Bloomberg tets Tech Pursuits olitics Dpinion Busi

Knight Shows How to Lose
$440 Million in 30 Minutes

by Matthew Philips
matthewaphilips

August 2, 2012 — 11:10 PM BST f ~»

Talk about a bad day. In the mother of all computer glitches, market-making firm
Knight Capital Group lost $440 million in 30 minutes on Aug. 1 when its trading

software went, to use the technical term, kablooey. That’s four times its net income from
all of 2011, and a lot more than most analysts were estimating as the day unfolded.

Knight’s chief executive officer, Thomas Joyce, told Bloomberg the day after the disaster

that the firm had “all hands on deck” to fix a “large bug” that had infected its market-
making software.

Home | About | Programmes Executive Education Faculty & research Entrepreneurship

8 January 2013

Financial Content: Cambridge University study states software
bugs cost economy $312 billion per year

11

According to recent Cambridge University research, the global cost of debugging software has risen to $312
billion annually. The research found that, on average, software developers spend 50% of their programming time
finding and fixing bugs...The study was conducted by the Judge Business School at Cambridge University, in
collaboration with Cambridge-based Undo Software...”

JJ

BuUgs are Annoying too..

A fatal exception OGE has occurred at 0028:C0034B2Z3. The current
application will be terminated.

* Press any key to terminate the current application.
* Press CTRL+ALT+DEL again to restart your computer. You will
logse any unsaved information in all applications.

Press any key to continue _

Why should YOU care?

» Be the hero: save lives and/or money
» Be the hero: save us from hackers
« Be the hero: save us from blue screens

* All major companies hiring in this area

Can this assert() crash?

void f(int n) {
int j = 0;

for (int 1 = 0; 1 < n; ++1i) {
J += 1;

}

assert(j >= n);

¥

Today
» Applying SMT to software verification

« SMT: learning from program analysis

Program Analysis

 Abstract interpretation / static analysis
« Symbolic execution

« Bounded model checking (BMC)

« Model checking

» Different clients: program verification, bug

finding, compiler optimization, refactoring,
code metrics, ...

Verification

Abstract Interpretation (Al)

» Execute program with abstract values (e.q.,
intervals)

« Widening: converge faster (loses
completeness)

» Abstraction: forget (potentially) irrelevant
information

Al: example

void f() {
int 1 = 0;
while (i < 100) {
++1;
}
assert(i == 100);
}

INnterval domain

Interval:
{ILhl |l < h l€EZU{—x},h € ZU {+00}}

Abstraction function o
a(s) = [MiIN(s), max(s)]

Example:
a{l, 3}) = [1, 3]

Al with intervals

0 =0 iO — [O)O]
i' = (ip U iy) N[—00,99]

L= g i)] = i+ [1;1]
| < V\zmo
bp=1+1 =1 Does this always hold?
i, 2100 i, =100 ip N (i #100) =0

error return

Al: least fixed-point (Ifp)

ip = 10,0
i’ = (ig U
i1=i’+

ll) N [_OO) 99]
1,1]

i' =0 i' =10,0] i' =10,0 i' =10,1 i' =10,1

i1 =0 i1 =0 ip = [1,1] ip =[1,1 ip = [1,2]

l2=¢ lz=® l2=® l2=¢ l2=®
15t iteration 2nd 3rd Ath 5th

Al: least fixed-point (Ifp)

ip = 10,0
i’ = (ig U
ilzi"l‘

ll) N [—OO, 99]

1,1]

e
—
S
-
—

ISESRSI

Cniy, O, O, iy,

N B

1st iteration

e e T
e

N =

0,0]
0,99]
1,100]
100,100]

last iteration

Al: least fixed-point (Ifp)
0= 0 iy = 0,0
i = (ip Uiy) N [—00,99]
. ‘_ _ l]_:l"l‘:l,l]
11 = Gl) i, = (ip Uiy) N [100, 400]
i < V\zmo
i, 2100 \3 =100 i{ = "1:100]
error || return i, =[100,100]

Does this always hold?

