
Chapter 6 - Deadlocks

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

L. Tarrataca Chapter 6 - Deadlocks 1 / 101

luis.tarrataca@gmail.com

1 Motivation

2 Resources

Preemptable and Nonpreemptable Resources

Resource Acquisition

L. Tarrataca Chapter 6 - Deadlocks 2 / 101

Motivation

Motivation

Certain resources can only be used by one process at a time, e.g.:

• printers, tapes, internal tables;

Having two processes simultaneously accessing the:

• Printer leads to gibberish;

• Same file-system table slot will lead to a corrupted file system;

Consequently:

• OS needs ability to grant a process exclusive access to certain resources.

L. Tarrataca Chapter 6 - Deadlocks 3 / 101

Motivation

A process may also need exclusive access to multiple resources, e.g.:

• Two processes each want to record a scanned document on a Blu-ray disc

1 Process A requests permission to use the scanner and is granted it;

2 Process B requests permission to use the Blu-ray driver and is granted it;

3 Process A then asks for the Blu-ray recorder:

• But request is suspended until B releases it;

4 Unfortunately instead of releasing Blu-ray recorder:

• Process B asks for the scanner;

Can you see any problem with this behaviour? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 4 / 101

Motivation

Can you see any problem with this behaviour? Any ideas?

This situation is called a deadlock, i.e.:

• No progress can be made!

• In portuguese: impasse

L. Tarrataca Chapter 6 - Deadlocks 5 / 101

Motivation

Can you think of any other type of situation where deadlocks occur?

L. Tarrataca Chapter 6 - Deadlocks 6 / 101

Motivation

Can you think of any other type of situation where deadlocks occur?

Database system, where program may have to lock several registers e.g.:

• Process A locks records R1;

• Process B locks record R2;

• If each process tries to lock each other one’s record:

• Deadlock...

L. Tarrataca Chapter 6 - Deadlocks 7 / 101

Motivation

Conclusion:

• Deadlocks can occur on hardware resources or on software resources.

• Deadlocks happen throughout computer science!

L. Tarrataca Chapter 6 - Deadlocks 8 / 101

Resources

Resources

Deadlocks may involve resources requiring exclusive access:

• E.g.: devices, data records, files, and so forth;

• Resource can be:

• Hardware device;

• Piece of information;

• Many different resources that a process can acquire;

• If several instances of the resource are available:

• Any one of them can be used to satisfy any request for the resource

L. Tarrataca Chapter 6 - Deadlocks 9 / 101

Resources

In your opinion what is a resource? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 10 / 101

Resources

In your opinion what is a resource? Any ideas?

Resource is anything that must be:

• Acquired, used, and released over the course of time.

L. Tarrataca Chapter 6 - Deadlocks 11 / 101

Resources Preemptable and Nonpreemptable Resources

Preemptable and Nonpreemptable Resources

Resources come in two types:

• Preemptable (in portuguese: preemptivo)

• Nonpreemptable

Lets have a look at these types =)

L. Tarrataca Chapter 6 - Deadlocks 12 / 101

Resources Preemptable and Nonpreemptable Resources

Preemptable Resource

Preemptable Resource:

• Can be taken away from the process owning it with no ill effects.

Can you think of any resource that is preemptable? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 13 / 101

Resources Preemptable and Nonpreemptable Resources

Example (1/4)

Can you think of any resource that is preemptable? Any ideas?

Memory is a preemptable resource, consider a system with:

• 1 GB of user memory

• One printer

• Two 1-GB processes that each want to print something.;

L. Tarrataca Chapter 6 - Deadlocks 14 / 101

Resources Preemptable and Nonpreemptable Resources

Example (2/4)

1 Process A requests and gets the printer:

• Then starts to compute the values to print;

2 Before it has finished the computation:

• OS scheduler changes to process B;

3 Process B now runs and tries, unsuccessfully to acquire printer;

L. Tarrataca Chapter 6 - Deadlocks 15 / 101

Resources Preemptable and Nonpreemptable Resources

Example (3/4)

Potential deadlock situation:

• Process A has the printer;

• Process B has the memory;

• Neither process can process with the resource held by the other;

L. Tarrataca Chapter 6 - Deadlocks 16 / 101

Resources Preemptable and Nonpreemptable Resources

Example (4/4)

But is this really a problem? Any ideas?

