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• Deriving preconditions by hand is hard; WPs are often 

non-trivial

• WPs derived by hand are often wrong!

• Weaker preconditions expose more optimization 

opportunities

Weakest Precondition Synthesis for Compiler Optimizations

Why WP Synthesis for Compiler 

Optimizations?
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• Yang, Chen, Eide, Regehr. Finding and Understanding 

Bugs in C Compilers, PLDI’12:

– 79 bugs in GCC (25 P1)

– 202 bugs in LLVM

– 2 wrong-code bugs in CompCert

• 32 open P1 bug reports in GCC (as of last week)

• 403 open wrong-code bug reports in GCC

• 16 open wrong-code bug reports in LLVM

Weakest Precondition Synthesis for Compiler Optimizations

Motivation: Compilers are Full of Bugs
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// For a logical right shift, we can fold if the comparison is not

// signed. We can also fold a signed comparison if the shifted mask

// value and the shifted comparison value are not negative.

// These constraints are not obvious, but we can prove that they are

// correct using an SMT solver such as "Z3" :

// http://rise4fun.com/Z3/Tslfh

Weakest Precondition Synthesis for Compiler Optimizations

Verification to the Rescue:

LLVM PR17827

if (ShiftOpcode == Instruction::AShr) {

// There may be some constraints that make this possible,

// but nothing simple has been discovered yet.

CanFold = false;

}

lib/Transforms/InstCombine/InstCombineCompares.cpp
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• Compiler optimization

– Transformation function

– Precondition

– Profitability heuristic

Weakest Precondition Synthesis for Compiler Optimizations

Compiler Optimizations



technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

Loop Unswitching

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

S1, S2 are template statements

B is a template Boolean expression
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Loop Unswitching:

Example Instantiation

…

while I < N do

if N > 5 then

A := A + N

else

A := A + 1

I := I + 1

…

if N > 5 then

while I < N do

A := A + N

I := I + 1

else

while I < N do

A := A + 1

I := I + 1

→

while I < N do

if B then

S1
else

S2
I := I + 1

Instantiation:

𝐵 ⟼ 𝑁 > 5
𝑆1 ⟼ 𝐴 ≔ 𝐴 + 𝑁
𝑆2 ⟼ 𝐴 ≔ 𝐴+ 1
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Loop Unswitching:

Weakest Precondition

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅ ∧
𝑊 𝑆2 ∩ 𝑅 𝐵 = ∅
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• Read and Write sets for each template 

statement/expression

• Arbitrary constraints over read/write sets

• In practice constraints are only over R/W and W/W 

intersection

– 𝑣 ∉ 𝑅 𝐵

– 𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅

– 𝑊 𝑆1 ∩𝑊 𝑆2 = ∅

Weakest Precondition Synthesis for Compiler Optimizations

Language of Preconditions
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• Books and developers already informally speak about 

read and write sets

• Can be efficiently discharged using current compiler 

technology:

– Memory dependence analysis

– Alias/pointer analysis

– Loop analysis

– Range analysis

– …

Weakest Precondition Synthesis for Compiler Optimizations

Language of Preconditions:

Suitability
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Synthesizing WP for Loop 

Unswitching

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→
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1) Find counterexample

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N

Pre = true
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2) Synthesize WP for counterexample:

VC Gen

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS1I, S1I1, I2) ˄

N2 = ite(wS1N, S1N1, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2
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2) Synthesize WP for counterexample:

Conditional Ackermannization

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS1I, S1I1, I2) ˄

N2 = ite(wS1N, S1N1, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2

B0 and B1 are equal if the values of the 

variables in R(B) are equal

𝐼 ∈ 𝑅 𝐵 → 𝐼0 = 𝐼2 ⋀

𝑁 ∈ 𝑅 𝐵 → 𝑁0 = 𝑁1
→ 𝐵0 = 𝐵1
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2) Synthesize WP for counterexample:

Must-write vs may-write

I0 < N0 ˄
B0 ˄
I1 = ite(wS1I, S1I0, I0) ˄

N1 = ite(wS1N, S1N0, N0) ˄

I2 = I1 + 1 ˄

I2 < N1 ˄
¬B1 ˄
I3 = ite(wS1I, S1I1, I2) ˄

N2 = ite(wS1N, S1N1, N1) ˄

I4 = I3 + 1 ˄

I4 ≥ N2

If a variable is in the write set of a 

statement, it may or may not be written.

𝑤𝑆1𝐼 → 𝐼 ∈ 𝑊 𝑆1
𝑤𝑆1𝑁 → 𝑁 ∈ 𝑊 𝑆1
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2) Synthesize WP for counterexample:

Final constraint

∃𝑆 ∀𝑉 𝑃𝑎𝑡ℎ ∧ 𝐴𝑐𝑘𝑒𝑟𝑚𝑎𝑛𝑛 ∧ 𝑀𝑢𝑠𝑡𝑊𝑟𝑖𝑡𝑒 ∧ … → 𝑃𝑎𝑡ℎ𝐼𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡

S = Read/Write sets

V = Vars from VCGen, Must-write vars

A possible model:

𝑊 𝑆1 = ∅
𝑅 𝑆1 = ∅
𝑅 𝐵 = ∅

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N
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2) Synthesize WP for counterexample:

Disjunction of all models

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅

I < N

B

S1
I := I + 1

I < N

¬B
S2
I := I + 1

I ≥ N

B

I < N

S1
I := I + 1

I < N

S1
I := I + 1

I ≥ N
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3) Iterate until no more 

counterexamples can be found

while I < N do

if B then

S1
else

S2
I := I + 1

if B then

while I < N do

S1
I := I + 1

else

while I < N do

S2
I := I + 1

→

Precondition:

𝐼 ∉ 𝑅 𝐵 ∧
𝑊 𝑆1 ∩ 𝑅 𝐵 = ∅ ∧
𝑊 𝑆2 ∩ 𝑅 𝐵 = ∅
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1) Find counterexample

2) Generate WP that rules out the counterexample

3) Iterate until no more counterexamples can be found

Weakest Precondition Synthesis for Compiler Optimizations

Algorithm
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• Model generalization

• Exploit UNSAT cores

• Bias towards R/W and W/W intersections

Weakest Precondition Synthesis for Compiler Optimizations

Optimizations



technology
from seed

• Preliminaries

• Language of Preconditions

• Example

• Algorithm

• Evaluation: PSyCO

Weakest Precondition Synthesis for Compiler Optimizations

Outline



technology
from seed

• About 1,400 lines of Python

• Uses Z3 for constraint solving

• Source code and benchmarks available from 

http://goo.gl/7K02H9

Weakest Precondition Synthesis for Compiler Optimizations

PSyCO: Precondition Synthesizer for 

Compiler Optimizations

http://goo.gl/7K02H9


technology
from seed

Weakest Precondition Synthesis for Compiler Optimizations

PSyCO: Results
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Example of Synthesized WP:

Software Pipelining

Precondition:

(Weaker than 

PEC’s [PLDI’09])
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• Deriving WPs by hand is hard and error-prone

• Weaker preconditions enable more optimization 

opportunities

• Presented the first algorithm for the automatic synthesis of 

WPs for compiler optimizations

Weakest Precondition Synthesis for Compiler Optimizations

Conclusion
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Título da apresentação
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