Al: Widening

« What we just did was super slow!
« Faster to execute program

- Widening: converge Ifp faster:
|Lh]V [I',h'] = [if]' <1 then — oo else],

if h" > h then + oo else h]

Al: Ifp with widening

iO — [0,0_ l:O = O;O]
"= (' V(ip U iy)) N [—0,99] L =10,99]
N i, = [1,100]
i =1 +[L1] i, = [100,100]
iz — (Lo U ll) N [100 +OO] 2 - '
iO — [0,0] iO — [0,0] iO — 0,0: io — O 0: iO — _0 0]
i = ¢ i’ =[00] || i =[0,0] ||i =[0,99]||i" =[0,99]
il — ® il — @ il — :1,1: il — _1,1_ il — _1 100]
l2=¢ lz=® lz=¢ l2=® 1»2:@
15t iteration 2nd 3rd Ath 5th

Abstract Interpretation

» Least fixed-point over equations
« Each iteration: multiple abstract domain
operations

» Arithmetic operations, union, conjunction, etc
 Usually not implemented with SMT

* SMT can be used to compute optimal
results

Al: Many domains

777077777,
4%

s sy

Intervals Simple Congruences
X; € [a;, bi] X; = a; [bi]
[Cousot-Cousot-76] [Granger-89]
Linear Equalities Linear Congruences
2 jaiXi = 2.iaiXi = B[]
[Karr-76] [Granger-91]

Bertrand Jeannet, Antoine Miné [CAV'09]

Al: Many domains

)

Y

NN

Polyhedra

Z,‘ a;iXi > 8
[Cousot-Halbwachs-78]

N

77

s

MR
MR

o
)

Ellipsoids
aX? 4+ BY? 4+ 4XY <6
[Feret-04]

A

7
7
77
%

///////
%
s

s

NN

N Q\k\\

Octagons

+X;

Xji<pg

[Miné-01]

[

O

O

Varieties

P(X) = 0,

P € R[Var]

[Sankaranarayanan-Sipma-Manna-0¢

Bertrand Jeannet, Antoine Miné [CAV'09]

Symbolic execution

FXxecute program with an SMT solver
Mostly for bug finding; usually doesn’t

terminate

Usually T query per branch

SE: example

void f(int n) {
int j = 0;

for (int i = 0; 1 < n; ++1) {

J += 1;
}

assert(j >= n);

¥

I <N

I <N
=1+ 1
Ji=J+1
| >n
v

| < N

I < N

=1+ 1

Ji1=J)+1

SMT queries
]0=0/\l0=0/\lo<n
]0=O/\l0=0/\l02n/\]0<n

skip

J</\2n

error

return

SE: implementation

* Incremental queries along a path

« fork() to copy SMT solver state (on
oranching)

 Usually BFS, easily parallelizable
« Mixed SAT/UNSAT queries

BMC: Bounded Model Checking

« Similar to symbolic execution

» But usually encodes whole program in
single query

* 1 query per unfolding

BMC: example

void f(int n) {

int j = 0;
for (int i = 0; 1 < n; ++1i) {
J +=1;
}
assert(j >= n); :
) ’ 1 unfolding
. void f(int n) {
0 unfoldings int j = 0;
void f(int n) { int 1 =0;
int = o; assume(i < n);
int 1 = 0; J Tf 1
assume(i >= n); L .
assert(j >= n); assume(i >= n);
} assert(j >= n);
}

BMC: SMT queries

0 unfoldings 1 unfolding
void f(int n) { void f(int n) {
int j = 0; Int 3 = 0;

int 1 = 0; int 1 = @;

assume(i >= n); gssume(l < nj;
assert(j >= n);] +=1;
++1;
} .
assume(i >= n);
assert(j >= n);

j0=0/\i0=0/\i021’1/\j0<n }

]0:0/\ 1,0:0/\10<n/\11:10+1/\]1:]0+1/\112n/\]1<n

BMC: implementation

« Mostly UNSAT queries (SAT = bug in
orogram)

« NOot incremental

« Advanced: termination with k-induction
(not covered)

Model Checking

« Abstract Interpretation, but abstraction is
built as needead

« CEGAR loop to refine abstraction
(counterexample-guided abstraction
refinement)