Not really! No deadlock occurs since:

• Possible to preempt the memory from B and swapping in process A;

• Now process A can:

• Execute;

• Print;

• Release printer;

L. Tarrataca Chapter 6 - Deadlocks 17 / 101

Resources Preemptable and Nonpreemptable Resources

Nonpreemptable resource

Nonpreemptable resource:

• Cannot be taken away from its current owner without potentially causing

failure

Can you think of any resource that is nonpreemptable? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 18 / 101

Resources Preemptable and Nonpreemptable Resources

Can you think of any resource that is nonpreemptable? Any ideas?

Example: If a process has begun to burn a Blu-ray

• Cannot simply give the Blu-ray drive to another process;

• This would simply result in a garbled Blu-ray;

• Blu-ray recorders are not preemptable at an arbitrary moment.

L. Tarrataca Chapter 6 - Deadlocks 19 / 101

Resources Preemptable and Nonpreemptable Resources

So how can we know wether a resource is preemptable or not? Any

ideas?

L. Tarrataca Chapter 6 - Deadlocks 20 / 101

Resources Preemptable and Nonpreemptable Resources

So how can we know wether a resource is preemptable or not? Any

ideas?

No simple answer!:

• Depends on the context!

• Memory is preemptable because:

• Pages can always be swapped out to disk to recover it

L. Tarrataca Chapter 6 - Deadlocks 21 / 101

Resources Preemptable and Nonpreemptable Resources

So, how can we deal with nonpreemptable resources? Any ideas

L. Tarrataca Chapter 6 - Deadlocks 22 / 101

Resources Preemptable and Nonpreemptable Resources

So, how can we deal with nonpreemptable resources? Any ideas

Abstract sequence of events required to use a resource:

1 Request the resource.

2 Use the resource.

3 Release the resource.

L. Tarrataca Chapter 6 - Deadlocks 23 / 101

Resources Preemptable and Nonpreemptable Resources

If resource is not available when requested:

• Requesting process is forced to wait;

• In some OS process is automatically:

• blocked when a resource request fails;

• awakened when a resource available;

• In other OS:

• Request fails with an error code;

• Up to the calling process to wait a little while and try again;

L. Tarrataca Chapter 6 - Deadlocks 24 / 101

Resources Preemptable and Nonpreemptable Resources

When a resource request is denied:

• Process will loop:

1 Requesting the resource;

2 Sleeping;

3 Trying again.

Although process is not blocked:

• it is as good as blocked, because it cannot do any useful work;

• From now on we will assume process always sleeps

L. Tarrataca Chapter 6 - Deadlocks 25 / 101

Resources Resource Acquisition

Resource Acquisition

For some kinds of resources:

• Up to the process to manage resource usage themselves:

• Rather than the OS;

• E.g.: records in a database system;

L. Tarrataca Chapter 6 - Deadlocks 26 / 101

Resources Resource Acquisition

Resource Acquisition

For some kinds of resources:

• Up to the process to manage resource usage themselves:

• Rather than the OS;

• E.g.: records in a database system;

But how can we manage resources? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 27 / 101

Resources Resource Acquisition

Resource Acquisition

But how can we manage resources? Any ideas?

Associate a semaphore or a mutex with each resource:

• All initialized to 1;

• The three steps list above are then implemented as:

1 Down Operation: Request the resource.

2 Use the resource.

3 Up operation: Release the resource.

L. Tarrataca Chapter 6 - Deadlocks 28 / 101

Resources Resource Acquisition

This strategy can be illustrated as follows for one resource:

Figure: Using a semaphore to protect one resource (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 29 / 101

Resources Resource Acquisition

This strategy can be illustrated as follows for two resources:

Figure: Using a semaphore to protect two resources (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 30 / 101

Resources Resource Acquisition

Can you see any problem with the previous examples to protect re-

sources? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 31 / 101

Resources Resource Acquisition

Can you see any problem with the previous examples to protect re-

sources? Any ideas?

• Only one process is involved!

