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Motivation

Motivation

From the previous slides:

What is one of the most important concepts in OS? Any ideas?
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Motivation

Motivation

From the previous slides:

What is one of the most important concepts in OS? Any ideas?

• Process
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Motivation

Motivation

From the previous slides:

What is one of the most important concepts in OS? Any ideas?

• Process

Do you remember what a process is?
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Motivation

Motivation

Do you remember what a process is?

• Abstraction of a running program;

• I.e. the state of a program:

• PSW (PC, IR, ... );

• Files opened;

• Sockets used;

• Every resource being used by the program;

• One of the oldest and most important abstractions;

• Turn a single CPU into multiple virtual CPUs;
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Processes

Processes

Modern computers do several things simultaneously:

• Check emails, run text editor, play music, etc...

• This was not always like this:

• Computers used to be able to run a single program;

• Clearly some mechanism is need to model and control this concurrency:

• Share the resource among many programs:

• CPU;

• Disk;

• Etc...
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Processes

Clearly some mechanism is need to model and control this concurrency:

Do you have any idea of what this concept is?

L. Tarrataca Chapter 2 - Processes and Threads 12 / 274



Processes

Clearly some mechanism is need to model and control this concurrency:

Do you have any idea of what this concept is?

• Processes ;)

• And also threads

• Which we will see later;
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Processes

In any multiprogramming environment (1/2):

• CPU switches from process to process quickly;

• Each runs for a duration of time;

• Determined by some algorithm;

• Scheduler process is responsible for:

• Changing processes;

• Deciding who to run next;

• In Portuguese:

• escalonador / agendador
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Processes

In any multiprogramming environment (2/2):

• Each process typically runs tens / hundreds of miliseconds:

• In one second several processes will have been executed;

• This gives the illusion of parallelism:

• pseudoparallelism

• This contrasts with true multiprocessor parallelism;
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Processes The process model

The process model

In essence, in a multiprogramming environment:

• OS have process concept;

• OS alternates process execution;

We will assume there is only one CPU:

• In reality multiple cores will exist;

• But if we know how to process one core:

• Easy to extend for all cores;

• Each core will only run a process at a time;
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Processes The process model

Multiprogramming idea:

• Make efficient use of the processor;

• If we only have a single process executing:

• Eventually some I/O operation will need to be performed;

• Program will have to wait for the result of this operation:

• I/O operations much slower than CPU

• Processor will be idle a long time;

Figure: Executing a single program (Source: [Stallings, 2015])
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Processes The process model

Figure: Executing a single program (Source: [Stallings, 2015])

Is this an efficient use of the processor?
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Processes The process model

Most of the time the processor is idle not doing anything.

• Processor executes orders of magnitude faster than I/O...

• Consider the following example:

Figure: System utilisation Example (Source: [Stallings, 2015])
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Processes The process model

Instead of idling the system we could be running another program...

Figure: Executing two programs (Source: [Stallings, 2015])

But this second program may eventually also ask for I/Os...
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Processes The process model

We can even add a third program...

Figure: Executing three programs (Source: [Stallings, 2015])

This way the processor idle times are diminished...
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Processes The process model

CPU switches back and forth between processes:

• Process computation will not be uniformly executed:

• Some code sections may run for a longer time than others;

• This depends on resource competition at any given time:

• Therefore:

• Processes must not be programmed with built-in assumptions about timing;

• If a timer is need OS have timer system calls available:

• E.g.: setitimer, alarm
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Processes The process model

Example

Assume the following:

• A process spends a fraction p of its time waiting for I/O;

• Simplification: assume n processes spend the same time waiting for I/O

• Probability that all n processes are waiting for I/O is

CPU Utilization = 1 − p
n
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Processes The process model

Example

We can then plot the following picture

Figure: CPU utilization as a function of the number of processes in memory. (Source:

[Tanenbaum and Bos, 2015])
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Processes The process model

Example

From the previous figure:

• If processes spend 80% of their time waiting for I/O:

• At least 10 processes must be in memory for CPU waste to fall below 10%;

• If processes spend 50% of their time waiting for I/O:

• At least 4 processes must be in memory for CPU waste to fall below 10%;

• If processes spend 20% of their time waiting for I/O:

• At least 3 processes must be in memory for CPU waste to fall below 10%;
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Processes The process model

In reality:

• 6= processes will have 6= I/O times;

What do you think is the main conclusion to draw from the previous slides?

Any ideas?
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Processes The process model

In reality:

• 6= processes will have 6= I/O times;

What do you think is the main conclusion to draw from the previous slides?

Any ideas?

• CPU Utilization rate should be close to 100%;

• Only possible with high degree of multiprogramming;
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Processes The process model

In UNIX, it is possible to see processes through several commands:

• ps

• top

• htop

Which will show a listing of the processes:

• Most of them will be daemons:

• I.e.: process running in background to handle some activity;
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Processes The process model

Process listing through htop:
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Processes The process model

A running process may issue system calls to create new processes:

• In UNIX: fork system call;

• Useful if work can be performed by other processes;

• No need to develop additional code;

• Capitalize on existing knowledge: Save time on bugs;

• In UNIX: execv system call;

But you want to know the real reason why this is done?

L. Tarrataca Chapter 2 - Processes and Threads 30 / 274



Processes The process model

A running process may issue system calls to create new processes:

• In UNIX: fork system call

• Useful if work can be performed by other processes;

• No need to develop specific code;

• Reutilize everything that was already made:

• Capitalize on existing knowledge;

• Save time on bugs;

But you want to know the real reason why this is done?

• Programmers are lazy ;)
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Processes The process model

After a process is created:

• parent and child have their own distinct address spaces;

• If either process changes a word in its address space:

• Change is not visible to the other process;
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Processes Process Termination

Process Termination

After a process has been created:

• It starts running and does whatever its job is.

• Eventually the process will terminate, usually due to one of the following:

• Normal exit (voluntary).

• Error exit (voluntary).

• Fatal error (involuntary).

• Killed by another process (involuntary).

• Most processes terminate because they have done their work:

• In UNIX: exit system call
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Processes Process States

Process States (1/2)

During the lifetime of a process, its state will change a number of times:

Figure: Five state process model (Source: [Stallings, 2015])
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Processes Process States

Process States (2/2)

During the lifetime of a process, its state will change a number of times:

• New: Process is created but not yet ready to execute.

• Ready: Process is ready to execute, awaiting processor availability;

• Running: Process is being executed by the processor;

• Waiting: Process is suspended from execution waiting a system resource;

• Halted: Process has terminated and will be destroyed by the OS.
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Processes Process States

Process Control Block

OS represents each process by a control block (simplified) (1/2):

• Identifier: Unique process identifier;

• State: Current process state;

• Priority: Process priority level.;

• Program counter: Next instruction;

• Memory pointers: Process starting and

ending memory locations;

• Context data: Processor state registers;

• I/O status: I/O requests and I/O devices;

• Accounting Info: E.g. processor time,

clock time, time limits,...

Figure: Process Control Block (Source:

[Stallings, 2015])
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Processes Process States

OS represents each process by a control block (detailed) (2/2):

Figure: Scheduling Example (Source: [Stallings, 2015])
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Processes Scheduling Techniques

Scheduling Techniques

Consider the following scenario:

Figure: Scheduling Example (Source: [Stallings, 2015])
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Processes Scheduling Techniques

Initially process A is running and:

1 The processor is executing instructions from process A;

2 The processor then:

• ceases to execute A;

• begins executing OS instructions.

3 This will happen for one of three reasons:

1 Process A issues a service call (e.g., an I/O request) to the OS.

• Execution of A is suspended until this call is satisfied by the OS.