» Abstraction: as coarse as possible, precise
when needed

SMC: Cartesian predicate abstraction

» Set of predicates, e.qg.,
P={x=0x+y<2,x =3}

ca(x=0Ay <1)={0,1}

» Entailment can be approximated

syntactically:

lfaS bthenb - a
*Eg. {1} {13} so x>20Ax+y<2-x2=>0

SMC: Example

void f(int n) {

int j = 0;

for (int i = 0; i < n; ++1i) {
j += 1;

}

assert(j >= n);

} i</

SMC: Example

=01 ¢ P=4y
b =0
=J=¢(JO,_]1) 0 UNSAT = abstraction too coarse
= ¢(ig Iy)
i</\|2n
=]+ 1 b=i| U
i1=i+1
j2<r/\?2n

SMC: Example Refinement

P={i=ji>n}

Jo=0 1| {0}

J=0AT=0-po(i))
pO(l']) - P1(l;])

p,(i,j,n)ANj<n-1l
i</

b

. . . . pO(l']) = l =j
— — 0,1 7 . .
O} | 124] p=i| O p1(i,j) =i=]
h = | /\ p2(ijm)=izn
Jo <n Job 2N
error return
\

unreachable

SMC: Refinement

« Many algorithms: interpolants from SMT
oroof of UNSAT, algebra equations (Farkas
emma), polynomial rings, etc

» Predicate list: global, per “line”, per
function, etc

SMC: Implementation

e Either discard all state across iterations,
maintain partial state or whole sub-trees

« BFS vs DFS: no clear choice
1 query per predicate per “line” per
iteration

Comparison

Abstract . 1 per “line” per

Interp Iteration

Symbolic .

Cec No 1 per path mixed Yes
BMC No T per unfolding UNSAT ~ No
Vode 1 per “line” per

Adaptive predicate per UNSAT No

Checking iteration

Though clients

» Variety of theories: integers, rationals, reals,
pit-vectors, floats

* Plus arrays and UFs

» Plus: incremental, copy SMT state, small
queries and huge queries

» Resource bounds (time, memory)
« Sometimes w/ quantifiers

Preprocessing Is awesome

QARMC -nopreprocess

cdaudio.bug 7s 70s (10x)
diskperf 88s > 600s (> 7x)
summ_mccarthy 0.5s > 50s (> 100x)
grdcmp 1s > 100s (> 100x)

tridag 0.7s 1.4s (2x)

QARMC: preprocessing
« C frontend:

« Alias analysis
- Trim read/write variable sets per function

« At horn clause level:

« Simplify formulas

« Bottom-up / top-down symbol reachability
* Inline clauses

- Equality propagation

« Subsumed clause elimination

* Acceleration (compute simple loops)

- Inter-clause transformations, like: constant/equality
propagation, ...

What does this mean for SMT7

 Program analysis properties are often

shallow
« Most stuff is irrelevant

» Cheap preprocessing pays off
« Compilers have cheap constraint solvers

» SMT solvers are already awesome; Can we
aim for even more awesomeness?

APl Experiments: queries/sec

SICStus LLVM

True/False 3,657 @ 264,550 (72x)

a=b 2,886 4,682 (5x)
a=>bAb>=c 883
f(a)=b 1748 5,000x potential

f(@)=bAf(b)=c 1,091
10,42] N [5,99] 20 Million

All latest versions, Intel x64

AP| Experiments: take away

« Small queries are too slow

» Everything must be lazy, and only used
when needed

« With ~4k SMT queries/sec, can only visit
40 states/sec it predicate list size = 100

» 2 to 4 orders of magnitude slower than specialized abstract
domains

Drawing ideas from Compilers

« Efficient algorithms for program analysis

« Super cheap (and imprecise) constraint
solvers

 Can they be used in SMT solvers
specialized for program analysis?

WARNING

'm no SMT expert.

What follows is a list of ideas that could

potentially maybe work in SMT. Mostly not
new,; some tried and failed

But: compiler algorithms did wonders in
software verification tools

Use at your own risk.