• Everything works fine;

• No competition for resources;

• No need to formally acquire resources;

L. Tarrataca Chapter 6 - Deadlocks 32 / 101

Resources Resource Acquisition

Lets consider two processes, A and B, and two resources:

• Scenario 1: both processes ask for the resources in the same order;

• Scenario 2: both processes ask for the resources in different order;

Difference may seem minor but it is not... Lets have a look =)

L. Tarrataca Chapter 6 - Deadlocks 33 / 101

Resources Resource Acquisition

Scenario 1: Same order resource acquisition

Figure: Deadlock-free code (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 34 / 101

Resources Resource Acquisition

Scenario 1: Same order resource acquisition

From the previous figure:

1 Process A will acquire 1st resource before Process B;

2 Process A will acquire 2nd resource;

3 Process A will do its work.

If Process B attempts to acquire resource 1 before it has been released:

• Process B will block until resource becomes available.

Now lets have a look at what happens with a different order resource

acquisition

L. Tarrataca Chapter 6 - Deadlocks 35 / 101

Resources Resource Acquisition

Scenario 2: Different order resource acquisition

Figure: Code with potential deadlock (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 36 / 101

Resources Resource Acquisition

Scenario 2: Different order resource acquisition

From the previous figure (1/2):

• Possibility 1:

1 Process A acquires both resources:

2 Effectively blocks Process B until Process A is done;

L. Tarrataca Chapter 6 - Deadlocks 37 / 101

Resources Resource Acquisition

Scenario 2: Different order resource acquisition

From the previous figure (2/2):

• Possibility 2:

1 Process A acquires resource 1;

2 Process B acquires resource 2:

3 Each process will block trying to acquire the other resource;

4 Neither process will ever run again... (Deadlock)

L. Tarrataca Chapter 6 - Deadlocks 38 / 101

Introduction to Deadlocks

Introduction to Deadlocks

Based on the previous slides:

In your opinion what is a deadlock? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 39 / 101

Introduction to Deadlocks

Introduction to Deadlocks

Based on the previous slides:

In your opinion what is a deadlock? Any ideas?

Each process is waiting for an event that only another process can

cause:

• Because all processes are waiting:

• None will ever cause the event the other processes depend on;

• None of the processes can run:

• None can release the resources;

• None can be awakened;

L. Tarrataca Chapter 6 - Deadlocks 40 / 101

Introduction to Deadlocks Conditions for Resource Deadlocks

Conditions for Resource Deadlocks

Four conditions must hold for there to be a deadlock: (1/3)

• Mutual Exclusion condition

• Hold-and-wait condition

• No-preemption condition

• Circular wait condition

All four of these conditions must be present for a deadlock to occur:

• If one of them is absent, no resource deadlock is possible.

L. Tarrataca Chapter 6 - Deadlocks 41 / 101

Introduction to Deadlocks Conditions for Resource Deadlocks

Conditions for Resource Deadlocks

Four conditions must hold for there to be a deadlock: (2/3)

• Mutual Exclusion condition:

• Each resource is assigned to zero or one process;

• Hold-and-wait condition:

• Processes holding acquired resources can request new resources;

L. Tarrataca Chapter 6 - Deadlocks 42 / 101

Introduction to Deadlocks Conditions for Resource Deadlocks

Conditions for Resource Deadlocks

Four conditions must hold for there to be a deadlock: (3/3)

• No-preemption condition:

• Resources previously granted cannot be forcibly taken away from a process.

• They must be explicitly released by the process holding them.

• Circular wait condition:

• There must be a circular list of two or more processes:

• Each of which is waiting for a resource held by the next member of the chain.

L. Tarrataca Chapter 6 - Deadlocks 43 / 101

Introduction to Deadlocks Deadlock modeling

Deadlock modeling

Directed graphs can be used to model the four conditions (1/3):

• With two kinds of nodes:

• Processes (Circles);

• Resources (Rectangles);

L. Tarrataca Chapter 6 - Deadlocks 44 / 101

Introduction to Deadlocks Deadlock modeling

Deadlock modeling

A directed arc from a resource to a process means that:

• Resource has previously been requested by, granted to, and is currently

held by that process.