2 Process A causes an interrupt signal:

• When this signal is detected, the processor ceases to execute A;

• OS processes the interrupt signal;

3 An event unrelated to process A causes an interrupt.

• E.g. is the completion of an I/O operation.
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Processes Scheduling Techniques

Process A therefore is going to block and control is passed to the OS:

1 The OS saves:

• Current processor context (registers);

• PC;

2 The OS:

1 changes the state of A to blocked;

2 decides which process should be executed next;

3 instructs the processor to restore B’s context data;

4 proceeds with the execution of B where it left off.
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Processes Scheduling Techniques

This gives rise to the following model:

Figure: The lowest layer of a process-structured operating system handles interrupts and scheduling. Above

that layer are sequential processes. (Source: [Tanenbaum and Bos, 2015])

• OS lowest level is the scheduler;
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Processes Scheduling Techniques

How does the scheduler choose among the various processes? Any

ideas?
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Processes Scheduling Techniques

How does the scheduler choose among the various processes?

Well it depends on a lot of variables:

• Real-time operating systems: is the OS responsible for:

• Controlling a nuclear station?

• Controlling an airplane?

• General purpose operating systems:

• Do different processes have different priorities?

• How long has a process been allowed to run?

• ...
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Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?
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Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?
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Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

• Array?
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Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

• Array?

• List?
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Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

• Array?

• List?

• Queue?
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Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

• Array?

• List?

• Queue?

• Hash table?
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Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

• Array?

• List?

• Queue?

• Hash table?

• Tree?
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Processes Scheduling Techniques

Linux Scheduler Example (1/3)

Linux kernel 2.6.23 included the Completely Fair Scheduler:

• Uses a Red-Black tree as the data structure. Why?;

• Tree nodes are indexed by processor "execution time" in nanoseconds;

• When choosing a new process the scheduler:

• Node with the lowest execution time (left-most) is chosen;

• If the process completes execution it is removed from the system and tree;

• If the process reaches its maximum execution time or is otherwise stopped:

• it is reinserted into the scheduling tree based on its new spent execution time;

• Otherwise, the new left-most node will then be selected from the tree.
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Processes Scheduling Techniques

Linux Scheduler Example (2/3)

If the process spends a lot of its time sleeping:

• Spent time value is low;

• Automatically gets the priority boost when it finally needs it.

• Hence such tasks do not get less processor time than the tasks that are

constantly running.
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Processes Scheduling Techniques

Linux Scheduler Example (3/3)

CFS scheduler has a scheduling complexity of:

• O(log (N)) where N is the number of processes;

• Choosing a task can be done in constant time, i.e. O(1);

• Reinserting a task after it has run requires O(log (N)) operations;

• These complexities are all a result of using Red-Black trees.
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Threads

Threads

Each process has an address space and a single thread of control:

What if a process blocks? Why not run some other code of the process?
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Threads

Threads

Each process has an address space and a single thread of control:

What if a process blocks? Why not run some other code of the process?

• Answer: Threads

• Threads can be thought of parallel entities within the process;
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Threads

Threads

What if we wish to share the process data amongst different parallel

entities?
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Threads

Threads

What if we wish to share the process data amongst different parallel

entities?

• Answer: Threads

• Threads share an address space and all of its data among themselves;

• Essential ability for certain applications;
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Threads

Also: creating a process is a heavy/slow computational task:

• Allocate memory;

• Setup data / text memory sections;

• Setup file descriptors;

• Setup all the necessary resources;

Sometimes there is no need to copy the same data again:

What if we wish to save on all this time?
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Threads

Also: creating a process is a heavy/slow computational task:

• Allocate memory;

• Setup data / text memory sections;

• Setup file descriptors;

• Setup all the necessary resources;

Sometimes there is no need to copy the same data again:

What if we wish to save on all this time?

• Answer: Threads

• Creating threads is 10 - 100 times faster;
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Threads

What if we have multiple cores?

• With processes:

• Each core could execute a process;

• With threads:

• Each process can run multiple threads;

• Each core could execute a thread;
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Threads

Lets look at a specific example:
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Threads

Can you give specific examples of threads for this game? Any ideas?
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Threads

Can you give specific examples of threads for this game? Any ideas?

• One thread responsible for drawing visual elements;

• One thread for calculating physics;

• One thread for processing audio;

• One thread for processing keyboard inputs;

• One thread for multiplayer;

• Etc...

L. Tarrataca Chapter 2 - Processes and Threads 59 / 274



Threads

However: this strict partition model is not the best;

• Sometimes threads will not have anything to execute;

• As a result: threads will be idle;

• Idle threads are bad since the CPU is not being fully utilized;

Can you think of a better model? Any ideas?
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Threads

Can you think of a better model? Any ideas?

Have a dipatcher thread that:

• Receives tasks that need to be performed;

• Dispatcher then:

1 Chooses an idle worker thread:

2 Wakes sleeping thread;

3 When the worker wakes up:

• Worker starts executing required task;

• As a result:

• As soon as a task is received it is allocated to a specific thread;
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Threads

Pseudo-code for scheduler and worker threads:

wh i l e ( TRUE ) {

ge t _ ne x t _ re ques t ( &b u f f e r ) ;

handoff_work ( &b u f f e r )

}

wh i l e ( TRUE ) {

wa i t _ f o r _ wo r k ( &b u f f e r ) ;

execute_work ( &b u f f e r ) ;

r e t u r n ;

}
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Threads Classical Thread Model

Classical Thread Model

From our previous slides we know that a process has an:

• Address space containing:

• program text and data;

• open files;

• child processes;

• alarms;

• and more...

• As a result:

• processes can be seen as a collection of related resources;
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Threads Classical Thread Model

Processes also have a thread of execution:

• Do not confuse with having multiple threads;

• Single thread of execution has:

• Program Counter;

• Registers;

• Function call stack;
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Threads Classical Thread Model

In your opinion:

What are the differences between processes and threads? Any ideas?
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Threads Classical Thread Model

What are the differences between processes and threads? Any ideas?

• Processes group resources together;

• Threads are the entities scheduled for CPU execution:

• Allow multiple executions in the same process;

• Instead of having a single thread of execution;

• Because threads share the address space:

• They have access to all of the processes’ resources
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Threads Classical Thread Model

Original model (i.e. single thread of execution):

Figure: Three processes each with one thread. (Source: [Tanenbaum and Bos, 2015])

• Each process has its own address space;

• Each process has its own single thread of control;
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Threads Classical Thread Model

Thread model (i.e. various threads of execution):

Figure: One process with three threads. (Source: [Tanenbaum and Bos, 2015])

• E.g.: a single process with three threads of control;

• All three threads operate in the same address space;
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Threads Classical Thread Model

When a multithreaded process is run on a single-CPU system:

• threads take turns running;

• similar to how having multiple processes work;

• gives the illusion of parallelism;
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Threads Classical Thread Model

Because threads share the same address space:

• They also share the same global variables;

• This can lead to problems:

Can you see what type of problems can occur? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 70 / 274



Threads Classical Thread Model

Because threads share the same address space:

• They also share the same global variables;

• This can lead to problems:

Can you see what type of problem can occur? Any ideas?

• One thread can read / write other thread’s data;

• We will study this on later chapters =)
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Threads Classical Thread Model

Each thread represents a different execution path:

What do you think the OS needs to keep track of? Any ideas?
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Threads Classical Thread Model

Each thread represents a different execution path:

What do you think the OS needs to keep track of? Any ideas?

What information was needed for a process with a single thread of

execution?
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Threads Classical Thread Model

OS maintains per thread:

• Program counter;

• Registers;

• Function call stack;

• State;

Figure: Each thread has its own stack. (Source: [Tanenbaum and Bos, 2015])
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Threads Classical Thread Model

In conclusion:

Figure: The first column lists some items shared by all threads in a process. The second one lists some items

private to each thread.(Source: [Tanenbaum and Bos, 2015])
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Threads Classical Thread Model

Do you see any other similarities between threads and processes?
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Threads Classical Thread Model

Do you see any other similarities between threads and processes?

