technology
from seed

Automatic Synthesis of Weakest
Preconditions for Compiler Optimizations

Nuno Lopes
Advisor: José Monteiro

E\esc id

TECNICO
LISBOA

Expectations for Compilers R

» Improve performance
- Reduce code size
- Reduce energy consumption

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 2

Compilers Do Deliver technology

i from seed
%s boa

* LLVM 3.2 introduced a Loop Vectorizer
» Performance improvement of 10-300% in benchmarks

W {Fgfé"dﬁ" Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 3

technology

But Compilers are Full of Bugs % from seed
boa

» Yang, Chen, Eide, Regehr [PLDI'12]:
— 79 bugs in GCC (25 P1)
— 202 bugs in LLVM
— 2 wrong-code bugs in CompCert

- Le, Afshari, Su [PLDI'14]:
— 40 wrong-code bugs in GCC
— 42 wrong-code bugs in LLVM

- Last week:
— 395 open wrong-code bug reports in GCC
— 14 open wrong-code bug reports in LLVM

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 4

Churn in Compiler’s code technology

from seed

_
e

» +0.5M LoC added to LLVM last year
» 20k commits
« Over 4M LoC in LLVM

W {Fgfé"dﬁ" Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 5

technology

from seed

Compilers by Dragon’s Lenses

_
e

#include <stdio>
#include <stdlib>

extern void 1 Ne

{ pList->Lis
}

extern void 1 Ad
DigitLi
out = (

Frontend Optimizers

\ 4

(-)
100101010
010001011
100110101
101010111

k001010110)

W {Fg@‘dﬁ” Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 6

Loop Unswitching technology

from seed

if B then
while T < N do while T < N do
if B then S,
Sy I =1+ 1
else - else
S, while T < N do
I := 1+ 1 S,

I :=T1 + 1

S,, S, are template statements
B is a template Boolean expression

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 7

Specifying Compiler Optimizations technology

from seed

_
e

- Transformation function
« Precondition
* Profitability heuristic

W {Fgfé"dﬁ" Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 2

Contributions technology

from seed
boa

- Automatic weakest precondition synthesis for compiler
optimizations

- Automatic partial equivalence checking, applied to
compiler optimization verification

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

technology

Optimizations?

Why WP Synthesis for Compiler % from seed
boa

+ Deriving preconditions by hand is hard; WPs are often
non-trivial
» WPs derived by hand are often wrong!

- Weaker preconditions expose more optimization
opportunities

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 10

Verification to the Rescue: technology

from seed
LLVM PR17827 ‘%
boa

lib/Transforms/InstCombine/InstCombineCompares.cpp

// For a logical right shift, we can fold if the comparison is not
// signed. We can also fold a signed comparison if the shifted mask
// value and the shifted comparison value are not negative.

// These constraints are not obvious, but we can prove that they are
// correct using an SMT solver such as "zZ3"

// http://risedfun.com/Z23/Tslfh

1if (ShiftOpcode == Instruction::AShr) {
// There may be some constraints that make this possible,
// but nothing simple has been discovered yet.
CanFold = false;

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 11

Loop Unswitching technology

from seed

_
e

if B then
while T < N do while T < N do
if B then S,
Sy I =1+ 1
else - else
S, while T < N do
I := 1+ 1 S,

I :=T1 + 1

W {Fgfé"dﬁ" Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 12

technology

from seed

Loop Unswitching:

Example Instantiation

while I < N do while T < N do

if § thénthen A := A + N
B, := A+ N T =1 + 1
else - else

B,:=A +1 while I < N do

I (=1 + 1 A := A + 1

I =1+ 1
|nstantiation:
B— N>5

Sl |_>A:=A+N
SZ — A =A+1

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 13

technology

from seed

Loop Unswitching:

Weakest Precondition

if B then
while T < N do while T < N do
if B then S,
Sy I =1+ 1
else - else
S, while T < N do
I := 1+ 1 S,

I :=T1 + 1

Precondition:

1€ R(B)A

W() NRMB)=0A
W(S;)NR(B) =0

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 14

technology

Language of Preconditions % e
boa

- Read and Write sets for each template
statement/expression

- Arbitrary quantifier-free constraints over read/write sets

» In practice constraints are only over R/W and W/W
Intersection
- v & R(B)
- W(S)NRB) =0
- W) NW(S,) =0

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 15

technology

Suitability

Language of Preconditions: % P
boa

- Books and developers already informally speak about
read and write sets

- Similar to PEC’s

+ Can be efficiently discharged using current compiler
technology:
— Memory dependence analysis
— Alias/pointer analysis
— Loop analysis
— Range analysis