Figure: Holding a resource (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 45 / 101

Introduction to Deadlocks Deadlock modeling

A directed arc from a process to a resource means that:

• Process is blocked waiting for that resource;

Figure: Holding a resource (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 46 / 101

Introduction to Deadlocks Deadlock modeling

Example 1 (1/2)

Example of a deadlock in a graph:

Figure: Deadlock (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 47 / 101

Introduction to Deadlocks Deadlock modeling

Example 1 (2/2)

From the previous figure:

• Process C is waiting for resource T

• Resource T is held by process D;

• Process D is waiting for resource U;

• Resource U is held by process C;

• Conclusion: C - T - D - U - C, i.e. a cycle!

• Both processes will wait forever: Deadlock

L. Tarrataca Chapter 6 - Deadlocks 48 / 101

Introduction to Deadlocks Deadlock modeling

Example 2 (1/2)

Imagine that we have:

• Three processes: A, B, and C;

• Three resources: R, S, and T;

• Requests and releases of the three processes are:

Figure: (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 49 / 101

Introduction to Deadlocks Deadlock modeling

Example 2 (2/2)

• OS is free to run any unblocked process at any instant, e.g.::

1 Run process A until A finished all its work;

2 Then run process B to completion;

3 And finally run process C.

L. Tarrataca Chapter 6 - Deadlocks 50 / 101

Introduction to Deadlocks Deadlock modeling

Example 2 (2/2)

• OS is free to run any unblocked process at any instant, e.g.::

1 Run process A until A finished all its work;

2 Then run process B to completion;

3 And finally run process C.

But can you see any problem with running the processes in this way? Any

ideas?

L. Tarrataca Chapter 6 - Deadlocks 51 / 101

Introduction to Deadlocks Deadlock modeling

Example 2 (2/2)

• OS is free to run any unblocked process at any instant, e.g.::

1 Run process A until A finished all its work;

2 Then run process B to completion;

3 And finally run process C.

But can you see any problem with running the processes in this way? Any

ideas?

• This ordering does not lead to any deadlocks;

• There does not exist parallelism:

• Accordingly there is no competition for resources;

L. Tarrataca Chapter 6 - Deadlocks 52 / 101

Introduction to Deadlocks Deadlock modeling

Example 3 (1/8)

Suppose processes do I/O and computing:

• Assume a round-robin scheduling

First things first:

What is round-robin scheduling? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 53 / 101

Introduction to Deadlocks Deadlock modeling

Example 3 (1/8)

Suppose processes do I/O and computing:

• Assume a round-robin scheduling

First things first:

What is round-robin scheduling? Any ideas?

• Each process is given a certain time to execute;

• If process exceeds time:

• Scheduler switched to another process;

• Procedure repeats in a circular fashion;

L. Tarrataca Chapter 6 - Deadlocks 54 / 101

Introduction to Deadlocks Deadlock modeling

Example 3 (2/8)

Resource requests occur in the order:

Figure: (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 55 / 101

Introduction to Deadlocks Deadlock modeling

Example 3 (3/8)

If requests are carried in order there are six resource graphs:

Figure: (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 56 / 101

Introduction to Deadlocks Deadlock modeling

Example 3 (4/8)

Can you see where processes block in the previous picture? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 57 / 101

Introduction to Deadlocks Deadlock modeling

Example 3 (4/8)

Can you see where processes block in the previous picture? Any ideas?

• After request 4 has been made:

• A blocks waiting for S;

• In the next two steps B and C also block;

• Ultimately leading to a deadlock;

L. Tarrataca Chapter 6 - Deadlocks 58 / 101

Introduction to Deadlocks Deadlock modeling

Example 3 (5/8)

Idea: OS is not required to run processes in any special order:

• If granting a particular request might lead to a deadlock:

• OS suspends process without granting request;

L. Tarrataca Chapter 6 - Deadlocks 59 / 101

Introduction to Deadlocks Deadlock modeling

Example (6/8)

If OS knew about impending deadlock:

• OS could suspend B instead of granting it S;

• By running only A and C, we would get the following requests and releases:

Figure: (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 60 / 101

Introduction to Deadlocks Deadlock modeling

Example (7/8)

Previous sequence would lead to the following resource graphs:

Figure: (Source: [Tanenbaum and Bos, 2015])

Conclusion: No deadlock!