Like a traditional process, a thread can be in one of several states:

• running;

• blocked;

• ready;

• terminated;

L. Tarrataca Chapter 2 - Processes and Threads 77 / 274



Threads Classical Thread Model

Can you guess what each state represents?

• Running:

• Thread is using the CPU;

• Blocked:

• Thread is waiting for some event to unblock it;

• Ready:

• Thread is scheduled to run but not yet running;

• Terminated
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Threads Classical Thread Model

In essence the following procedures are required:

• thread_create:

• Specifies the name of a procedure for the new thread to run;

• thread_exit:

• Thread has finished its work and is no longer schedulable;

• thread_join:

• Blocks the calling thread until a certain thread has exited;

• thread_yield:

• Thread voluntarily gives up the CPU to let another thread run;
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Threads Classical Thread Model

So the question now is:

How are threads implemented in Unix / Linux (posix) systems? Any ideas?
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Threads Classical Thread Model

So the question now is:

How are threads implemented in Unix / Linux (posix) systems? Any ideas?

• The same way that we have POSIX systems calls...

• ...We also have POSIX threads...

Care to guess how the POSIX threads are named Any ideas?
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Threads Classical Thread Model

So the question now is:

How are threads implemented in Unix / Linux (posix) systems? Any ideas?

• The same way that we have POSIX systems calls...

• ...We also have POSIX threads...

Care to guess how the POSIX threads are named Any ideas?

• Pthreads =)

• Guess what we will be seeing next ;)
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Threads POSIX threads

POSIX threads

IEEE defined a standard for threads call Pthreads:

• IEEE is an international organization for defining standards;

• Portable Operating System Interface (POSIX):

• Set of IEEE standards for maintaining compatibility between OS;

• POSIX threads or Pthreads:

• Execution model that allows for a parallel execution model.

• Available on many Unix-like POSIX-conformant OS:

• E.g.: Linux, Mac OS X, Android and Solaris:

• Typically bundled as library libpthread
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Threads POSIX threads

Each Pthread thread has a set of attributes:

Can you guess some of these attributes? Any ideas?
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Threads POSIX threads

Each Pthread thread has a set of attributes:

Can you guess some of these attributes? Any ideas?

• Set of registers (PC, IR, ...);

• Function call stack;

• Stack size;

• Thread identifier;

• Scheduling parameters, e.g.:

• time thread has executed;

• Priority;

• All these attributes are represented in a single entity:

• Thread data type called pthread_t
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Threads POSIX threads

Pthreads defines over 60 function calls:

• All of which you should know for your exam
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Threads POSIX threads

Pthreads defines over 60 function calls:

• All of which you should know for your exam ;)

Here are the main ones:

Figure: Some of the Pthreads function calls (Source: [Tanenbaum and Bos, 2015])
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Threads POSIX threads

Guess what we will be seeing next? ;)
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Threads POSIX threads

pthread_create:

• Creates a new thread;

• Thread identifier of the new thread is returned;

• Extremely Basic Example:

# inc lude <pthread . h>

# inc lude < s t d i o . h>

pthread_ t thread ;

pthread_create ( &thread , NULL , NULL , NULL )

Can you see anything ‘‘wrong’’ with this example?
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Threads POSIX threads

Can you see anything ‘‘wrong’’ with this example?

• Threads are supposed to perform some computation...

• We need to tell threads what function to compute:

• This can be done by pointing thread to a function;

• Important:

• Function must return void*

• Function must take a single argument of type void*

• We can refine the previous example;
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Threads POSIX threads

# inc lude <pthread . h>

# inc lude < s t d i o . h>

void∗ i sP r imeNumber ( void∗ argument ) { . . . }

p th read_ t thread ;

/∗ Check whether the f i r s t 1000 numbers are prime ∗/

f o r ( i n t counter = 0 ; counter < 1000 ; counter ++ ) {

pthread_create ( &thread , NULL , isPr imeNumber , &counter )

}

L. Tarrataca Chapter 2 - Processes and Threads 91 / 274



Threads POSIX threads

# inc lude <pthread . h>

# inc lude < s t d i o . h>

void∗ i sP r imeNumber ( void∗ argument ) { . . . }

p th read_ t thread ;

/∗ Check whether the f i r s t 1000 numbers are prime ∗/

f o r ( i n t counter = 0 ; counter < 1000 ; counter ++ ) {

pthread_create ( &thread , NULL , isPr imeNumber , &counter )

}

Can you see anything wrong with this code? Any ideas?
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Threads POSIX threads

Can you see anything wrong with this code? Any ideas?

• System calls may fail;

• Important to test if function has failed or not;

• If successful

• pthread_create() function will return zero

• Otherwise:

• An error number will be returned to indicate the error.

• We can refine the previous example;
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Threads POSIX threads

# i nc l ude <pthread . h>

# i nc l ude < s t d i o . h>

void∗ i sPr imeNumber ( void∗ argument ) { . . . }

pthread_t thread ;

/∗ Check whether the f i r s t 1000 numbers are pr ime ∗/

f o r ( i n t counter = 0 ; counter < 1000; counter++ ) {

i f ( pthread_create ( &thread , NULL , isPr imeNumber , &counter ) ! = 0 ) {

p r i n t f ( " E r r o r c rea t i ng thread \n " ) ;

}

}

}
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Threads POSIX threads

# i nc l ude <pthread . h>

# i nc l ude < s t d i o . h>

void∗ i sPr imeNumber ( void∗ argument ) { . . . }

pthread_t threads [ 1000 ] ;

/∗ Check whether the f i r s t 1000 numbers are pr ime ∗/

f o r ( i n t counter = 0 ; counter < 1000; counter++ ) {

i f ( pthread_create ( &threads [ counter ] , NULL , isPr imeNumber , &counter ) ! = 0 ) {

p r i n t f ( " E r r o r c rea t i ng thread \n " ) ;

}

}

}

Can you see anything wrong with this example? Any ideas?
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Threads POSIX threads

Can you see anything wrong with this example? Any ideas?

• Threads are created;

• Threads should eventually stop;

• Previous code:

• Just created threads;

• Does not wait for threads to terminate;

• This is done through two function calls:

• pthread_exit: terminates a thread;

• pthread_join: waits for a thread to terminate;

• We can thus refine our previous code;
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Threads POSIX threads

# i nc l ude <pthread . h>

# i nc l ude < s t d i o . h>

void∗ i sPr imeNumber ( void∗ argument ) {

i n t r e s u l t = calcu late I fA rgument I sP r imeNumber ( ( i n t ) ∗argument )

p th read_ex i t ( & r e s u l t ) ;

}

pthread_t threads [ 1000 ] ;

i n t r e s u l t s [ 1000 ]

/∗ Check whether the f i r s t 1000 numbers are pr ime ∗/

f o r ( i n t counter = 0 ; counter < 1000; counter++ ) {

i f ( pthread_create ( &threads [ counter ] , NULL , isPr imeNumber , &counter ) ! = 0 ) {

p r i n t f ( " E r r o r c rea t i ng thread \n " ) ;

}

}

/∗ wai t f o r a l l th reads to f i n i s h ∗/

f o r ( i n t counter = 0 ; counter < 1000; counter++ ) {

i f ( p th read_ jo i n ( threads [ counter ] , ( void∗∗)&( r e s u l t s [ counter ] ) ) ) {

p r i n t f ( " E r r o r j o i n i n g thread \n " ) ;

r e t u r n ERROR ;

} else { p r i n t f ( ‘ ‘ R e s u l t :%d\n ’ ’ , r e s u l t s [ counter ] ) }

}
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Threads POSIX threads

Other system calls:

• pthread_yield: give another thread a chance to run;

• pthread_attr_init: creates and initializes attribute structure of a thread;

• pthread_attr_destroy: frees memory from attribute structure of a thread;
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Threads POSIX threads

Lets see if you understood all of these concepts:

Can you tell me what the following code is doing? Any ideas?
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Threads POSIX threads

Can you tell me what the following code is doing? Any ideas?

