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Expectations for Compilers R

» Improve performance
- Reduce code size
- Reduce energy consumption
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Compilers Do Deliver technology

i from seed
%s boa

* LLVM 3.2 introduced a Loop Vectorizer
» Performance improvement of 10-300% in benchmarks
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But Compilers are Full of Bugs % from seed
boa

» Yang, Chen, Eide, Regehr [PLDI'12]:
— 79 bugs in GCC (25 P1)
— 202 bugs in LLVM
— 2 wrong-code bugs in CompCert

- Le, Afshari, Su [PLDI'14]:
— 40 wrong-code bugs in GCC
— 42 wrong-code bugs in LLVM

- Last week:
— 395 open wrong-code bug reports in GCC
— 14 open wrong-code bug reports in LLVM
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Churn in Compiler’s code technology

from seed

_
e

» +0.5M LoC added to LLVM last year
» 20k commits
« Over 4M LoC in LLVM
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from seed

Compilers by Dragon’s Lenses

_
e

#include <stdio>
#include <stdlib>

extern void 1 Ne

{ pList->Lis
}

extern void 1 Ad
DigitLi
out = (
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Loop Unswitching technology

from seed

if B then
while T < N do while T < N do
if B then S,
Sy I =1+ 1
else - else
S, while T < N do
I := 1+ 1 S,

I :=T1 + 1

S,, S, are template statements
B is a template Boolean expression
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Specifying Compiler Optimizations technology

from seed

_
e

- Transformation function
«  Precondition
* Profitability heuristic
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Contributions technology

from seed
boa

- Automatic weakest precondition synthesis for compiler
optimizations

- Automatic partial equivalence checking, applied to
compiler optimization verification
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Optimizations?

Why WP Synthesis for Compiler % from seed
boa

+ Deriving preconditions by hand is hard; WPs are often
non-trivial
» WPs derived by hand are often wrong!

- Weaker preconditions expose more optimization
opportunities
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Verification to the Rescue: technology

from seed
LLVM PR17827 ‘%
boa

lib/Transforms/InstCombine/InstCombineCompares.cpp

// For a logical right shift, we can fold if the comparison is not
// signed. We can also fold a signed comparison if the shifted mask
// value and the shifted comparison value are not negative.

// These constraints are not obvious, but we can prove that they are
// correct using an SMT solver such as "zZ3"

// http://risedfun.com/Z23/Tslfh

1if (ShiftOpcode == Instruction::AShr) {
// There may be some constraints that make this possible,
// but nothing simple has been discovered yet.
CanFold = false;
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Loop Unswitching technology

from seed

_
e

if B then
while T < N do while T < N do
if B then S,
Sy I =1+ 1
else - else
S, while T < N do
I := 1+ 1 S,

I :=T1 + 1
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from seed

Loop Unswitching:

Example Instantiation

while I < N do while T < N do

if § thénthen A := A + N
B, := A+ N T =1 + 1
else - else

B,:=A +1 while I < N do

I (=1 + 1 A := A + 1

I =1+ 1
|nstantiation:
B— N>5

Sl |_>A:=A+N
SZ — A =A+1
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from seed

Loop Unswitching:

Weakest Precondition

if B then
while T < N do while T < N do
if B then S,
Sy I =1+ 1
else - else
S, while T < N do
I := 1+ 1 S,

I :=T1 + 1

Precondition:

1€ R(B)A

W( ) NRMB)=0A
W(S;)NR(B) =0
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Language of Preconditions % e
boa

- Read and Write sets for each template
statement/expression

- Arbitrary quantifier-free constraints over read/write sets

» In practice constraints are only over R/W and W/W
Intersection
- v & R(B)
- W(S)NRB) =0
- W) NW(S,) =0
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Suitability

Language of Preconditions: % P
boa

- Books and developers already informally speak about
read and write sets

- Similar to PEC’s

+ Can be efficiently discharged using current compiler
technology:
— Memory dependence analysis
— Alias/pointer analysis
— Loop analysis
— Range analysis
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Synthesizing WP for Loop technology

from seed

=
Unswitching C%@fi
boa

if B then
while T < N do while T < N do
if B then S,
Sy I =1+ 1
else - else
S, while T < N do
I := 1+ 1 S,