L. Tarrataca Chapter 6 - Deadlocks 61 / 101

Introduction to Deadlocks Deadlock modeling

Example (8/8)

After step (q) process B can be granted S because:

• Process A is finished and C has everything it needs;

• Even if B blocks when requesting T:

• No deadlock can occur;

• B will just wait until C is finished.

L. Tarrataca Chapter 6 - Deadlocks 62 / 101

Introduction to Deadlocks Deadlock modeling

Conclusion:

• Resource graphs are a tool that lets us see if:

• A given request/release sequence leads to deadlock

• We just carry out the requests and releases step by step:

• After every step we check the graph to see if it contains any cycles;

• If there are cycles: deadlock;

• If there are no cycles: no deadlock

L. Tarrataca Chapter 6 - Deadlocks 63 / 101

Introduction to Deadlocks Deadlock modeling

In general, four strategies are used for dealing with deadlocks:

1 Just ignore the problem:

• Maybe if you ignore it, it will ignore you.

• Good life philosophy... ;)

2 Detection and recovery:

• Let them occur, detect them, and take action.

3 Dynamic avoidance by careful resource allocation.

4 Prevention:

• by structurally negating one of the four conditions.

L. Tarrataca Chapter 6 - Deadlocks 64 / 101

Ostrich Algorithm

Ostrich Algorithm

First things first:

What is an ostrich? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 65 / 101

Ostrich Algorithm

Ostrich Algorithm

First things first:

What is an ostrich? Any ideas?

Figure: Who knows...

L. Tarrataca Chapter 6 - Deadlocks 66 / 101

Ostrich Algorithm

What are ostriches known for? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 67 / 101

Ostrich Algorithm

What are ostriches known for? Any ideas?

Figure: Who knows...

L. Tarrataca Chapter 6 - Deadlocks 68 / 101

Ostrich Algorithm

Ostrich algorithm:

• Stick your head in the sand and pretend there is no problem;

• People react to this strategy in different ways:

• Mathematicians: prevent deadlocks at all costs;

• Engineers: Maybe not worth to deal with deadlocks:

• How often is the problem expected?

• How often the system crashes for other reasons?

• How serious a deadlock is?

L. Tarrataca Chapter 6 - Deadlocks 69 / 101

Deadlock Detection and Recovery

Deadlock Detection and Recovery

When this technique is used:

• OS does not attempt to prevent deadlocks from occurring;

• Instead, OS :

• Lets the deadlock occur;

• Tries to detect deadlocks;

• Takes some action to recover;

Lets have a look at some techniques to do this =)

L. Tarrataca Chapter 6 - Deadlocks 70 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Deadlock Detection with One Resource of Each Type

Let us begin with the simplest case:

• there is only one resource of each type, e.g.:

• one scanner;

• one Blu-ray recorder;

• one plotter;

• etc...

• I.e. no more than one of each class of resource;

L. Tarrataca Chapter 6 - Deadlocks 71 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Based on the previous slides:

How do you think we can detect deadlocks? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 72 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Based on the previous slides:

How do you think we can detect deadlocks? Any ideas?

‘‘Strange’’ idea:

• Construct a resource - process graph;

• If graphs contains one or more cycles:

• Deadlock exists!

• Any process that is part of a cycle is deadlocked;

• If no cycles exist, the system is not dead-locked;

L. Tarrataca Chapter 6 - Deadlocks 73 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Example

Consider a system with:

• Seven processes (A though G);

• Six resources (R through W);

• Process - resource requests:

1 Process A holds R and wants S;

2 Process B holds nothing but wants T;

3 Process C holds nothing but wants S;

4 Process D holds U and wants S and T;

5 Process E holds T and wants V;

6 Process F holds W and wants S;

7 Process G holds V and wants U;

L. Tarrataca Chapter 6 - Deadlocks 74 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Is this system deadlocked, and if so, which processes are involved? Any

ideas?

• Lets try to construct the graph and see what happens =)

L. Tarrataca Chapter 6 - Deadlocks 75 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Figure: A resource graph. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 76 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Can you see any problems with the resource - process graph? Any ideas?