# i nc l ude <pthread . h>

# i nc l ude < s t d i o . h>

# i nc l ude < s t d l i b . h>

# def ine NUMBER_OF_THREADS 10

void∗ p r i n t _ h e l l o _ w o r l d ( void∗ t i d ) {

p r i n t f ( " He l l o World . Greet ings f rom thread %d\n " , t i d ) ; pthread e x i t ( NULL ) ;

}

i n t main ( i n t argc , char ∗argv [ ] ) {

pthread_t threads [ NUMBER OF THREADS ] ;

i n t s t a t u s , i ;

f o r ( i =0 ; i < NUMBER_OF_THREADS ; i ++) {

p r i n t f ( " Main here . Creat ing thread %d\n " , i ) ;

s t a t u s = pthread_create(& threads [ i ] , NULL , p r i n t _ h e l l o _ w o r l d , ( void ∗) i ) ;

i f ( s t a t u s != 0) {

p r i n t f ( " Oops . . . pthread create re tu rned e r r o r code %d\n " , s t a t u s ) ;

e x i t (−1);

}

}

e x i t ( NULL ) ;

}
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Threads POSIX threads

Previous code:

• Creates NUMBER_OF_THREADS pthreads;

• Initializes them to run print_hello_world function;

• If the thread creation fails: prints an error message and exits;
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Threads POSIX threads

Important: When compiling pthread programs:

• You will need to add library libpthread;

• This can be done via the compile command:

$ gcc program . c −o program −l p th read
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Threads POSIX threads

Lets talk about additional concepts:

• There are two main methods to implement threads:

• Threads in User Space;

• Threads in Kernel Mode;

Guess what we will be seeing next? ;)
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Threads Threads in User Space

Threads in User Space

Threads package exist entirely in user space:

• Kernel:

• Knows nothing about threads;

• Is managing ordinary single-threaded processes;

Can you see any advantage of using this method?
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Threads Threads in User Space

Threads in User Space

Threads package exist entirely in user space:

• Kernel:

• Knows nothing about threads;

• Is managing ordinary single-threaded proceses;

Can you see any advantage of using this method?

• Threads can be implemented in an OS that does not support threads;

• All OS used to fall in this category;
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Threads Threads in User Space

Figure: User-level thread package (Source: [Tanenbaum and Bos, 2015])
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Threads Threads in User Space

From the previous picture (1/2):

• Threads run on top of OS;

• Threads are implemented by a library:

• thread_create;

• thread_join;

• etc;

• Each process needs its own thread table, keeping track of each thread:

• PC, SP, IR;

• state (blocked, running, finished, etc) ;

• etc;
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Threads Threads in User Space

From the previous picture (2/2):

• Thread table is managed by run-time system;

• Threads are switched based on their state, execution time and others;

• If machine has instructions to save / load all registers:

• Only thread context is switched (little information);

• No need to switch context to kernel (much bigger information):

• Result: much faster than trapping to the kernel;
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Threads Threads in User Space

Other advantages:

• Each process can have its own scheduler;

• Scale better since storing all information in kernel may be problematic;
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Threads Threads in User Space

Can you see any disadvantages? Any ideas?
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Threads Threads in User Space

Can you see any disadvantages? Any ideas?

• Blocking system calls will block threads:

• Precisely what we were trying to avoid by using calls;

• Cannot be changed without changes to OS;

• Page faults:

• Kernel blocks entire process to fetch information;

• But other threads belonging to the same process could be executed;
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Threads Threads in the Kernel

Threads in the Kernel

Figure: Threads packaged managed by the kernel (Source: [Tanenbaum and Bos, 2015])
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Threads Threads in the Kernel

From the previous picture (1/2):

• Kernel has a thread table;

• Thread management is done through a kernel call:

• Much slower: since kernel context needs to be loaded;

• Kernel can detect blocking system calls and switch threads:

• Switching to threads of the same process;

• Or switching to threads belonging to other processes;
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Threads Threads in the Kernel

From the previous picture (2/2):

• With user-level threads:

• Process threads keep running until kernel takes CPU away;

• If one thread in a process causes a page fault:

• Kernel can choose another runnable thread;
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Threads Hybrid Implementations

Hybrid Implementations

Idea: use kernel-level threads and multiplex user-level threads in them:

• Try to get only advantages and mitigate disadvantages;

• Programmer determines:

• How many kernel threads to use;

• How many user-level threads to use;

• Kernel:

• Aware of kernel-level threads and schedules those;

• Some of those threads may have multiple user-level threads:
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Threads Making Single Threaded Code Multithreaded

Making Single Threaded Code Multithreaded

Many existing programs were written for single-threaded processes:

• Converting to multithreading is very tricky

Thread code normally consists of multiple procedures with:

• Local variables, global variables, and parameters;

• Global variables are problem:

• Lets see why.
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Threads Making Single Threaded Code Multithreaded

Example

Consider the errno variable maintained by UNIX:

• When a system call fails: error code is put into errno.

• Now lets consider the following scenario:

Figure: Conflicts between threads over the use of a global variable. (Source: [Tanenbaum and Bos, 2015])
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Threads Making Single Threaded Code Multithreaded

From the previous figure:

• Thread 1 executes system call access to check file permissions;

• OS returns answer in global variable errno;

• After control has returned to thread 1, but before errno is read:

• Scheduler switches to thread 2;

• Thread 2 executes an open system call that fails:

• This causes errno to be overwritten;

• Thread 1 access code is lost!

• When thread 1 resumes it will read wrong value and behave incorrectly!
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Threads Making Single Threaded Code Multithreaded

How can we solve this problem? Any ideas?
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Threads Making Single Threaded Code Multithreaded

How can we solve this problem? Any ideas?

• One easy solution: prohibit global variables:

• Possible conflicts with existing software;

• Not a very good solution. What else can be done?
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Threads Making Single Threaded Code Multithreaded

How can we solve this problem? Any ideas?

• One easy solution: prohibit global variables:

• Possible conflicts with existing software;

• Not a very good solution. What else can be done?

• Another solution: each thread has its own private global variables

• Lets have a look at this approach;
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Threads Making Single Threaded Code Multithreaded

Another solution: each thread has its own private global variables

Figure: Threads can have private global variables. (Source: [Tanenbaum and Bos, 2015])

• Each thread has its own errno variable and other global variables;
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Threads Making Single Threaded Code Multithreaded

Another solution: procedures to create, set and read global variables:

create_g lobal ( ‘ ‘ va r i ab l e ’ ’ )

s e t _ g l o b a l ( ‘ ‘ va r i ab l e ’ ’ , &b u f f e r )

b u f f e r = read_g lobal ( ‘ ‘ va r i ab l e ’ ’ )

• Only the calling thread has access to the global variable;

• If another thread creates a global variable with the same name:

• Variable is mapped to a different memory position
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Threads Making Single Threaded Code Multithreaded

Can you see any other problems besides global variables? Any ideas?
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Threads Making Single Threaded Code Multithreaded

Can you see any other problems besides global variables? Any ideas?

• Many library procedures are not reentrant:

• I.e. not designed for additional calls before the original call has finished,

• Library variables such as buffers will be reused between different threads!

• Threads will rewrite these variables, which is a big problem;

• Nontrivial activity to rewrite all libraries:

• Bugs may be introduced...
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Threads Making Single Threaded Code Multithreaded

What can we do besides rewriting entire libraries? Any ideas?
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Threads Making Single Threaded Code Multithreaded

What can we do besides rewriting entire libraries? Any ideas?

• Whenever a thread uses a library we can set a bit to one;

• Any attempt by another thread to use the library:

• Is blocked until library is freed;

• However: greatly eliminates potential parallelism... =(
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Threads Making Single Threaded Code Multithreaded

What about signals? How should signals be adapted from single to

multi-threading?
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Threads Making Single Threaded Code Multithreaded

What about signals? How should signals be adapted from single to

multi-threading?

