
Chapter 5 - Input / Output

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

L. Tarrataca Chapter 5 - Input / Output 1 / 90

luis.tarrataca@gmail.com


1 Motivation

2 Principle of I/O Hardware

I/O Devices

Device Controllers

Memory-Mapped I/O

Direct Memory Access

Interrupts Revisited

L. Tarrataca Chapter 5 - Input / Output 2 / 90



3 I/O software layers

Interrupt Handlers

Device Drivers

Device-Independent I/O Software

Uniform Interfacing for Device Drivers

Buffering

Error reporting

Allocating and Releasing Dedicated Devices

Device-Independent Block Size

User-Space I/O Software

L. Tarrataca Chapter 5 - Input / Output 3 / 90



4 Clocks

Clock Hardware

Clock Software

5 References

L. Tarrataca Chapter 5 - Input / Output 4 / 90



Motivation

Motivation

Recall that an OS provides abstractions for:

1 Processes;

2 Addresses spaces;

3 Files;

4 Etc...

OS must also also:

• control all the computer’s I/O devices;

L. Tarrataca Chapter 5 - Input / Output 5 / 90



Motivation

In your opinion what does this mean: ‘‘control all the computer’s I/O

devices’’? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 6 / 90



Motivation

In your opinion what does this mean: ‘‘control all the computer’s I/O

devices’’? Any ideas?

• Issue commands to devices;

• Catch interrupts

• Handle errors;

• Provide API:

• Interface should be the same for all devices:

• Not always possible...

L. Tarrataca Chapter 5 - Input / Output 7 / 90



Principle of I/O Hardware

Principle of I/O Hardware

This chapter focuses on:

Programming I/O devices

This chapter does not focus on:

• Designing I/O devices;

• Building I/O devices;

• Maintaining I/O devices;

L. Tarrataca Chapter 5 - Input / Output 8 / 90



Principle of I/O Hardware I/O Devices

I/O Devices

Most I/O devices can be divided into two categories:

• Block devices: store information in fixed-size blocks:

• Each block has its own address;

• All transfers are in units of one or more entire blocks.

• Possible to read / write each block independently of all others;

• E.g.: hard disks, blu-ray disk, USB sticks, etc...

• Character devices: reads / writes a stream of characters:

• Without regard to any block structure;

• Not addressable

• E.g.: printers, network interfaces, mice, etc...

L. Tarrataca Chapter 5 - Input / Output 9 / 90



Principle of I/O Hardware I/O Devices

I/O devices cover a huge range in speeds:

Figure: Some typical device, network and bus data rates (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 5 - Input / Output 10 / 90



Principle of I/O Hardware Device Controllers

Device Controllers

I/O units often consist of:

• Mechanical component: device itself (disk head, laser, etc...)

• Electronic component:

• A.k.a device controller or adapter

• Many controllers can handle several identical devices

• Interface examples between controller and device:

• SATA;

• SCSI;

• USB;

Interface between controller and device is often low-level.

L. Tarrataca Chapter 5 - Input / Output 11 / 90



Principle of I/O Hardware Device Controllers

Disk Example

Consider a disk with 2,000,000 sectors of 512 bytes per track:

• Information that comes off the drive is a serial bit stream:

• Starting with a preamble:

• Cylinder number;

• Sector number;

• Sector size;

• Synchronization information

• Then the 4096 bits in a sector;

• And finally a checksum;

L. Tarrataca Chapter 5 - Input / Output 12 / 90



Principle of I/O Hardware Device Controllers

Disk Example

Controller’s job is to:

• Convert the serial bit stream into a block of bytes:

• Block of bytes is assembled in a buffer inside the controller;

• and perform any error correction necessary:

• If block is error free: copy block to memory;

L. Tarrataca Chapter 5 - Input / Output 13 / 90



Principle of I/O Hardware Device Controllers

LCD Display Example

LCD display monitor controller also works at a low level:

• Reads bytes containing the characters to be displayed from memory;

• Generates the signals to modify pixels in order to write them on screen;

• If it were not for the display controller:

• OS programmer would have to specify electric fields of all pixels;

• With the controller the OS:

• Initializes the controller with a few parameters;

• Controller takes care of specifying electric fields.