Figure: A resource graph. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 77 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Graph contains one cycle, which can be seen by visual inspection (1/2):

Figure: A resource graph. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 6 - Deadlocks 78 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Graph contains one cycle, which can be seen by visual inspection (2/2):

• Deadlocked:

• Processes D, E, and G;

• Not deadlocked:

• Processes A, C, and F;

• Resource S can be allocated to any one of them:

• When process finishes resource is freed;

• Other process can take resource in turn and also complete;

L. Tarrataca Chapter 6 - Deadlocks 79 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Visual inspection allows for cycle detection:

But how can this be done by an algorithm? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 80 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Visual inspection allows for cycle detection:

But how can this be done by an algorithm? Any ideas?

• Many algorithms for detecting cycles in directed graphs are known.

• Lets look at a simple one;

L. Tarrataca Chapter 6 - Deadlocks 81 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Cycle detection algorithm (1/2)

Algorithm employs the following data structures:

• Uses a list of nodes L;

• Uses a list of arcs;

• To avoid repeated inspections:

• Arcs are marked to indicate they have been inspected;

L. Tarrataca Chapter 6 - Deadlocks 82 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Cycle detection algorithm (1/3)

Algorithm idea:

• Take each node as the root of what it hopes will be a tree;

• Do a depth-first search on the tree, if search:

• Goes back to a node it has already encountered: cycle!

• Exhausts all arcs from any given node:

• Search backtracks to the previous node;

• If search backtracks to the root: no cycles for current node!

• If search backtracks to the root for all nodes: graph is cycle free!

L. Tarrataca Chapter 6 - Deadlocks 83 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Cycle detection algorithm (2/3)

For each node, N, in the graph (1/2):

1 Use N as starting node;

2 Initiate L to empty list;

3 Designate all arcs as unmarked;

4 Try to add current node N to the end of L:

• If node already ∈ L: cycle!, algorithm terminates;

L. Tarrataca Chapter 6 - Deadlocks 84 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Cycle detection algorithm (3/3)

For each node, N, in the graph (2/2):

5 From the current node:

• See if there are any unmarked outgoing arcs:

• Pick random unmarked arc;

• Mark the random arc;

• Follow random arc to new node;

• Otherwise: If current node is the initial node:

• Graph does not contain any cycles: algorithm terminates;

• Otherwise: dead end

• Remove node from L;

• Go back to previous node;

• Make previous node the current one and go to step 4;

L. Tarrataca Chapter 6 - Deadlocks 85 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Lets see how the algorithm works in practice:

Figure: A resource graph. (Source:

[Tanenbaum and Bos, 2015])

Processing with current node = R:

1 L = [R]

2 L = [R, A]

3 L = [R, A, S]

4 L = [R, A]

5 L = [R]

No cycle detected!

L. Tarrataca Chapter 6 - Deadlocks 86 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Lets see how the algorithm works in practice:

Figure: A resource graph. (Source:

[Tanenbaum and Bos, 2015])

Processing with current node = A:

1 L = [A]

2 L = [A, S]

3 L = [A]

No cycle detected!

L. Tarrataca Chapter 6 - Deadlocks 87 / 101

Deadlock Detection and Recovery Deadlock Detection with One Resource of Each Type

Lets see how the algorithm works in practice:

Figure: A resource graph. (Source:

[Tanenbaum and Bos, 2015])

Processing with current node = B:

1 L = [B]

2 L = [B, T]

3 L = [B, T, E]

4 L = [B, T, E, V]

5 L = [B, T, E, V, G]

6 L = [B, T, E, V, G, U]

7 L = [B, T, E, V, G, U, D]

8 L = [B, T, E, V, G, U, D, T]

Cycle detected!

L. Tarrataca Chapter 6 - Deadlocks 88 / 101

Deadlock Detection and Recovery Deadlock Detection with Multiple Resources of Each Type

Deadlock Detection with Multiple Resources of Each

Type

Previous section focused on:

• Deadlock detection with one resource of each type:

It is also possible to detect deadlocks when:

• Multiple resources of each type exist;

• Unfortunately: No time for that during this semester! =’(

L. Tarrataca Chapter 6 - Deadlocks 89 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery from deadlock

Suppose that deadlock detection algorithm succeeds and detects a

deadlock? What next?