• Who should catch the signals generated from timers, keyboard interrupts

and others?

• One designated thread?

• All the threads?

• The latest created thread?

• Managing signals is difficult enough in a single-threaded environment:

• Going to a multithreaded environment only makes this worse...
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Threads Making Single Threaded Code Multithreaded

Also, what are the implications with stack management? Any ideas?
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Threads Making Single Threaded Code Multithreaded

Also, what are the implications with stack management? Any ideas?

Usually: when a process’ stack overflows

• Kernel just provides that process with more stack automatically;

• When a process has multiple threads, it must also have multiple stacks;

• If the kernel is not aware of all these stacks:

• Cannot grow them automatically upon stack fault;

• May not even realize that a memory fault is related to the growth of some

thread’s stack.

L. Tarrataca Chapter 2 - Processes and Threads 131 / 274



Threads Making Single Threaded Code Multithreaded

Conclusion:

• These problems are not insurmountable...

• However, these problems show that:

• Difficult to introduce threads to a single-threaded environment...

• ...Without substantial system redesign;
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Threads Making Single Threaded Code Multithreaded

Now that we have talked a little about threads:

• Lets look at another topic:

• Interprocess communication;
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Interprocess Communication

Interprocess Communication

As we previously saw:

• Processes may need to communicate with other processes:

Essentially, there are three issues here (1/3):

How to pass information from one process to another?
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Interprocess Communication

Interprocess Communication

As we previously saw:

• Processes may need to communicate with other processes:

Essentially, there are three issues here (2/3):

How to guarantee that two processes do not interfere with each other?
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Interprocess Communication

Interprocess Communication

As we previously saw:

• Processes may need to communicate with other processes:

Essentially, there are three issues here (3/3):

How to guarantee proper sequencing when dependencies are present?
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Interprocess Communication

Interprocess Communication

As we previously saw:

• Processes may need to communicate with other processes:

Essentially, there are three issues here:

• How to pass information from one process to another?

• How to guarantee that two processes do not interfere with each other?

• How to guarantee proper sequencing when dependencies are present?

These issues are known as InterProcess Communication (IPC)

• The same problems and solutions also apply to threads;
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Interprocess Communication Race Conditions

Race Conditions

Lets see how IPC works with a printer spooler (1/5):

• Program that feeds files for a printer to print;

• When a process wants to print a file:

• Process enters file name in a directory;

• Another process, the printer daemon:

• Periodically checks if there are files to be printed:

• If there are: files are printed and names removed from directory;
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Interprocess Communication Race Conditions

Race Conditions

Lets see how IPC works with a printer spooler (2/5):

• Directory has a very large number of slots:

• Numbered 0, 1, 2, ... with each capable of holding a file name;

• There are two shared variables:

• out: points to the next file to be printed;

• in: points to the next free directory slot;
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Interprocess Communication Race Conditions

Race Conditions

Lets see how IPC works with a printer spooler (3/5):

• At a certain instant:

• Slots 0 to 3 are empty:

• the files were printed

• Slots 4 to 6 are full

• with the names of files queued for printing

• More or less simultaneously:

• Processes A and B decide they want to queue a file for printing;
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Interprocess Communication Race Conditions

Race Conditions

Lets see how IPC works with a printer spooler (4/5):

• More or less simultaneously:

• Processes A and B decide they want to queue a file for printing;

Figure: Two processes want to access shared memory at the same time. (Source:

[Tanenbaum and Bos, 2015])
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Interprocess Communication Race Conditions

Lets see how IPC works with a printer spooler (5/5):

• The following could happen:

• Process A reads in and sees the value 7;

• OS switches to process B;

• Process B reads in and also sees the value 7;

• At this instant both processes think the next available slot is 7;

• Process B continues to run:

• Stores file name in slot 7 and updates in to 8;

• Eventually: process A runs again:

• Stores file name in slot 7 and updates in to 8;

• Conclusion: Process B’s file will never get printed;

L. Tarrataca Chapter 2 - Processes and Threads 142 / 274



Interprocess Communication Race Conditions

Situations like this:

• Where two or more processes are reading / writing some shared data

Are called race conditions:

• Debugging programs with race conditions is a nightmare;

• Everything will seem alright:

• But eventually something weird will happen...

• With increasing parallelism due to increasing number of cores:

• Race conditions are becoming more common...
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Interprocess Communication Critical Regions

How do we avoid race conditions? Any ideas?
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Interprocess Communication Critical Regions

How do we avoid race conditions? Any ideas?

• Key: whenever we have shared data:

• Prohibit reading / writing at the same time;

• This is known as mutual exclusion

• Choice of appropriate operations for achieving mutual exclusion:

• Represents a major design issue in an OS!
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Interprocess Communication Critical Regions

In abstract terms, part of the time:

• Process is busy doing things that do not produce race conditions;

• However, sometimes a process has to access shared data;

• The part of the program where shared data is accessed is called:

• critical region

Now I can ask again the same question:

How do we avoid race conditions? Any ideas?
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Interprocess Communication Critical Regions

We need four conditions to hold to have a good solution:

• No two processes may be simultaneously inside their critical regions.
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Interprocess Communication Critical Regions

We need four conditions to hold to have a good solution:

• No two processes may be simultaneously inside their critical regions.

• No assumptions may be made about speeds or the number of CPUs.
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Interprocess Communication Critical Regions

We need four conditions to hold to have a good solution:

• No two processes may be simultaneously inside their critical regions.

• No assumptions may be made about speeds or the number of CPUs.

• No process running outside its critical region may block any process.
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Interprocess Communication Critical Regions

We need four conditions to hold to have a good solution:

• No two processes may be simultaneously inside their critical regions:

• Accessing shared data implies processes share critical regions;

• No assumptions may be made about speeds or the number of CPUs.

• No process running outside its critical region may block any process.

• No process should have to wait forever to enter its critical region.
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Interprocess Communication Critical Regions

Figure: Mutual exclusion using critical regions (Source: [Tanenbaum and Bos, 2015])
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Interprocess Communication Critical Regions

From the previous figure:

• Process A enters critical region at T1;

• Process B tries to enter critical region at T2:

• But fails since A is already in the critical region;

• Consequently: B is temporarily suspended until T3:

• Time when A leaves its critical region, allowing B to enter immediately;

• Eventually B leaves (at T4) and no process is in a critical region;
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Interprocess Communication Critical Regions

So the question now is:

How do we implement mutual exclusion? Any ideas?
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Interprocess Communication Mutual Exclusion with Busy Waiting

Mutual Exclusion with Busy Waiting

There are several mutual exclusion mechanisms guaranteeing that:

• While one process is busy updating shared memory in its critical region:

• No other process will enters its critical region and cause trouble;

• Lets have a look at the following:

• Disabling interrupts;

• Lock variables;

• Strict alternation;

• TSL instruction;

L. Tarrataca Chapter 2 - Processes and Threads 154 / 274



Interprocess Communication Mutual Exclusion with Busy Waiting

Disabling interrupts

Have each process disable interrupts before entering critical region:

• Re-enable interruptions before leaving critical region;

• With interrupts disabled no clock interrupts can occur;

• CPU is only switched from process to process as a result of a clock;

• If interrupts are turned off, the CPU will not switch to another process;

• Conclusion: No other process will enter critical region
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Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problem with disabling interrupts? Any ideas?
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Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problem with disabling interrupts? Any ideas?

• Unwise to give user processes power to turn off interrupts:

• What if the interrupts are never restored?

• What if the process crashes?