L. Tarrataca Chapter 5 - Input / Output 14 / 90



Principle of I/O Hardware Memory-Mapped I/O

Memory-Mapped I/O

Each controller has registers:

• Used for communicating with the CPU;

• OS can write into these registers in order to:

• Deliver data, accept data, switch device on or off, etc...

• OS can read from these registers in order to:

• Learn device state and so on;

L. Tarrataca Chapter 5 - Input / Output 15 / 90



Principle of I/O Hardware Memory-Mapped I/O

Besides registers many devices also have a data buffer:

• OS can read or write into;

• E.g.: computers display pixels on the screen through video ram:

• Data buffer available for programs or OS to write into.

L. Tarrataca Chapter 5 - Input / Output 16 / 90



Principle of I/O Hardware Memory-Mapped I/O

How does the CPU communicate with the control registers and also with

the device data buffers? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 17 / 90



Principle of I/O Hardware Memory-Mapped I/O

How does the CPU communicate with the control registers and also with

the device data buffers? Any ideas?

Two alternatives exist:

• Each control register is assigned an I/O port number;

• Set of all I/O ports forms the I/O port space;

• Map all control registers into memory space;

• A.k.a. memory-mapped I/O;

• Approach used in Computer Architecture labs =)

L. Tarrataca Chapter 5 - Input / Output 18 / 90



Principle of I/O Hardware Memory-Mapped I/O

Figure: (a) Separate I/O and memory space. (b) Memory-mapped I/O, approach used in computer

architecture laboratories. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 5 - Input / Output 19 / 90



Principle of I/O Hardware Memory-Mapped I/O

How do these schemes actually work in practice?

L. Tarrataca Chapter 5 - Input / Output 20 / 90



Principle of I/O Hardware Memory-Mapped I/O

How do these schemes actually work in practice?

When the CPU wants to read a word (memory or I/O port) (1/2):

1 Address placed on the bus’ address lines;

2 READ signal on a bus’ control line;

L. Tarrataca Chapter 5 - Input / Output 21 / 90



Principle of I/O Hardware Memory-Mapped I/O

How do these schemes actually work in practice?

When the CPU wants to read a word (memory or I/O port) (2/2):

3 Additional signal on the bus’ control line:

• To tell whether I/O space or memory space is needed;

• If it is memory space:

• Memory responds to the request;

• If it is I/O space:

• I/O device responds to the request.

L. Tarrataca Chapter 5 - Input / Output 22 / 90



Principle of I/O Hardware Memory-Mapped I/O

If there is only memory space:

• Every memory module and every I/O device:

• Compares address lines to the range of addresses that it services;

• If the address falls in its range, it responds to the request;

• Since no address is ever assigned to both memory and an I/O device:

• There is no ambiguity and no conflict.

L. Tarrataca Chapter 5 - Input / Output 23 / 90



Principle of I/O Hardware Direct Memory Access

Direct Memory Access

Eventually with I/O: CPU needs to exchange data with devices

• CPU can request data from an I/O controller one byte at a time...

Can you see any problem with this approach? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 24 / 90



Principle of I/O Hardware Direct Memory Access

Direct Memory Access

Eventually with I/O: CPU needs to exchange data with devices

• CPU can request data from an I/O controller one byte at a time...

Can you see any problem with this approach? Any ideas?

• Wasteful of CPU’s time. Why?

L. Tarrataca Chapter 5 - Input / Output 25 / 90



Principle of I/O Hardware Direct Memory Access

Direct Memory Access

Eventually with I/O: CPU needs to exchange data with devices

• CPU can request data from an I/O controller one byte at a time...

Can you see any problem with this approach? Any ideas?

• Wasteful of CPU’s time. Why?

• CPU is a powerful tool that is being used to copy bytes...

L. Tarrataca Chapter 5 - Input / Output 26 / 90



Principle of I/O Hardware Direct Memory Access

Do you know any other mechanism for copying data between I/O

devices and memory?

L. Tarrataca Chapter 5 - Input / Output 27 / 90



Principle of I/O Hardware Direct Memory Access

Do you know any other mechanism for copying data between I/O

devices and memory?

