
Towards Efficient Execution
of Smart Contracts
Nuno P. Lopes, IST – U Lisbon

Joint work with Aptos Labs: George Mitenkov, Rati Gelashvili, Alexander Spiegelman, Zekun Li, Igor Kabiljo, Satyanarayana
Vusirikala, Zhuolun Xiang, Aleksandar Zlateski

Efficient Smart Contract Execution

• Metering of Smart Contracts

• Parallel Execution of Smart Contracts

Smart contracts

1. Written in a high-level language

2. Compiled to bytecode

3. Executed in a virtual machine

module aptos_framework::coin {

 use std::error;

 struct Wallet<phantom T> has key {

 balance: u64,

 }

 public fun balance<T>(a: address): u64 acquires Wallet {

 assert!(exists<Wallet<T>>(a), error::not_found(404));

 borrow_global<Wallet<T>>(a).balance

 }

 public entry fun transfer<T>(

 from: &signer,

 to: address,

 amount: u64,

) acquires Wallet {

 deposit(to, withdraw<T>(from, amount));

 }

}

Programs stored on the blockchain

Gas metering

Gas: a fundamental unit of computation

which represents the cost of resources

used when a smart contract is executed.

public balance<Ty>(Arg: address): u64

B0: // GAS

 0: CopyLoc[0](Arg: address) // 1

 1: ExistsGeneric[0](Wallet<Ty>) // 5

 2: BrFalse(4) // 2

B1:

 3: Branch(7) // 2

B2:

 4: LdConst[6](U64: 404) // 10

 5: Call error::not_found(u64): u64 // 20

 6: Abort // 3

B3:

 7: MoveLoc[0](Arg: address) // 1

 8: ImmBorrowGlobalGeneric[0](Wallet<Ty>) // 5

 9: ImmBorrowFieldGeneric[0](Wallet.balance: u64) // 1

 10: ReadRef // 3

 11: Ret // 1

3. Gas costs summed up

4. Execution halted if not enough gas

1. Executing instructions costs gas

2. User defines a gas limit

Cost Model

● Over-approximation of the costs incurred when executing a contract
○ Load the contract, VM start-up time, …
○ Execution: CPU, RAM, network
○ Storage
○ Protocol costs

● Deterministic and equal on all platforms

● Enforces limits on execution: transaction/block size, latency

● DoS protection

Different Cost Models

Division is 30x slower than addition; it’s easy/cheap to harm some networks!

Metering

● An implementation of the cost model

● Cost models must be efficiently implementable

B2:

 3: ChargeGas(U64: 10)

 4: LdConst[6](U64: 404)

 5: ChargeGas(U64: 20)

 6: Call error::not_found(u64): u64

 7: ChargeGas(U64: 1)

 8: Abort

(block

 (call $meter(i64.const 10))

 (local.set $t6 404)

 (call $meter(i64.const 20))

 (call $not_found((local.get $t6))

 (call $meter(i64.const 1))

 (unreachable)

1: ; meter instruction gas cost

 2: sub rax, 10

 3: jb .out_of_gas

 4: ; continue execution

 …

100: .out_of_gas

101: ; handle out of gas

pseudo-instruction bytecode, e.g., WebAssembly native code, e.g., x86

Metering in fast interpreters (WebAssembly)

Metering in JIT compilers (Solana)

Contract is compiled from eBPF into x86, metering on every instruction is not feasible!

Solana uses a smart algorithm (~per each basic block)

Example Metering

State of the art

Minimal metering instrumentation problem

Find a minimal set of metering instrumentation points in the program so
that:

1) Execution is metered online,

2) The sum of metered amounts is equal to the execution cost,

3) At most k gas executed for free (k-safe).

If k=0, nothing goes uncharged! (we say the metering is safe)

Algorithm

K-Safe Instrumentation examples

K-Safe Instrumentation examples

Real contracts

Number of instrumented blocks for

different real contracts deployed on

Solana blockchain.

Problems with per-block instruction gas cost metering

charge 1

charge 1

x / 0
x / 0

charge 1

charge 1

charge 4out-of-gas

error

status:

status:

gas_used: 3 limit: 3 gas_used: 3 limit: 3

Do errors matter?

Recovery Mechanism

● Enable movement of charges across implicit control flow
○ E.g., division by zero traps in Move

● Traps and out-of-gas are rare (< 1%)

● Switch to a slower recovery mechanism

Metering Wrap-up

● Existing cost models don’t give the right incentives

● Metering can introduce high overhead

● Being optimistic is a good tradeoff

Open Questions

● Can we give economic incentives to contract developers & compilers to
make metering more efficient?
○ E.g., branches with same cost, no implicit control flow

● Can metering be computed at compile time?
○ Validated at run time (a la proof carrying code)

Efficient Smart Contract Execution

• Metering of Smart Contracts

• Parallel Execution of Smart Contracts

Aptos runs on Block-STM

● Executes transactions in parallel

● Optimistic concurrency control

● Writes recorded in a multi-versioned data-structure

● Rolling commits: prefix of transactions committed on the fly

Txn 1

Storage

Txn 2 Txn 3 Txn 4 Txn 5 Txn 6

write B write D

write D’

V
e
rs
io
n
s

Inherently sequential workloads

Sequentiality is mostly due to
counters:

● total supply tracking
● user balance updates
● sequence numbers
● NFT collection size tracking

and indexing

Simple counter in Move

Language extension: deferred objects

• Language support for updates
with pre/post-conditions
• Effectively removes read-write

conflicts

• STM write log collects deltas

• Updates are delayed until
commit time

No-op workload

Sponsored workload

Transfer workload

Deferred objects wrap-up

• Deployed at

• Economic incentives for parallel-friendly workloads?

• Can we automate usage during compilation?

Efficient Smart
Contract Execution

• Metering of Smart Contracts

• Parallel Execution of Smart Contracts

	Slide 1: Towards Efficient Execution of Smart Contracts
	Slide 2: Efficient Smart Contract Execution
	Slide 3: Smart contracts
	Slide 4: Gas metering
	Slide 5: Cost Model
	Slide 6: Different Cost Models
	Slide 7: Metering
	Slide 8: Metering in fast interpreters (WebAssembly)
	Slide 9: Metering in JIT compilers (Solana)
	Slide 10: Example Metering
	Slide 11: Minimal metering instrumentation problem
	Slide 12: Algorithm
	Slide 13: K-Safe Instrumentation examples
	Slide 14: K-Safe Instrumentation examples
	Slide 15: Real contracts
	Slide 16: Problems with per-block instruction gas cost metering
	Slide 17: Do errors matter?
	Slide 18: Recovery Mechanism
	Slide 19: Metering Wrap-up
	Slide 20: Open Questions
	Slide 21: Efficient Smart Contract Execution
	Slide 22: Aptos runs on Block-STM
	Slide 23: Inherently sequential workloads
	Slide 24: Simple counter in Move
	Slide 25: Language extension: deferred objects
	Slide 26: No-op workload
	Slide 27: Sponsored workload
	Slide 28: Transfer workload
	Slide 29: Deferred objects wrap-up
	Slide 30: Efficient Smart Contract Execution