Alias analysis

int f(int *a, int k) {

for (unsd @; i < 5; ++i) {

return b[k]; Can't alias (i.e., don't overlap)

¥

Alias analysis

int f(int *a, int k) {
int b[5];
for (unsigned i = 0; i < 5; ++1i) {
b[i] = a[i] + 1;
}
return b[k];

¥

Straightforward encoding:
mem’ = (store (+ b 0) (+ (select (+ a 0) mem) 0) mem)
mem' = (store (+ b 1) (+ (select (+ a 1) mem') 1) mem')

Equivalent to:
mem’ = (store (+ b 0) (+ (select (+ a 0) mem}]0) mem)
mem' = (store (+ b 1) (+ (select (+ a 1) mem) 1) mem")

Alias analysis: Expand 2 unfoldings

Straightforward encoding:
mem'' = (store (+ b 1) (+ (select (+al)
(store (+ b 0) (+ (select (+ a 0) mem) 0) mem) 1)
(store (+ b 0) (+ (select (+ a 0) mem) 0) mem))

Equivalent to:
mem' = (store (+ b 1) (+ (select (+ a1l) mem) 1)
(store (+ b 0) (+ (select (+ a 0) mem) 0) mem))

Alias Analysis in SMT

» Propagate aliasing constraints cheaply ana
simplity array formulas

*E.g.. (a + sizeof(a) = bV
b + sizeof (b) = a) A
(= (select ...)...)

Array Theory in Z3

e Translation Validation for MSVC++

« Array theory vs encoding with (ite ..) and
UFs

« Performance comparable with light alias
analysis in vcgen

« Arrays slower it no analysis

Data-flow analysis

« Abstract interpretation
« Bottom-up vs top-down

 Varied domains: reachable definitions, live
variables, signs, known bits, etc...

« Path sensitive vs path insensitive

DFA: Known bits

char f(char x) {

char y = 0; y = 00000000
if (x < 9)

y = 3; y = 00000011
- y = 000000xx
if (x >= 3 && (y & 1) !'=0) 7

return 09;
return 1;

¥

DFA: Known Dbits (path-sensitive)

char f(char x) {

char y = 0; y = 00000000
if (x < 9)
P = 3; y = 00000011 / x = TXXXXXXX
vif (x >= 3 && (y & 1) = 0) false! / false!
return 9;
return 1;

¥

Data-flow: propagate bounds

» Context-sensitive propagation (left-right
and right-left): a Ab A c
« Wrapping interval domain [l,h]

* | < h:[l,h]
> h:[l,max] U [0, h]

x=2A--ANite(x<0,a,b) =0

!

XxX=2N-ANb=0

Propagate bounds: Example

« Example: Proof of correctness of automatic

vectorization by MSVC+ +:

 Vanilla Z3: > 300s
« Z3+bounds: 0.05s

« However: not always profitable (too slow)
« What if “path-insensitive” (less precise)?

Tracing JIT / Profile-guided optimization (PGO)

Javascript

function fn(a, b) {
return a + b;

¥

 The compiler may not know in advance
the type of a and b

« Solution? Measure

Tracing JIT / Profile-guided optimization (PGO)

Javascript

function fn(a, b) {
return a + b;

N

function fn(a, b) {

if (typeof a === 'number' && typeof b === 'number')
return Number.add(a, b);
if (typeof a === 'string' && typeof b === 'string')
return String.concat(a, b);
return a + b;
} Top 2 types

at runtime

Profile-guided optimization (PGO)

« [T can't be predicted statically, measure at
runtime and adapt

« SMT: can we specialize formulas where
contlicts are more frequent?

 Can we specialize formulas for
‘simplitying” values? (e.qg., zero)

Bit-blasting

» Brute-force approach

« Assume no overflow and use reals/integers
(or case-split ftormulas)?

» Fallback only when needed (and only for
the sub-formulas that need it)

/)

70 DOJAN
INTERNSHIP

Mz Mz Y2rlig

Conclusion

« SMT solvers are awesome: they allowed
complex program analysis to develop

« Know your client: adapt algorithms and
APIs

« SMT solvers ear should learn from
program analysis

Microsoft Research

m Microsoft