Direct Memory Address (DMA): (1/2)

• OS can use only DMA if the hardware has a DMA controller;

• Usually a single DMA controller is available:

• Typically on the motherboard;

• Regulates transfers to multiple devices, often concurrently.

L. Tarrataca Chapter 5 - Input / Output 28 / 90



Principle of I/O Hardware Direct Memory Access

Direct Memory Address (DMA): (2/2)

• DMA has access to the system bus independent of the CPU;

• DMA contains several registers that can be written and read by the CPU:

• Memory Address Register;

• Byte count register;

• One or more control registers:

• Specify the I/O port to use;

• Read / Write from / into I/O device;

• Transfer unit: byte? word?

• Number of units to transfer in one burst;

L. Tarrataca Chapter 5 - Input / Output 29 / 90



Principle of I/O Hardware Direct Memory Access

Programmed Interruptions

Consider how disk reads occur when DMA is not used, the disk controller:

1 Reads block bit by bit:

• Until entire block is in the controller’s internal buffer.

2 Computes checksum to verify that no read errors have occurred.

3 Causes an interrupt:

• When the OS executes:

• Disk block is read from the controller’s buffer and stored in main memory;

L. Tarrataca Chapter 5 - Input / Output 30 / 90



Principle of I/O Hardware Direct Memory Access

DMA Transfers

Consider how disk reads occur when DMA is used (1/5):

Figure: Operation of a DMA transfer. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 5 - Input / Output 31 / 90



Principle of I/O Hardware Direct Memory Access

DMA Transfers

Consider how disk reads occur when DMA is used (2/5):

1 CPU programs the DMA controller’s registers so that:

• Source device and destination memory addresses are configured;

2 DMA controller initiates transfer by:

• Issuing a read request over the bus to the disk controller;

• Placing destination address on the bus address lines;

L. Tarrataca Chapter 5 - Input / Output 32 / 90



Principle of I/O Hardware Direct Memory Access

DMA Transfers

Consider how disk reads occur when DMA is used (3/5):

3 Once word has been placed on the disk’s controller internal buffer:

• Disk controller issues write request to memory module;

4 When memory write is complete:

• Disk controllers sends acknowledgement signal to the DMA controller;

L. Tarrataca Chapter 5 - Input / Output 33 / 90



Principle of I/O Hardware Direct Memory Access

DMA Transfers

Consider how disk reads occur when DMA is used (4/5):

5 DMA controller then:

• Increments memory address to use;

• Decrements the byte count;

• If byte count is greater than zero:

• Steps 2 through 4 are repeated;

• If byte count is zero:

• DMA controller interrupts the CPU: transfer is now complete.

L. Tarrataca Chapter 5 - Input / Output 34 / 90



Principle of I/O Hardware Direct Memory Access

DMA Transfers

Consider how disk reads occur when DMA is used (5/5):

6 When OS starts up:

• Disk block is already in memory;

L. Tarrataca Chapter 5 - Input / Output 35 / 90



Principle of I/O Hardware Direct Memory Access

Important: Whenever the DMA is using the bus:

• If the CPU also wants the bus, it has to wait;

• This delays CPU operation:

• Slightly if a small amount of information is transferred;

• Substantially if a big amount of information is transferred;

L. Tarrataca Chapter 5 - Input / Output 36 / 90



Principle of I/O Hardware Interrupts Revisited

Interrupts Revisited

What do you think is the typical interrupt structure? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 37 / 90



Principle of I/O Hardware Interrupts Revisited

Interrupts Revisited

Typical interrupt structure:

Figure: How an interrupt happens. The connections between the devices and the controller actually use

interrupt lines on the bus rather than dedicated wires. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 5 - Input / Output 38 / 90



Principle of I/O Hardware Interrupts Revisited

Interrupts work as follows (1/5):

1 Once I/O device finishes work it causes an interrupt;

2 Interrupt is a signal on a bus line;

L. Tarrataca Chapter 5 - Input / Output 39 / 90



Principle of I/O Hardware Interrupts Revisited

Interrupts work as follows (2/5):

3 Signal is detected by interrupt controller chip on the motherboard:

• If no other interrupts are pending:

• interrupt controller handles the interrupt immediately.