I :=T1 + 1
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1) Find counterexample

while I < N do 1f B then
if B then while I < N do
s, S
g else
o141 while I < N do
SZ
I =1+ 1
I < N B
B I < N
S; S1
I :=1+1 I :=1+1
I < N I < N
S, I :=1+ 1
I =1+ 1 I 2 N
I 2 N

%s
isboa

Pre = true

technology

from seed
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2) Synthesize WP for counterexample: "

f\ from seed
VC Gen @
isboa

I < N Lo < Ny,

B Bg

S, | I, = ite(wS;I, S,;I0, I,) ,

I =1+ 1 N, = ite(wS,N, S,NO, N,) .

I <N I, = I, + 1,

—-B

s, I, < N, ,

T := T + 1 781 A

I >N I, = ite(wS,I, S,I0, I,) ,
N, = ite (wS,N, S,NO, N;) ,
I, 2 N,
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from seed

Conditional Ackermannization

2) Synthesize WP for counterexample: "
Cﬁboa

Lo < No 4 B, and B, are equal if the values of the
Boal variables in R(B) are equal

I, = 1te(wS,;I, S,I0, I,) .,

N, = ite(wS,N, $,NO, N,) .

L =1L, + 1, (I€ERMB)-I=1)A

17B< INEA ((N (S R(B) - Ny = Nl))

;3 = lte (wS,I, S,I0, I,) , = Bo = By

N, = ite (wS,N, S,NO, N,)

I, =I,+ 1,

I, 2 N,
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2) Synthesize WP for counterexample: "

from seed
Final constraint C%
boa

I <N B

B I <N
Sy S,

I =1+ 1 I :=1+ 1
I < N I < N
—-B S,

Sy I := 1 + 1
I =1+ 1 I 2 N

I 2N

AS VV Path A Ackermann A MustWrite A ... > PathlsCorrect | A possible model:
W(S1) =0
S = Read/Write sets R(S) =0
\/ = Vars from VCGen, Must-write vars R(B) =0
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2) Synthesize WP for counterexample:

- from seed
Disjunction of all models C%%i
isboa
I <N B
B I < N
S, S,
I =1 + 1 I (=1 + 1
I <N I < N
—B S;
S, I =1+ 1
I =1+ 1 I 2 N
I 2 N

Precondition:
1€ R(B)A
W(S1)NR(B) =0
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from seed

3) Iterate until no more

counterexamples can be found

if B then
while T < N do while T < N do
if B then S,
Sy I =1+ 1
else - else
S, while T < N do
I := 1+ 1 S,
I := 1 + 1

Precondition:

1€ R(B)A

W( ) NRMB)=0A
W(S;)NR(B) =0
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Algorithm technology

from seed
boa

1) Find counterexample
2) Generate WP that rules out the counterexample
3) Iterate until no more counterexamples can be found
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Optimizations technology

i from seed
%s boa

- Model generalization
»  Exploit UNSAT cores
- Bias towards R/W and W/W intersections
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PSyCO: Results R

Optimization # Counterexamples|# Models| WP Time|Total Time
Code hoisting 1 1 0.07s 0.23s
Constant propagation 1 1 0.04s 0.16s
Copy propagation 0 0 Os 0.11s
[f-conversion 0 0 Os 0.11s
Partial redundancy elimin. 1 1 0.10s 0.30s
Loop fission 6 36 1.28s 2.18s
Loop flattening 1 1 0.07s 3.31s
Loop fusion 6 36 1.26s 2.19s
Loop interchange 11 25 1.42s 23.8s
Loop invariant code motion 3 3 0.22s 0.55s
Loop peeling 0 0 Os 0.27s
Loop reversal 4 7 0.25s 0.54s
Loop skewing 1 1 0.06s 163s
Loop strength reduction 1 2 1.14s 1.41s
Loop tiling 1 1 0.07s 4.60s
Loop unrolling 2 4 0.13s 0.50s
Loop unswitching 2 2 0.15s 0.77s
Software pipelining 1 2 0.13s 0.58s
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Example of Synthesized WP: from seed

Software Pipelining

if V1 < Vb then
while V; < V5 do Sq
S1 while V1 < (V2 — 1) do
So = So
Vi=Vi+1 Vi=Vi+1
Si
So
Vi=Vi+1
Precondition: Va & W(S2) A