L. Tarrataca Chapter 6 - Deadlocks 90 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery from deadlock

Suppose that deadlock detection algorithm succeeds and detects a

deadlock? What next?

• Some way is needed to recover!

• We will discuss various ways of recovering from deadlock:

• Recovery through Preemption;

• Recovery through Rollback;

• Recovery through Killing Processes;

L. Tarrataca Chapter 6 - Deadlocks 91 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery through Preemption

May be possible to temporarily take a resource away:

• From the current process to another process;

• Highly dependent on the nature of the resource;

• Recovering this way is frequently difficult or impossible!

L. Tarrataca Chapter 6 - Deadlocks 92 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery through Rollback (1/2)

If developers know deadlocks are likely:

• Processes can be made to be checkpointed periodically:

• Checkpointing means that:

• Process writes state to a file so that it can be restarted later, i.e.::

• Process memory image;

• Process resources’ state;

• New checkpoints should not overwrite old ones:

• New files should be written;

• As the process executes, a whole sequence accumulates.

L. Tarrataca Chapter 6 - Deadlocks 93 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery through Rollback (2/2)

Do you have any idea how the checkpointing process can be used to

do deadlock recovery? Any ideas?

L. Tarrataca Chapter 6 - Deadlocks 94 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery through Rollback (2/2)

Do you have any idea how the checkpointing process can be used to

do deadlock recovery? Any ideas?

Deadlock algorithm detects which resources are needed (1/2):

1 To perform recovery, a process that owns a needed resource is:

• Rolled back to a point in time before it acquired resource;

• This is done by starting at one of its earlier checkpoints;

• All the work done since the checkpoint is lost!

L. Tarrataca Chapter 6 - Deadlocks 95 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery through Rollback (2/2)

Do you have any idea how the checkpointing process can be used to

do deadlock recovery? Any ideas?

Deadlock algorithm detects which resources are needed (2/2):

2 Process is reset to an earlier moment when it did not have resource;

3 Resource can then be assigned to one of the deadlocked processes;

4 If the restarted process tries to acquire the resource again:

• Process will have to wait until resource becomes available.

L. Tarrataca Chapter 6 - Deadlocks 96 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery through Killing Processes

Do you know of any crude but simple ways to break a deadlock? Any

ideas?

L. Tarrataca Chapter 6 - Deadlocks 97 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery through Killing Processes (1/3)

Do you know of any crude but simple ways to break a deadlock? Any

ideas?

One possibility is to kill one or more processes in the cycle:

• With a little luck: other processes will be able to continue;

• If this does not help: repeat until the cycle is broken.

L. Tarrataca Chapter 6 - Deadlocks 98 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery through Killing Processes (2/3)

Do you know of any crude but simple ways to break a deadlock? Any

ideas?

Another possibility: kill a process not in the cycle:

• Choose process holding resources needed by other process in the cycle;

L. Tarrataca Chapter 6 - Deadlocks 99 / 101

Deadlock Detection and Recovery Recovery from deadlock

Recovery through Killing Processes (3/3)

Where possible:

• Best to kill a process that can be rerun from the beginning with no ill effects;

• Example 1: compilation can always be rerun;

• Example 2: updating a database cannot always be run a 2nd time safely;

L. Tarrataca Chapter 6 - Deadlocks 100 / 101

References

References I

Tanenbaum, A. and Bos, H. (2015).

Modern Operating Systems.

Pearson Education Limited.

L. Tarrataca Chapter 6 - Deadlocks 101 / 101

	Motivation
	Resources
	Preemptable and Nonpreemptable Resources
	Resource Acquisition

	Introduction to Deadlocks
	Conditions for Resource Deadlocks
	Deadlock modeling
	Deadlock modeling

	Ostrich Algorithm
	Deadlock Detection and Recovery
	Deadlock Detection with One Resource of Each Type
	Deadlock Detection with Multiple Resources of Each Type
	Recovery from deadlock

	References