• If another interrupt or higher interruption exists:

• Device is ignored for the moment;

• Device continues to assert interrupt signal on the bus;

L. Tarrataca Chapter 5 - Input / Output 40 / 90



Principle of I/O Hardware Interrupts Revisited

Interrupts work as follows (3/5):

4 Device controller responsible for generating interruption:

• Configures address lines with a number specifying the device;

L. Tarrataca Chapter 5 - Input / Output 41 / 90



Principle of I/O Hardware Interrupts Revisited

Interrupts work as follows (4/5):

5 Interrupt signal causes the CPU to switch context:

• Number in address lines indexes interrupt vector;

• Giving the PC of the interrupt-service procedure;

• Context needs to be:

• Saved before processing interruption;

• Restored after processing interruption;

L. Tarrataca Chapter 5 - Input / Output 42 / 90



Principle of I/O Hardware Interrupts Revisited

Interrupts work as follows (5/5):

6 Interrupt-service procedure acknowledges interruption:

• By writing a certain value to one of the interrupt controller’s I/O ports;

• Acknowledgement tells:

• Device controller that it is free to issue another interrupt.

L. Tarrataca Chapter 5 - Input / Output 43 / 90



Principle of I/O Hardware Interrupts Revisited

But what happens if we have a pipelined processor? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 44 / 90



Principle of I/O Hardware Interrupts Revisited

But what happens if we have a pipelined processor? Any ideas?

First: what is a pipelined processor? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 45 / 90



Principle of I/O Hardware Interrupts Revisited

First: what is a pipelined processor? Any ideas?

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: [Stallings, 2015])

L. Tarrataca Chapter 5 - Input / Output 46 / 90



Principle of I/O Hardware Interrupts Revisited

But what happens if we have a pipelined processor? Any ideas?

What happens if an interrupt occurs while the pipeline is full (the usual

case)? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 47 / 90



Principle of I/O Hardware Interrupts Revisited

What happens if an interrupt occurs while the pipeline is full (the usual

case)? Any ideas?

• Many instructions are in various stages of execution;

• When the interrupt occurs:

• PC may not reflect the correct boundary between:

• Executed instructions and non-executed instructions

Why do you think this happens? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 48 / 90



Principle of I/O Hardware Interrupts Revisited

Why do you think this happens? Any ideas?

• Many instructions may have been partially executed;

• PC most likely reflects address of the next instruction to be:

• Fetched and pushed into the pipeline;

• Rather than the address of the instruction that just was processed;

L. Tarrataca Chapter 5 - Input / Output 49 / 90



Principle of I/O Hardware Interrupts Revisited

What happens if we have a superscalar processor?

L. Tarrataca Chapter 5 - Input / Output 50 / 90



Principle of I/O Hardware Interrupts Revisited

What happens if we have a superscalar processor?

• Things are even worse;

• Instructions may be decomposed into micro-operations:

• µ-operations may execute out of order;

• Depending on availability of functional units and registers;

• At the time of an interrupt:

• Some instructions started long ago may not have finished;

• Others started more recently may be almost done;

L. Tarrataca Chapter 5 - Input / Output 51 / 90



Principle of I/O Hardware Interrupts Revisited

This leads to the concept of precise interrupt:

• All instructions before the one pointed to by the PC have completed.

Figure: (a) A precise interrupt. (b) An imprecise interrupt. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 5 - Input / Output 52 / 90



Principle of I/O Hardware Interrupts Revisited

imprecise interrupts makes life most unpleasant for the OS writer:

• 6= instructions near the program counter are in 6= stages of completion;

• Machines with imprecise interrupts usually:

• Vomit a large amount of internal state onto the stack;

• OS must analyze this to figure out what was going on;

• Code necessary to restart the machine is typically exceedingly complicated.

• Each interruption saves a lot of information into memory:

• Memory access implies slower performance;

• Bad performance for superscalar CPUs;

L. Tarrataca Chapter 5 - Input / Output 53 / 90



Principle of I/O Hardware Interrupts Revisited

So what can be done to solve these issues? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 54 / 90



Principle of I/O Hardware Interrupts Revisited

So what can be done to solve these issues? Any ideas?