((R(S1) NW(S2)
R(S1) N"W(Sy)
R(S2) NW(S2) =0) Vv

Vi ¢ W(S2))

> >

(Weaker than
PEC’s [PLDI'09])

0
0
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technology

Verifying Optimizations with CORK % from seed
boa

- Template statements/expressions become UFs over the
read and write sets
- 5, =>851(x,y,2) Wl R(S;) ={x,y,2}

+ Originates 2 UF+IA programs
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from seed

of UF+IA Programs

CORK: Partial Equivalence Checking
boa

1. UFs abstracted by polynomials
- 5100,y,z2)->ax+by+cz+d (W u(S;) <2)

2. Loops summarized using recurrences

3. Sequential composition

— Reduces to safety checking of loop-free + integer arithmetic
program
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CORK: Polynomial Interpolation R
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CORK: Results tem?ﬁ:?%

Optimization PEC | Queries | Recurrences | Time
Code hoisting v 2 0 0.32s
Constant propagation v 0 0 0.33s
Copy propagation v 0 0 0.33s
[f-conversion v 2 0 0.34s
Partial redundancy elim. v 2 0 0.34s
Loop inv. code motion v 7 5 3.48s
Loop peeling v 9 5 3.26s
Loop unrolling v 13 8 12.17s
Loop unswitching v 14 14 8.19s
Software pipelining v 9 5 8.02s
Loop fission vy 10 12 23.45s
Loop fusion vy 10 12 23.34s
Loop interchange vy 15 24 29.30s
Loop reversal vy 7 5 8.41s
Loop skewing vy 16 24 8.50s
Loop flattening X — — T/0
Loop strength reduction X 6 4 5.63s
Loop tiling X 7 9 10.94s
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Future Work technology

from seed
boa

*  Apply to production compilers

«  Synthesize implementation of optimizations (pattern
matching, VC Gen, code transformation)

» Explain reasons for optimization failure
» Preserve debug info automatically
* Preserve analysis data across optimizations
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Conclusion technology

from seed
boa

- There is significant on-going effort to improve compilers,
which compromises correctness

* Presented the first algorithm for the automatic synthesis of
WPs for compiler optimizations

* Presented the first algorithm for automatic partial
equivalence checking of UF+IA programs
— Applied to verification of compiler optimizations
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CORK: UFs -> Polynomials tem?ﬂ??ﬁé

_
e

¢ f(x1; ---;xn) — Za-lsd Ca)(cZ

- u(f) < (n;;d)
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technology

from seed

Must-write vs may-write

2) Synthesize WP for counterexample:
boa

o < Ny, If a variable is in the write set of a

0 A statement, it may or may not be written.
. = it (wS,I,| S,I0, I,) .

I
B
I
N, = ite[(wS,N,|] S,NO, N,)
I
I

, =1, + 1

A

, < N

1 A

I, = ite(wS,I, S,I0, I,) .
N, = ite(wS,N, S,NO, N,) ,
T
T

A I, + 1

A

\Y%

4 NZ
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Optimizers by Dragon’s Lenses technology

i from seed
%s boa

Analysis 1 Optimization1 —> ... — Analysis n Optimization n
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An Optimizer from the Future R

@ \

Analysis1 ---  Analysis n

N /

Vl’
A\

Pattern Matching VC Gen  Code Transformer
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An Optimizer from the Future: technology

. from seed
Pattern Matching Cﬁ
boa
_ K

e

Pattern Matching VC Gen | Code Transformer .

S, if N > 5 then
A := A + N
else
B— N>5 A := A + 1
S A=A+N I :=1+ 1
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Verification

An Optimizer from the Future: % from seed
boa

|

(i f Ve

' Range Analysis
é = .
Pattern Matching = VC Gen Code Transformer —> Alias AnalySIS_
Scalar Evolution

~

B— N>5
Sl|_)A=A+N

SLAM. SLAYER
Duality Z 5

HSF
Terminator

Ny -/

+ Precondition = ¢
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An Optimizer from the Future: o ey
Code Transformation

Pattern Matching | VC Gen = Code Transformer

. B, :=A + 1
if B then » |if B thénthen
Sy ]
skip
B— N>5

S]_'_)A:=A+N
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