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 16

Synthesizing WP for Loop technology

from seed

=
Unswitching C%@fi
boa

if B then
while T < N do while T < N do
if B then S,
Sy I =1+ 1
else - else
S, while T < N do
I := 1+ 1 S,

I :=T1 + 1

W {Fgfé"dﬁ" Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 17

1) Find counterexample

while I < N do 1f B then
if B then while I < N do
s, S
g else
o141 while I < N do
SZ
I =1+ 1
I < N B
B I < N
S; S1
I :=1+1 I :=1+1
I < N I < N
S, I :=1+ 1
I =1+ 1 I 2 N
I 2 N

%s
isboa

Pre = true

technology

from seed

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations

18

2) Synthesize WP for counterexample: "

f\ from seed
VC Gen @
isboa

I < N Lo < Ny,

B Bg

S, | I, = ite(wS;I, S,;I0, I,) ,

I =1+ 1 N, = ite(wS,N, S,NO, N,) .

I <N I, = I, + 1,

—-B

s, I, < N, ,

T := T + 1 781 A

I >N I, = ite(wS,I, S,I0, I,) ,
N, = ite (wS,N, S,NO, N;) ,
I, 2 N,

W {Fgfé"dﬁ" Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 19

from seed

Conditional Ackermannization

2) Synthesize WP for counterexample: "
Cﬁboa

Lo < No 4 B, and B, are equal if the values of the
Boal variables in R(B) are equal

I, = 1te(wS,;I, S,I0, I,) .,

N, = ite(wS,N, $,NO, N,) .

L =1L, + 1, (I€ERMB)-I=1)A

17B< INEA ((N (S R(B) - Ny = Nl))

;3 = lte (wS,I, S,I0, I,) , = Bo = By

N, = ite (wS,N, S,NO, N,)

I, =I,+ 1,

I, 2 N,

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 20

2) Synthesize WP for counterexample: "

from seed
Final constraint C%
boa

I <N B

B I <N
Sy S,

I =1+ 1 I :=1+ 1
I < N I < N
—-B S,

Sy I := 1 + 1
I =1+ 1 I 2 N

I 2N

AS VV Path A Ackermann A MustWrite A ... > PathlsCorrect | A possible model:
W(S1) =0
S = Read/Write sets R(S) =0
\/ = Vars from VCGen, Must-write vars R(B) =0

W {Fgcé"dﬁ” Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 11

technology

2) Synthesize WP for counterexample:

- from seed
Disjunction of all models C%%i
isboa
I <N B
B I < N
S, S,
I =1 + 1 I (=1 + 1
I <N I < N
—B S;
S, I =1+ 1
I =1+ 1 I 2 N
I 2 N

Precondition:
1€ R(B)A
W(S1)NR(B) =0

W -[FEFE'%%O Automatic Synthesis of Weakest Preconditions for Compiler Optimizations)

technology

from seed

3) Iterate until no more

counterexamples can be found

if B then
while T < N do while T < N do
if B then S,
Sy I =1+ 1
else - else
S, while T < N do
I := 1+ 1 S,
I := 1 + 1

Precondition:

1€ R(B)A

W() NRMB)=0A
W(S;)NR(B) =0

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 23

Algorithm technology

from seed
boa

1) Find counterexample
2) Generate WP that rules out the counterexample
3) Iterate until no more counterexamples can be found

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 24

Optimizations technology

i from seed
%s boa

- Model generalization
» Exploit UNSAT cores
- Bias towards R/W and W/W intersections

W {Fgfé"dﬁ" Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 75

PSyCO: Results R

Optimization # Counterexamples|# Models| WP Time|Total Time
Code hoisting 1 1 0.07s 0.23s
Constant propagation 1 1 0.04s 0.16s
Copy propagation 0 0 Os 0.11s
[f-conversion 0 0 Os 0.11s
Partial redundancy elimin. 1 1 0.10s 0.30s
Loop fission 6 36 1.28s 2.18s
Loop flattening 1 1 0.07s 3.31s
Loop fusion 6 36 1.26s 2.19s
Loop interchange 11 25 1.42s 23.8s
Loop invariant code motion 3 3 0.22s 0.55s
Loop peeling 0 0 Os 0.27s
Loop reversal 4 7 0.25s 0.54s
Loop skewing 1 1 0.06s 163s
Loop strength reduction 1 2 1.14s 1.41s
Loop tiling 1 1 0.07s 4.60s
Loop unrolling 2 4 0.13s 0.50s
Loop unswitching 2 2 0.15s 0.77s
Software pipelining 1 2 0.13s 0.58s

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 26

technology

Example of Synthesized WP: from seed

Software Pipelining

if V1 < Vb then
while V; < V5 do Sq
S1 while V1 < (V2 — 1) do
So = So
Vi=Vi+1 Vi=Vi+1
Si
So
Vi=Vi+1
Precondition: Va & W(S2) A