A common answer in engineering: it depends

• x86 processor family have precise interrupts:

• All instructions up to some point are allowed to finish;

• Before the interruption is processed;

• Requires extra chip complexity;

• Some processors allow for imprecise interrupts:

• Making OS far more complicated and slower;

Conclusion: hard to tell which approach is really better.

L. Tarrataca Chapter 5 - Input / Output 55 / 90



I/O software layers

I/O software layers

I/O software is typically organized in four layers:

Figure: Layers of the I/O software system. (Source: [Tanenbaum and Bos, 2015])

Lets have a look at each of these =)

L. Tarrataca Chapter 5 - Input / Output 56 / 90



I/O software layers Interrupt Handlers

Interrupt Handlers

Interrupt process requires the following steps to be performed:

1 Save registers that will be used by handler;

2 Set up a context for the interrupt-service procedure.

3 Set up a stack for the interrupt service-procedure;

4 Acknowledge interrupt controller;

5 Copy saved registers to process table;

6 Run the interrupt-service procedure;

7 Choose which process to run next;

8 Load the new process’ registers;

9 Start running the new process.

L. Tarrataca Chapter 5 - Input / Output 57 / 90



I/O software layers Device Drivers

Device Drivers

Earlier we saw device controllers: (1/2)

• Each controller has some device registers used to :

• Give the device commands;

• Read status;

L. Tarrataca Chapter 5 - Input / Output 58 / 90



I/O software layers Device Drivers

Device Drivers

Earlier we saw device controllers: (2/2)

• Number of registers and commands vary from device to device, e.g.:

• Mouse driver has to accept information from the mouse, e.g.::

• How far it has moved

• Which buttons are pressed;

• Disk driver has to know all about:

• Sectors, tracks, cylinders, heads, arm motion, etc...

• Obviously, these drivers will be very different.

L. Tarrataca Chapter 5 - Input / Output 59 / 90



I/O software layers Device Drivers

Each I/O device needs some device-specific code, i.e., device driver:

• Usually written by the device’s manufacturer;

• Different for each OS;

• Each device driver normally handles one device type:

• Mouse driver;

• Joystick driver;

• Each device driver can also handle closely related devices:

• SCSI disk driver can usually handle multiple SCSI disks

L. Tarrataca Chapter 5 - Input / Output 60 / 90



I/O software layers Device Drivers

Different devices can also be based on the same underlying technology:

• Example: Universal serial bus:

• Disks, memory sticks, cameras, mice, keyboards, etc...

• There is a reason why it called universal

• In order to access the device’s hardware (i.e. data / control registers):

• Device driver normally has to be part of kernel;

• Device drivers are normally positioned below the rest of OS;

L. Tarrataca Chapter 5 - Input / Output 61 / 90



I/O software layers Device Drivers

Figure: Logical positioning of device drivers. In reality all communication between drivers and device

controllers goes over the bus. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 5 - Input / Output 62 / 90



I/O software layers Device Drivers

Remember that OS usually classify drivers into:

• Block devices: containing multiple data blocks:

• Each block can be addressed independently;

• OS define a standard interface that:

• Block drivers must support, e.g.: read a block;

• Character devices: accepting a stream of characters:

• Such as keyboards and printers;

• OS define a standard interface that:

• Character drivers must support, e.g.: write string;

L. Tarrataca Chapter 5 - Input / Output 63 / 90



I/O software layers Device Drivers

In your opinion:

What are the set of responsibilities of a device driver? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 64 / 90



I/O software layers Device Drivers

What are the set of responsibilities of a device driver? Any ideas?

Device driver functions:

• Minimum set of functions:

• Accept read / write requests;

• See that read / write requests are performed;

• Additional set of possible functions:

• Initialize device;

• Manage power requirements;

• Log events;

L. Tarrataca Chapter 5 - Input / Output 65 / 90



I/O software layers Device Drivers

In your opinion:

What is the general structure of a device driver? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 66 / 90



I/O software layers Device Drivers

Device driver general structure (1/2):

1 Confirm input parameters are valid:

• If not return an error;

2 Check if the device is currently in use:

• If device is busy:

• Queue request for later processing;

• If device is idle:

• Check if device can handle request...