• If the system is a multiprocessor:

• Disabling interrupts affects only CPU with the disable instruction;

• Other one will continue running and can access shared memory;

L. Tarrataca Chapter 2 - Processes and Threads 157 / 274



Interprocess Communication Mutual Exclusion with Busy Waiting

Disabling interruptions should only be done by the kernel:

• To update internal variables;

• E.g.: Disable interrupts to update list of ready processes:

• This way no inconsistent state exists;
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Interprocess Communication Mutual Exclusion with Busy Waiting

Lock Variables

Idea: have a single shared variable called lock:

• Initialized to zero;

• When a process wants to enter its critical regions:

• Tests the lock;

• If the lock is 0:

• process sets it to 1 and enters critical regions;

• If the lock is 1:

• process waits until it becomes 0;
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Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problem with the lock variables strategy? Any ideas?
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Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problem with the lock variables strategy? Any ideas?

• Exact same problem with the spooler directory;

• Lock variable is a shared data:

• Susceptible to race conditions!
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Interprocess Communication Mutual Exclusion with Busy Waiting

Strict Alternation

Figure: A proposed solution to the critical-region problem (Source: [Tanenbaum and Bos, 2015])

• Variable turn, initially zero:

• Keeps track of whose turn it is to enter the critical region;

• Process 0 inspects turn, finds it to be zero and enters its critical region;

• Process 1 also finds it to be zero and continually tests turn until it becomes 1;

• Continuously testing a variable is called busy waiting;

L. Tarrataca Chapter 2 - Processes and Threads 162 / 274



Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problems with the strict alternation approach? Any

ideas?
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Can you see any problems with the strict alternation approach? Any

ideas?

• Loops are a waste of CPU time!

L. Tarrataca Chapter 2 - Processes and Threads 164 / 274



Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problems with the strict alternation approach? Any

ideas?

• Loops are a waste of CPU time!

Can you see any other problems with the strict alternation approach?

Any ideas?
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Can you see any other problems with the strict alternation approach?

Any ideas?

• Assume both processes are in their noncritical regions with turn set to 0;

• Assume process 0 executes its whole loop quickly and sets turn to 1:

• At this point turn is 1 and both processes are in noncritical regions;

• If process 0 continues it is not permitted to enter its critical region:

• Process 0 is being blocked by a process not in its critical region;

• Conclusion: Violates condition 3!!!
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TSL Instruction

Some computers have an instruction like:

T SL RX , LOCK

• Test and Set Lock works as follows:

• Reads contents of the memory word lock into register RX;

• Stores a nonzero value in lock address;

• Reading and storing operations are guaranteed to be indivisible:

• No other processor can access the memory word until instruction is finished;

• CPU executing TSL locks memory bus:

• Prohibiting other CPUs from accessing memory;
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TSL instruction is used alongside a shared variable lock:

• To coordinate memory access to shared memory;

• When lock is 0:

• Any process may set it 1 using TSL instruction;

• And then read / write the shared memory;

• When process is done it sets lock back to zero;
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How can this method be used to guarantee mutual exclusion? Any

ideas?
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Figure: Entering and leaving a critical region using the TSL instruction.(Source: [Tanenbaum and Bos, 2015])
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From the previous figure (1/2):

1 1st instruction copies old lock value and then sets lock to 1:

• Old value is compared with 0;

• If lock is nonzero:

• lock was already set and program waits until lock is free;

• Sooner or later lock will become 0 (busy waiting);

• Otherwise:

• Lock is set and process / thread enters critical region;

• When process leaves critical region: Lock is set to 0;
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From the previous figure (2/2):

2 Overall solution:

• Processes / Threads must call at the correct times:

• enter_region before entering critical region;

• leave_region before leaving critical region;
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From the previous figure (2/2):

2 Overall solution:

• Processes / Threads must call at the correct times:

• enter_region before entering critical region;

• leave_region before leaving critical region;

But what happens if one process cheats? Any ideas?
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From the previous figure (2/2):

2 Overall solution:

• Processes / Threads must call at the correct times:

• enter_region before entering critical region;

• leave_region before leaving critical region;

But what happens if one process cheats? Any ideas?

• Mutual exclusion will fail: processes must cooperate!
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Sleep and Wakeup

Can you any problems with the previous approach? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 175 / 274



Interprocess Communication Mutual Exclusion with Busy Waiting

Sleep and Wakeup

Can you any problems with the previous approach? Any ideas?

Busy waiting:

• When a process wants to enter critical region:

• Checks to see if the entry is allowed:

• If it is not, the process just sits in a tight loop waiting;

• Wasteful of processor time!
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What can we do to circumvent the busy waiting approach? Any ideas?
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What can we do to circumvent the busy waiting approach? Any ideas?

• Block processes instead of having them on a busy wait;

• This is done through sleep and wakeup OS primitives;
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Sleep:

• System call that causes the caller to block;

• Process is suspended until another process wakes it up;

• Scheduler can choose another process that is in ready state;

Wakeup:

• Wakes another process;

• Has one parameter: process to be awakened.
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Producer-consumer problem

These primitives can be exemplified through the producer-consumer

problem:

• Two processes share a common buffer;

• Producer: puts information into the buffer;

• Consumer: takes information out of the buffer;
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What happens when producer wants to put a new item in the buffer, but

it is already full?

What happens? A problem happens!

What can we do to solve the problem? Any ideas?
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What happens when producer wants to put a new item in the buffer, but

it is already full?

What happens? A problem happens!

What can we do to solve the problem? Any ideas?

The solution is for the producer to go to sleep:

• and awakened when consumer has removed one or more items;
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What happens when the consumer wants to take an item of the buffer,

but it is empty?

What happens? A problem happens!

What can we do to solve the problem? Any ideas?
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What happens when the consumer wants to take an item of the buffer,

but it is empty?

What happens? A problem happens!

What can we do to solve the problem? Any ideas?

The solution is for the consumer to go to sleep:

• and awakened when producer has put something into the buffer!
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So now the question is:

How do we solve the consumer-producer problem? Any ideas?
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First: lets define the following:

• count variable keeps track of the number of items in the buffer:

• N is the maximum number of items the buffer can hold;
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Producer’s code will first test to see if count is N:

• If it is: producer will go to sleep;

• If it is not: producer will add an item and increment count.

Consumer’s code will first test to see if count is 0:

• If it is: consumer will go to sleep;

• If it is not: consumer will consume an item and decrement count.

Each process tests to see if the other should be awakened:

• and if so, wakes it up.
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Figure: Producer-consumer problem with a fatal race condition.(Source: [Tanenbaum and Bos, 2015])
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Can you see any problems with the previous code? Any ideas?
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The following situation could possibly occur (1/2):

• Buffer is empty and the consumer has just read count to see if it is 0:

• At that instant, the scheduler decides to stop running the consumer:

• And starts running the producer:

• Producer inserts an item in the buffer...

• ...increments count, and notices that it is now 1...

• ...reasoning that count was just 0: producer wakes consumer...

• ...consumer is not yet logically asleep, so the wakeup signal is lost.
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The following situation could possibly occur (2/2):

• When consumer next runs:

• it will test the value of count it previously read:

• find it to be 0, and go to sleep

• Sooner or later the producer will fill up the buffer and also go to sleep:

• Both will sleep forever.
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Do you have any basic idea of how to solve the previous problem? Any

ideas?

L. Tarrataca Chapter 2 - Processes and Threads 192 / 274



Interprocess Communication Mutual Exclusion with Busy Waiting

Do you have any basic idea of how to solve the previous problem? Any

ideas?

• Everything would be fine if the wake signal had not been lost...
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Semaphores

Semaphores data type were introduced to solve the previous problem:

• A semaphore could have the value 0:

• indicating that no wakeups were saved

• Or some positive value if one or more wakeups were pending;

• Semaphores have two possible operations: Down and Up;
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Down operation (1/2):

• If the value is greater than 0:

• Value is decremented (one wakeup is used) and just continues.

