
technology
from seed

Weakest Precondition Synthesis for 

Compiler Optimizations

Nuno Lopes and José Monteiro



technology
from seed

• Deriving preconditions by hand is hard; WPs are often 

non-trivial

• WPs derived by hand are often wrong!

• Weaker preconditions expose more optimization 

opportunities

Weakest Precondition Synthesis for Compiler Optimizations

Why WP Synthesis for Compiler 

Optimizations?



technology
from seed

• Yang, Chen, Eide, Regehr. Finding and Understanding 

Bugs in C Compilers, PLDI’12:

– 79 bugs in GCC (25 P1)

– 202 bugs in LLVM

– 2 wrong-code bugs in CompCert

• 32 open P1 bug reports in GCC (as of last week)

• 403 open wrong-code bug reports in GCC

• 16 open wrong-code bug reports in LLVM

Weakest Precondition Synthesis for Compiler Optimizations

Motivation: Compilers are Full of Bugs



technology
from seed

// For a logical right shift, we can fold if the comparison is not

// signed. We can also fold a signed comparison if the shifted mask

// value and the shifted comparison value are not negative.

// These constraints are not obvious, but we can prove that they are

// correct using an SMT solver such as "Z3" :

// http://rise4fun.com/Z3/Tslfh

Weakest Precondition Synthesis for Compiler Optimizations

Verification to the Rescue:

LLVM PR17827

if (ShiftOpcode == Instruction::AShr) {

// There may be some constraints that make this possible,

// but nothing simple has been discovered yet.

CanFold = false;

}

lib/Transforms/InstCombine/InstCombineCompares.cpp



technology
from seed

• Preliminaries

• Language of Preconditions

• Example

• Algorithm

• Evaluation: PSyCO

Weakest Precondition Synthesis for Compiler Optimizations

Outline



technology
from seed

• Preliminaries

• Language of Preconditions

• Example

• Algorithm

• Evaluation: PSyCO

Weakest Precondition Synthesis for Compiler Optimizations

Outline



technology
from seed

• Compiler optimization

– Transformation function

– Precondition

– Profitability heuristic

Weakest Precondition Synthesis for Compiler Optimizations

Compiler Optimizations



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

Loop Unswitching

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

S1, S2 are template statements

B is a template Boolean expression



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

Loop Unswitching:

Example Instantiation

…

while I < N do

if N > 5 then

A := A + N

else

A := A + 1

I := I + 1

…

if N > 5 then

while I < N do

A := A + N

I := I + 1

else

while I < N do

A := A + 1

I := I + 1

→

while I < N do

if B then

S1
else

S2
I := I + 1

Instantiation:

𝐵 ⟼ 𝑁 > 5
𝑆1 ⟼ 𝐴 ≔ 𝐴 + 𝑁
𝑆2 ⟼ 𝐴 ≔ 𝐴+ 1



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

Loop Unswitching:

Weakest Precondition

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅ ∧
𝑊 𝑆2 ∩ 𝑅 𝐵 = ∅



technology
from seed

• Preliminaries

• Language of Preconditions

• Example

• Algorithm

• Evaluation: PSyCO

Weakest Precondition Synthesis for Compiler Optimizations

Outline



technology
from seed

• Read and Write sets for each template 

statement/expression

• Arbitrary constraints over read/write sets

• In practice constraints are only over R/W and W/W 

intersection

– 𝑣 ∉ 𝑅 𝐵

– 𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅

– 𝑊 𝑆1 ∩𝑊 𝑆2 = ∅

Weakest Precondition Synthesis for Compiler Optimizations

Language of Preconditions



technology
from seed

• Books and developers already informally speak about 

read and write sets

• Can be efficiently discharged using current compiler 

technology:

– Memory dependence analysis

– Alias/pointer analysis

– Loop analysis

– Range analysis

– …

Weakest Precondition Synthesis for Compiler Optimizations

Language of Preconditions:

Suitability



technology
from seed

• Preliminaries

• Language of Preconditions

• Example

• Algorithm

• Evaluation: PSyCO

Weakest Precondition Synthesis for Compiler Optimizations

Outline



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

Synthesizing WP for Loop 

Unswitching

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

1) Find counterexample

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N

Pre = true



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

2) Synthesize WP for counterexample:

VC Gen

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS1I, S1I1, I2) ˄

N2 = ite(wS1N, S1N1, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

2) Synthesize WP for counterexample:

Conditional Ackermannization

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS1I, S1I1, I2) ˄

N2 = ite(wS1N, S1N1, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2

B0 and B1 are equal if the values of the 

variables in R(B) are equal

𝐼 ∈ 𝑅 𝐵 → 𝐼0 = 𝐼2 ⋀

𝑁 ∈ 𝑅 𝐵 → 𝑁0 = 𝑁1
→ 𝐵0 = 𝐵1



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

2) Synthesize WP for counterexample:

Must-write vs may-write

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS1I, S1I1, I2) ˄

N2 = ite(wS1N, S1N1, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2

If a variable is in the write set of a 

statement, it may or may not be written.

𝑤𝑆1𝐼 → 𝐼 ∈ 𝑊 𝑆1
𝑤𝑆1𝑁 → 𝑁 ∈ 𝑊 𝑆1



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

2) Synthesize WP for counterexample:

Final constraint

∃𝑆 ∀𝑉 𝑃𝑎𝑡ℎ ∧ 𝐴𝑐𝑘𝑒𝑟𝑚𝑎𝑛𝑛 ∧ 𝑀𝑢𝑠𝑡𝑊𝑟𝑖𝑡𝑒 ∧ … → 𝑃𝑎𝑡ℎ𝐼𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡

S = Read/Write sets

V = Vars from VCGen, Must-write vars

A possible model:

𝑊 𝑆1 = ∅
𝑅 𝑆1 = ∅
𝑅 𝐵 = ∅

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

2) Synthesize WP for counterexample:

Disjunction of all models

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

3) Iterate until no more 

counterexamples can be found

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅ ∧
𝑊 𝑆2 ∩ 𝑅 𝐵 = ∅



technology
from seed

• Preliminaries

• Language of Preconditions

• Example

• Algorithm

• Evaluation: PSyCO

Weakest Precondition Synthesis for Compiler Optimizations

Outline



technology
from seed

1) Find counterexample

2) Generate WP that rules out the counterexample

3) Iterate until no more counterexamples can be found

Weakest Precondition Synthesis for Compiler Optimizations

Algorithm



technology
from seed

• Model generalization

• Exploit UNSAT cores

• Bias towards R/W and W/W intersections

Weakest Precondition Synthesis for Compiler Optimizations

Optimizations



technology
from seed

• Preliminaries

• Language of Preconditions

• Example

• Algorithm

• Evaluation: PSyCO

Weakest Precondition Synthesis for Compiler Optimizations

Outline



technology
from seed

• About 1,400 lines of Python

• Uses Z3 for constraint solving

• Source code and benchmarks available from 

http://goo.gl/7K02H9

Weakest Precondition Synthesis for Compiler Optimizations

PSyCO: Precondition Synthesizer for 

Compiler Optimizations

http://goo.gl/7K02H9


technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

PSyCO: Results



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

Example of Synthesized WP:

Software Pipelining

Precondition:

(Weaker than 

PEC’s [PLDI’09])



technology
from seed

• Deriving WPs by hand is hard and error-prone

• Weaker preconditions enable more optimization 

opportunities

• Presented the first algorithm for the automatic synthesis of 

WPs for compiler optimizations

Weakest Precondition Synthesis for Compiler Optimizations

Conclusion



technology
from seed

Título da apresentação

technology
from seed