• ...may be necessary to: switch device, start motor, etc..

• ...Proceed to process request

L. Tarrataca Chapter 5 - Input / Output 67 / 90



I/O software layers Device Drivers

Device driver general structure (2/2):

3 Commands are written into the controller’s device registers;

4 After each command is written to the controller:

• May be necessary to check to see if:

• Controller accepted the command and...

• ...is prepared to accept the next one.

• Sequence continues until all the commands have been issued;

L. Tarrataca Chapter 5 - Input / Output 68 / 90



I/O software layers Device Drivers

5 After the commands have been issued:

• Situation 1: driver waits until controller finishes work;

• Driver blocks;

• Can be awakened by an interruption;

• Situation 2: operation finishes without delay:

• No need for the driver to block;

L. Tarrataca Chapter 5 - Input / Output 69 / 90



I/O software layers Device Drivers

6 After operation completes: driver checks for errors

• If no error: data is returned to original requesting application;

7 If any other requests are queued:

• They can now be selected and started.s

8 If nothing is queued:

• Driver blocks waiting for the next request.

L. Tarrataca Chapter 5 - Input / Output 70 / 90



I/O software layers Device-Independent I/O Software

Device-Independent I/O Software

Although some I/O software is device specific:

• Other parts of it are device independent.

• The following functions are typically device-independent:

• Uniform interfacing for device drivers;

• Buffering;

• Error reporting;

• Allocating and releasing dedicated devices;

• Providing a device-independent block size;

Lets have a look at each one of these...

L. Tarrataca Chapter 5 - Input / Output 71 / 90



I/O software layers Device-Independent I/O Software

Uniform Interfacing for Device Drivers

How can we make all I/O devices and drivers look more or less the same?

Any ideas?

L. Tarrataca Chapter 5 - Input / Output 72 / 90



I/O software layers Device-Independent I/O Software

Uniform Interfacing for Device Drivers

How can we make all I/O devices and drivers look more or less the same?

Any ideas?

All drivers have the same interface:

• Easy to plug in a new driver:

• Driver just needs to implements methods specified in interface;

• Driver writers know what is expected of them;

• In practice: not all devices are absolutely identical:

• But usually there are only a small number of device types...

• ...and even these are generally almost the same.

L. Tarrataca Chapter 5 - Input / Output 73 / 90



I/O software layers Device-Independent I/O Software

Figure: Standard driver interface.(Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 5 - Input / Output 74 / 90



I/O software layers Device-Independent I/O Software

Usual methods specified by the interface:

• Read;

• Write;

• Turn power on / off;

• Formatting;

L. Tarrataca Chapter 5 - Input / Output 75 / 90



I/O software layers Device-Independent I/O Software

Buffering

How to buffer data from / into the device? Any ideas?

L. Tarrataca Chapter 5 - Input / Output 76 / 90



I/O software layers Device-Independent I/O Software

Buffering

How to buffer data from the device? Any ideas?

• Read/Write one item of information?

• Device driver process is executed once for each item;

• Not very efficient;

• Read / Write multiple items of information?

• Device driver process is executed once for multiple items;

• More efficient;

• Read/Write data into a kernel register?

• Copy data to device driver when full;

L. Tarrataca Chapter 5 - Input / Output 77 / 90



I/O software layers Device-Independent I/O Software

Error reporting

Many errors are device specific:

• Handled by the appropriate driver;

• What software does depends on environment and error nature;

• Option include:

• Asking user what to do;

• Retry a certain number of times;

• Ignore the error;

• Killing the calling process;

• Have system call return with an error code;

L. Tarrataca Chapter 5 - Input / Output 78 / 90



I/O software layers Device-Independent I/O Software

However, some errors cannot be handled this way:

• If error involves critical data:

• System may have to display an error message and terminate:

• Not much else it can do.