• If the value is 0:

• Process is put to sleep without completing the down for the moment;
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Down operation (2/2):

• All semaphore operations are done as a single indivisible atomic action:

• Checking the value;

• Changing the value;

• Possibly going to sleep;

• No other process can access the semaphore until the operation has

completed or blocked

• OS guarantees this by implementing operation as a system call:

• Control is not on the user-level side...
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Atomic actions

• Group of related operations where:

• All operations performed are done without interruption;

• or not performed at all;

• Fundamental concept in many areas of computer science;
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Up operation (1/2):

• Increments value of the semaphore;

• If one or more processes were sleeping on that semaphore:

• One is chosen by the system and allowed to complete its down;

• I.e.: after an up on a semaphore with processes sleeping on it:

• Semaphore will still be 0;

• But there will be one fewer process sleeping on it;

• Incrementing the semaphore and waking up one process is also indivisible:
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How are the up / down operations performed in an indivisible way?
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How are the up / down operations performed in an indivisible way?

OS guarantees this by implementing operation as a system call (1/3):

• Control is not on the user-level side...

• OS disables interrupts while it is:

• Testing the semaphore;

• Updating the semaphore;

• Putting the process to sleep;
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How are the up / down operations performed in an indivisible way?

OS guarantees this by implementing operation as a system call (2/3):

• As all of these actions take only a few instructions:

• No harm is done in disabling interrupts.
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How are the up / down operations performed in an indivisible way?

OS guarantees this by implementing operation as a system call (3/3):

• If multiple CPUs are being used:

• Disabling the interrupts will only work for one CPU;

• Therefore access to the system bus should forbidden:

• Protect each semaphore by a lock variable with the TSL instruction;

• Semaphore operation will take only a few microseconds of busy waiting;
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Now the question is:

How can we solve the producer-consumer problem using semaphores?

Any ideas?

We need to identify:

• When to put producer / consumer to sleep;

• When to awake producer / consumer;
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Now the question is:

How can we solve the producer-consumer problem using semaphores?

Any ideas?

Maybe we need to (1/2):

• Put producer to sleep when no more empty slots exist:

• One semaphore to represent number of empty slots;

• Put consumer to sleep when no more full slots exist:

• One semaphore to represent number of full slots;
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Now the question is:

How can we solve the producer-consumer problem using semaphores?

Any ideas?

Maybe we need to (2/2):

• Awake producer when one item was consumed:

• One semaphore to represent number of empty slots;

• Awake consumer when one item was produced:

• One semaphore to represent number of full slots;
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Are these two semaphores enough? Or is there still something missing?

Any ideas?
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Are these two semaphores enough? Or is there still something missing?

Any ideas?

• Up / Down operations are done in atomic way:

• So this is not what it is missing...
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Are these two semaphores enough? Or is there still something missing?

Any ideas?

• Up / Down operations are done in atomic way:

• So this is not what it is missing...

But what about when we access the data structure representing the

buffer?
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Are these two semaphores enough? Or is there still something missing?

Any ideas?

• Up / Down operations are done in atomic way:

• So this is not what it is missing...

But what about when we access the data structure representing the

buffer?

• Data buffer is a critical region;

• Needs to be accessed in mutual exclusion;

• This can be done through a binary semaphore, a.k.a. mutex;
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Figure: Producer-consumer problem using semaphores.(Source: [Tanenbaum and Bos, 2015])L. Tarrataca Chapter 2 - Processes and Threads 210 / 274
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This solution uses three semaphores:

• Full for counting the number of slots that are full;

• Initialized to zero;

• Empty for counting the number of slots that are empty;

• Initialized to N;

• Mutex ensures producer/consumer do not access the buffer

simultaneously;

• Initialized to 1;

• If each process:

• does a down just before entering its critical region and...

• ...an up just after leaving it...

• mutual exclusion is guaranteed.
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Mutex semaphore is used for mutual exclusion:

• Only one process at a time will be reading or writing the buffer;

Other semaphores are for synchronization:

• full and empty semaphores are needed to:

• Guarantee that certain event sequences do or do not occur.

• Ensure producer stops running when the buffer is full;

• Ensure consumer stops running when it is empty;
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POSIX systems have semaphores:

• Library: semaphore.h

• Data type: sem_t

• Methods:

• sem_init

• sem_wait

• sem_post

• sem_getvalue

• sem_destroy
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Mutexes

But what if we don’t need the semaphore’s ability to count?

What if we only need to manage mutual exclusion for some shared

resource?
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Mutex

Mutex is a shared variable that can be in one of two states:

• Unlocked

• Locked
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Thread / process calls mutex_lock to access a critical region:

• If mutex is unlocked:

• Call succeeds and the thread enters critical region;

• Closing the mutex;

• If mutex is locked:

• Call blocks until thread in critical region calls mutex_unlock

• If multiple threads are blocked:

• One is chosen and allowed to acquire the lock
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This leads to the following solution:

Figure: Implementation of mutex_lock and mutex_unlock (Source: [Tanenbaum and Bos, 2015])
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Can you notice an important difference from previous examples? Any

ideas
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Can you notice an important difference from previous examples? Any

ideas

• Previous examples relied on busy waiting;

• This one invokes thread_yield when failing to acquire the lock:

• CPU is passed to another thread;

• Consequence: No busy waiting! =)
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Mutexes in Pthreads

Pthreads provides mutex functions:

Figure: Some of the Pthreads calls relating to mutexes. (Source: [Tanenbaum and Bos, 2015])
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Monitors

Higher-level synchronization primitive:

• Collection of procedures, variables, and data structures:

• Grouped together in a module or package;

• Not part of the C language!

• Processes may call the procedures in a monitor:

• Processes cannot directly access monitor’s internal data structures;
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Monitors have an important property:

• Only one process can be active in a monitor at any instant;

• Monitor procedure calls are handled differently from other procedure calls;

• When a process calls a monitor procedure:

• Procedure will check if any other process is active within the monitor:

• If so: calling process will be suspended until other process has left the monitor

• If no: other process is using the monitor, the calling process may enter.

L. Tarrataca Chapter 2 - Processes and Threads 222 / 274



Interprocess Communication Monitors

Figure: A monitor example. (Source: [Tanenbaum and Bos, 2015])
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How can monitors guarantee that only one process / thread will be active

at any one point in time in the monitor? Any ideas?
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How can monitors guarantee that only one process / thread will be active

at any one point in time in the monitor? Any ideas?

• A Mutex can be used =)

• A binary semaphore can be used =)
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How do monitors enable better synchronization than other alternatives?

Any ideas?
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How do monitors enable better synchronization than other alternatives?

Any ideas?

The monitor package is arranging for mutual exclusion:

• Instead of the programmer:

• much less likely that something will go wrong.
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Monitors also allow for condition variables:

• Used to determine whether or not a process / thread can continue;

• This is done through two operations: wait and signal;
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Recall the producer - consumer problem (1/2):

• Producer finds the buffer full::

• It does a wait on some condition variable, say, full;

• This action causes the calling process to block;

• Allows another process to enter the monitor, if one exists;
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Recall the producer - consumer problem (2/2):

• Consumer can wake up its sleeping partner :

• By doing a signal on variable full;

• Important: Condition variables are not counters:

• Do not accumulate signals for later use the way semaphores do

• if a condition variable is signaled with no one waiting on it:

• signal is lost forever.
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We can now define the pseudocode for the monitor:

Figure: An outline of the producer-consumer problem with monitors. Only one monitor procedure at a time is

active. The buffer has N slots. (Source: [Tanenbaum and Bos, 2015])
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Monitor can now be used to implement the consumer - producer

problem:
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What is the difference between wait/signal and sleep/wakeup? Any

ideas?
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What is the difference between wait/signal and sleep/wakeup? Any

ideas?

Automatic mutual exclusion on monitor procedures guarantees that:

• Producer inside a monitor will be able to complete wait operation:

• Without worrying about scheduler switching to other process / thread;

• Consumer will not even be let into the monitor at all until the wait is finished:

• and the producer has been marked as no longer runnable.
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What is the main conclusion you can draw from using monitors? Any

ideas?
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What is the main conclusion you can draw from using monitors? Any

ideas?