((R(S1) NW(S2)
R(S1) N"W(Sy)
R(S2) NW(S2) =0) Vv

Vi ¢ W(S2))

> >

(Weaker than
PEC’s [PLDI'09])

0
0

W -[FSFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 27

technology

Verifying Optimizations with CORK % from seed
boa

- Template statements/expressions become UFs over the
read and write sets
- 5, =>851(x,y,2) Wl R(S;) ={x,y,2}

+ Originates 2 UF+IA programs

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 28

technology

from seed

of UF+IA Programs

CORK: Partial Equivalence Checking
boa

1. UFs abstracted by polynomials
- 5100,y,z2)->ax+by+cz+d (W u(S;) <2)

2. Loops summarized using recurrences

3. Sequential composition

— Reduces to safety checking of loop-free + integer arithmetic
program

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 29

CORK: Polynomial Interpolation R

W {Fgfé"dﬁ" Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 30

CORK: Results tem?ﬁ:?%

Optimization PEC | Queries | Recurrences | Time
Code hoisting v 2 0 0.32s
Constant propagation v 0 0 0.33s
Copy propagation v 0 0 0.33s
[f-conversion v 2 0 0.34s
Partial redundancy elim. v 2 0 0.34s
Loop inv. code motion v 7 5 3.48s
Loop peeling v 9 5 3.26s
Loop unrolling v 13 8 12.17s
Loop unswitching v 14 14 8.19s
Software pipelining v 9 5 8.02s
Loop fission vy 10 12 23.45s
Loop fusion vy 10 12 23.34s
Loop interchange vy 15 24 29.30s
Loop reversal vy 7 5 8.41s
Loop skewing vy 16 24 8.50s
Loop flattening X — — T/0
Loop strength reduction X 6 4 5.63s
Loop tiling X 7 9 10.94s

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 31

Future Work technology

from seed
boa

* Apply to production compilers

« Synthesize implementation of optimizations (pattern
matching, VC Gen, code transformation)

» Explain reasons for optimization failure
» Preserve debug info automatically
* Preserve analysis data across optimizations

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 32

Conclusion technology

from seed
boa

- There is significant on-going effort to improve compilers,
which compromises correctness

* Presented the first algorithm for the automatic synthesis of
WPs for compiler optimizations

* Presented the first algorithm for automatic partial
equivalence checking of UF+IA programs
— Applied to verification of compiler optimizations

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 33

. technelogy - -

from seed

Yi

CORK: UFs -> Polynomials tem?ﬂ??ﬁé

_
e

¢ f(x1; ---;xn) — Za-lsd Ca)(cZ

- u(f) < (n;;d)

W {Fgfé"dﬁ" Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 35

technology

from seed

Must-write vs may-write

2) Synthesize WP for counterexample:
boa

o < Ny, If a variable is in the write set of a

0 A statement, it may or may not be written.
. = it (wS,I,| S,I0, I,) .

I
B
I
N, = ite[(wS,N,|] S,NO, N,)
I
I

, =1, + 1

A

, < N

1 A

I, = ite(wS,I, S,I0, I,) .
N, = ite(wS,N, S,NO, N,) ,
T
T

A I, + 1

A

\Y%

4 NZ

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 36

Optimizers by Dragon’s Lenses technology

i from seed
%s boa

Analysis 1 Optimization1 —> ... — Analysis n Optimization n

W -[FSFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 37

An Optimizer from the Future R

@ \

Analysis1 --- Analysis n

N /

Vl’
A\

Pattern Matching VC Gen Code Transformer

W {Fgg‘dﬁ” Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 38

An Optimizer from the Future: technology

. from seed
Pattern Matching Cﬁ
boa
_ K

e

Pattern Matching VC Gen | Code Transformer .

S, if N > 5 then
A := A + N
else
B— N>5 A := A + 1
S A=A+N I :=1+ 1

W {Fgfé"dﬁ" Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 39

technology

Verification

An Optimizer from the Future: % from seed
boa

|

(i f Ve

' Range Analysis
é = .
Pattern Matching = VC Gen Code Transformer —> Alias AnalySIS_
Scalar Evolution

~

B— N>5
Sl|_)A=A+N

SLAM. SLAYER
Duality Z 5

HSF
Terminator

Ny -/

+ Precondition = ¢

W -[FSFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 40

technology

An Optimizer from the Future: o ey
Code Transformation

Pattern Matching | VC Gen = Code Transformer

. B, :=A + 1
if B then » |if B thénthen
Sy]
skip
B— N>5

S]_'_)A:=A+N

W -[FEFE';%%D Automatic Synthesis of Weakest Preconditions for Compiler Optimizations 41