L. Tarrataca Chapter 5 - Input / Output 79 / 90



I/O software layers Device-Independent I/O Software

Allocating and Releasing Dedicated Devices

OS examines requests for device usage and accepts or rejects them:

• Depending on whether the requested device is available or not;

• If request is authorized OS must:

• Allocate device during request;

• Free allocated resource (including device) after request is processed;

L. Tarrataca Chapter 5 - Input / Output 80 / 90



I/O software layers Device-Independent I/O Software

Device-Independent Block Size

E.g.: Different disks may have different sector sizes:

• Up to the device-independent software to hide this fact:

• Providing a uniform block size to higher layers,

• Several sectors as a single logical block;

• This way higher layers all use the same block size:

L. Tarrataca Chapter 5 - Input / Output 81 / 90



I/O software layers User-Space I/O Software

User-Space I/O Software

Summary of the I/O system:

Figure: Layers of the I/O system and the main functions of each layer. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 5 - Input / Output 82 / 90



I/O software layers User-Space I/O Software

Example:

1 User program tries to read a block from a file;

2 Device-independent software looks for it in buffer cache:

3 If the needed block is not there: device driver issues request to hardware;

4 Hardware fetches block from disk;

5 Process is then blocked until disk operation finished;

6 When disk finishes: interruption is generated;

7 Interruption handler runs and notifies sleeping process;

L. Tarrataca Chapter 5 - Input / Output 83 / 90



Clocks

Clocks

Clocks (also called timers) are essential to OS:

• Maintain the time of day;

• Prevent one process from monopolizing the CPU;

• Among other things;

Clock software can take the form of a device driver:

• Even though a clock is neither a block device nor a character device;

• Lets look first at the clock hardware and then the software;

L. Tarrataca Chapter 5 - Input / Output 84 / 90



Clocks Clock Hardware

Clock Hardware

A clock is built out of three components:

• Crystal oscillator:

• When piece of quartz crystal is properly cut and mounted under tension:

• Generate a periodic signal of very great accuracy;

• Synchronizing signal to the computer’s various circuits.

• Counter:

• Clock signal is fed into the counter to make it count down to zero;

• When counter gets to zero, it causes a CPU interrupt.

• Holding register: used to load the counter;

L. Tarrataca Chapter 5 - Input / Output 85 / 90



Clocks Clock Hardware

Figure: A programmable clock. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 5 - Input / Output 86 / 90



Clocks Clock Hardware

Two working modes:

• One-shot mode:

• When clock is started it copies holding register value to counter;

• Counter is decremented at each pulse;

• When counter gets to zero:

• Interruption is activated;

• Stops until explicitly started again;

• Square-wave (periodic) mode:

• After getting to zero and causing interruption:

• holding register is automatically copied into the counter;

• process is repeated again indefinitely.

L. Tarrataca Chapter 5 - Input / Output 87 / 90



Clocks Clock Hardware

Programmable clock chips usually contain:

• Two or three independently programmable clocks;

• Many other options:

• counting up;

• counting down;

• interrupts disabled;

• and more;

L. Tarrataca Chapter 5 - Input / Output 88 / 90



Clocks Clock Software

Clock Software

Clock hardware is responsible for generating interrupts at known intervals:

• Everything else must be done by the clock driver;

• Exact duties usually include:

1 Maintaining the time of day;

2 Preventing processes from running longer than they are allowed to;

3 Accounting for CPU usage;

4 Handling the alarm system call made by user processes;

5 Providing watchdog timers for parts of the system itself;

6 Doing profiling, monitoring, and statistics gathering.

L. Tarrataca Chapter 5 - Input / Output 89 / 90



References

References I

Stallings, W. (2015).

Computer Organization and Architecture.

Pearson Education.

Tanenbaum, A. and Bos, H. (2015).

Modern Operating Systems.

Pearson Education Limited.

L. Tarrataca Chapter 5 - Input / Output 90 / 90


	Motivation
	Principle of I/O Hardware
	I/O Devices
	Device Controllers
	Memory-Mapped I/O
	Direct Memory Access
	Interrupts Revisited

	I/O software layers
	Interrupt Handlers
	Device Drivers
	Device-Independent I/O Software
	User-Space I/O Software

	Clocks
	Clock Hardware
	Clock Software

	References