By making the mutual exclusion of critical regions automatic:

• monitors make parallel programming much less error prone;
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This concludes our study of synchronization primitives =)
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Message Passing

Method of interprocess communication that uses two system calls:

• send( destination, &message )

• Sends the contents of message to a given destination

• receive( source, &message)

• Receives a message from a given source:

• If no message is available: receiver can block until one arrives;

• Alternatively, receiver can return immediately with an error code;

• Destination and source fields can be specified using other OS system calls;
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Scheduling

Lets have a more detailed look at scheduling:

First, what is the oficial definition of scheduling? Any ideas?
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Scheduling

Scheduling

Lets have a more detailed look at scheduling:

First, what is the oficial definition of scheduling? Any ideas?

• Normal for computers to execute multiple processes / threads

• Who to choose to execute next when multiple processes / threads exist in

‘‘ready’’ state?

• Scheduler: OS part that makes this choice:

• According to some scheduling algorithm;
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Remember this?

Figure: Scheduling Example (Source: [Stallings, 2015])
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When to schedule

When should the scheduler make scheduling decisions? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 242 / 274



Scheduling When to schedule

When to schedule

When should the scheduler make scheduling decisions? Any ideas?

Possibility 1: When a new process is created.

• Who should run? The parent? Or the child?

• Both processes are in ready state;

• Scheduler can legitimately choose to run either process;
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When to schedule

When should the scheduler make scheduling decisions? Any ideas?

Possibility 2: When a process exits.

• Who should run next?

• Some other process must be chosen from the set of ready processes;
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When to schedule

When should the scheduler make scheduling decisions? Any ideas?

Possibility 3: When a process blocks on I/O, semaphore or for other

reason.

• Who should run next?

• Some other process must be chosen from the set of ready processes;
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When to schedule

When should the scheduler make scheduling decisions? Any ideas?

Possibility 4: When an I/O interrupt occurs.

• Who should run next?

• Some other process that was blocked waiting for the I/O may now be

ready.

• The process that was running at the time of the interrupt?

• Or some other third process?

• Scheduler can legitimately choose any of these processes;
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When to schedule

When should the scheduler make scheduling decisions? Any ideas?

Possibility 5: When a process / thread exceeds its time.

• Who should run next?

• Some other process from the ready set.

• Scheduler can legitimately choose any of these processes;
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Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?
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Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

Depends on the system requirements:

• All computational systems

• Interactive systems

• Real-time systems
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Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

All computational systems: (1/3)

• Fairness - giving each process a fair share of the CPU:

• However, different categories of processes may be treated differently.

• E.g.: Minecraft vs. nuclear reactor’s computer;
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Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

All computational systems: (2/3)

• Policy enforcement - seeing that stated policy is carried out.

• More vs. Less priority processes / threads
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Scheduling Scheduling Algorithm Goals

Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

All computational systems: (3/3)

• CPU utilization - keep the CPU busy all the time.

• Increase CPU efficiency.
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Scheduling Scheduling Algorithm Goals

Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

Interactive Systems:

• Response time - respond to requests quickly

• Minimize response time to user’s request;

• Processing interactive requests first will be perceived as good service;
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Scheduling Scheduling Algorithm Goals

Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

Real time systems:

• Meeting deadlines - avoid losing data

• E.g.: the processes / threads handling aircraft’s sensors;
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Scheduling Scheduling

Scheduling

A lot of scheduling techniques were developed over time:

• round-robin scheduling;

• priority scheduling;

• multiple queues;

• etc;

As we have seen previously:

• Linux Kernel 2.6 implements the CFS scheduler;
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Scheduling Scheduling

Linux Kernel 2.6 implements the CFS scheduler (1/3):

Figure: (Source: IBM)
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Scheduling Scheduling

Linux Kernel 2.6 implements the CFS scheduler (2/3):

Figure: (Source: IBM)
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Scheduling Scheduling

Linux Kernel 2.6 implements the CFS scheduler (1/3):

• The virtual_runtime is used to determine who should be executed next:

• Higher priority processes will be allowed to execute:

• for a longer time;

• more frequently;

• Lower priority processes will be allowed to execute:

• for a smaller time;

• less frequently;

L. Tarrataca Chapter 2 - Processes and Threads 258 / 274



Classical IPC Problems

Classical IPC Problems

OS literature is full of interesting synchronization problems, e.g.:

• The Dining Philosophers Problem;

• The Readers and Writers Problem;

Guess what we will be seeing next ;)
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Classical IPC Problems The Dining Philosophers Problem

The Dining Philosophers Problem

Five philosophers are seated around a circular table:

• Each philosopher has a plate of spaghetti;

• The spaghetti is so slippery that a philosopher needs two forks to eat it;

• Between each pair of plates is one fork.

Figure: (Source: [Tanenbaum and Bos, 2015])
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Classical IPC Problems The Dining Philosophers Problem

Philosopher alternates between thinking and eating.

• When a philosopher gets sufficiently hungry:

• Tries to acquire her left and right forks, one at a time

• If successful in acquiring two forks:

• eats for a while then puts down the forks;

Can you write a program for each philosopher that does what it is

supposed to do and never gets stuck?
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Classical IPC Problems The Dining Philosophers Problem

The obvious solution:

Figure: (Source: [Tanenbaum and Bos, 2015])
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Classical IPC Problems The Dining Philosophers Problem

Can you see anything wrong with the previous solution? Any ideas?
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Classical IPC Problems The Dining Philosophers Problem

Can you see anything wrong with the previous solution? Any ideas?

Suppose that all five philosophers take their left forks simultaneously:

• None will be able to take their right forks

• This will result in a deadlock
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Classical IPC Problems The Dining Philosophers Problem

Can you see anything wrong with the previous solution? Any ideas?

Suppose that all five philosophers take their left forks simultaneously:

• None will be able to take their right forks

• This will result in a deadlock

How can we circumvent this problem? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 265 / 274



Classical IPC Problems The Dining Philosophers Problem

Obtaining maximum parallelism for N philosophers:

• Each philosopher’s state needs to be maintained:

• eating, thinking, or hungry (trying to acquire forks);

• Philosopher may move into eating state only if neither neighbour is eating;

• An array of semaphores, one per philosopher, is needed:

• so hungry philosophers can block if the needed forks are busy;

L. Tarrataca Chapter 2 - Processes and Threads 266 / 274



Classical IPC Problems The Dining Philosophers Problem

The revised solution:
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Classical IPC Problems Readers and Writers Problem

Readers and Writers Problem

Example:

• Airline reservation system:

• with many competing processes wishing to read and write it.

• Multiple processes may be reading the database at the same time:

• However: if one process is updating the database:

• no other processes may have access to the database, not even readers

The question is how do you program the readers and the writers?
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Classical IPC Problems Readers and Writers Problem

The obvious solution:

Figure: (Source: [Tanenbaum and Bos, 2015])
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Classical IPC Problems Readers and Writers Problem

In this solution:

• First reader to get access to the database does a down( &db );

• Subsequent readers merely increment a counter rc;

• As readers leave:

• They decrement the counter;

• Last reader to leave does an up on the semaphore:

• Allowing a blocked writer, if there is one, to get in.
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Classical IPC Problems Readers and Writers Problem

Can you see any problem with the previous solution? Any ideas?
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Classical IPC Problems Readers and Writers Problem

Can you see any problem with the previous solution? Any ideas?

While there is a reader other readers my be admitted:

• As long as at least one reader is still active:

• A writer will never be allowed to work

What can we do to solve this problem? Any ideas?
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Classical IPC Problems Readers and Writers Problem

What can we do to solve this problem? Any ideas?

A reader arrives and a writer is waiting:

• Reader is suspended behind the writer:

• Instead of being admitted immediately;

• In this way:

• Writer has to wait for readers that were active when it arrived to finish...

• ...but does not have to wait for readers that came along after it
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