
Chapter 2 - Processes and Threads

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

L. Tarrataca Chapter 2 - Processes and Threads 1 / 274

luis.tarrataca@gmail.com

1 Motivation

2 Processes

The process model

Process Termination

Process States

Process States

Scheduling Techniques

Linux Scheduler Example

L. Tarrataca Chapter 2 - Processes and Threads 2 / 274

3 Threads

Classical Thread Model

POSIX threads

Threads in User Space

Threads in the Kernel

Hybrid Implementations

Making Single Threaded Code Multithreaded

L. Tarrataca Chapter 2 - Processes and Threads 3 / 274

4 Interprocess Communication

Race Conditions

Critical Regions

Mutual Exclusion with Busy Waiting

Disabling interrupts

Lock Variables

Strict Alternation

TSL Instruction

Sleep and Wakeup

Semaphores

Mutexes

Mutexes in Pthreads

Monitors

L. Tarrataca Chapter 2 - Processes and Threads 4 / 274

5 Scheduling

When to schedule

Scheduling Algorithm Goals

Scheduling

L. Tarrataca Chapter 2 - Processes and Threads 5 / 274

6 Classical IPC Problems

The Dining Philosophers Problem

Readers and Writers Problem

L. Tarrataca Chapter 2 - Processes and Threads 6 / 274

Motivation

Motivation

From the previous slides:

What is one of the most important concepts in OS? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 7 / 274

Motivation

Motivation

From the previous slides:

What is one of the most important concepts in OS? Any ideas?

• Process

L. Tarrataca Chapter 2 - Processes and Threads 8 / 274

Motivation

Motivation

From the previous slides:

What is one of the most important concepts in OS? Any ideas?

• Process

Do you remember what a process is?

L. Tarrataca Chapter 2 - Processes and Threads 9 / 274

Motivation

Motivation

Do you remember what a process is?

• Abstraction of a running program;

• I.e. the state of a program:

• PSW (PC, IR, ...);

• Files opened;

• Sockets used;

• Every resource being used by the program;

• One of the oldest and most important abstractions;

• Turn a single CPU into multiple virtual CPUs;

L. Tarrataca Chapter 2 - Processes and Threads 10 / 274

Processes

Processes

Modern computers do several things simultaneously:

• Check emails, run text editor, play music, etc...

• This was not always like this:

• Computers used to be able to run a single program;

• Clearly some mechanism is need to model and control this concurrency:

• Share the resource among many programs:

• CPU;

• Disk;

• Etc...

L. Tarrataca Chapter 2 - Processes and Threads 11 / 274

Processes

Clearly some mechanism is need to model and control this concurrency:

Do you have any idea of what this concept is?

L. Tarrataca Chapter 2 - Processes and Threads 12 / 274

Processes

Clearly some mechanism is need to model and control this concurrency:

Do you have any idea of what this concept is?

• Processes ;)

• And also threads

• Which we will see later;

L. Tarrataca Chapter 2 - Processes and Threads 13 / 274

Processes

In any multiprogramming environment (1/2):

• CPU switches from process to process quickly;

• Each runs for a duration of time;

• Determined by some algorithm;

• Scheduler process is responsible for:

• Changing processes;

• Deciding who to run next;

• In Portuguese:

• escalonador / agendador

L. Tarrataca Chapter 2 - Processes and Threads 14 / 274

Processes

In any multiprogramming environment (2/2):

• Each process typically runs tens / hundreds of miliseconds:

• In one second several processes will have been executed;

• This gives the illusion of parallelism:

• pseudoparallelism

• This contrasts with true multiprocessor parallelism;

L. Tarrataca Chapter 2 - Processes and Threads 15 / 274

Processes The process model

The process model

In essence, in a multiprogramming environment:

• OS have process concept;

• OS alternates process execution;

We will assume there is only one CPU:

• In reality multiple cores will exist;

• But if we know how to process one core:

• Easy to extend for all cores;

• Each core will only run a process at a time;

L. Tarrataca Chapter 2 - Processes and Threads 16 / 274

Processes The process model

Multiprogramming idea:

• Make efficient use of the processor;

• If we only have a single process executing:

• Eventually some I/O operation will need to be performed;

• Program will have to wait for the result of this operation:

• I/O operations much slower than CPU

• Processor will be idle a long time;

Figure: Executing a single program (Source: [Stallings, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 17 / 274

Processes The process model

Figure: Executing a single program (Source: [Stallings, 2015])

Is this an efficient use of the processor?

L. Tarrataca Chapter 2 - Processes and Threads 18 / 274

Processes The process model

Most of the time the processor is idle not doing anything.

• Processor executes orders of magnitude faster than I/O...

• Consider the following example:

Figure: System utilisation Example (Source: [Stallings, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 19 / 274

Processes The process model

Instead of idling the system we could be running another program...

Figure: Executing two programs (Source: [Stallings, 2015])

But this second program may eventually also ask for I/Os...

L. Tarrataca Chapter 2 - Processes and Threads 20 / 274

Processes The process model

We can even add a third program...

Figure: Executing three programs (Source: [Stallings, 2015])

This way the processor idle times are diminished...

L. Tarrataca Chapter 2 - Processes and Threads 21 / 274

Processes The process model

CPU switches back and forth between processes:

• Process computation will not be uniformly executed:

• Some code sections may run for a longer time than others;

• This depends on resource competition at any given time:

• Therefore:

• Processes must not be programmed with built-in assumptions about timing;

• If a timer is need OS have timer system calls available:

• E.g.: setitimer, alarm

L. Tarrataca Chapter 2 - Processes and Threads 22 / 274

Processes The process model

Example

Assume the following:

• A process spends a fraction p of its time waiting for I/O;

• Simplification: assume n processes spend the same time waiting for I/O

• Probability that all n processes are waiting for I/O is

CPU Utilization = 1 − p
n

L. Tarrataca Chapter 2 - Processes and Threads 23 / 274

Processes The process model

Example

We can then plot the following picture

Figure: CPU utilization as a function of the number of processes in memory. (Source:

[Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 24 / 274

Processes The process model

Example

From the previous figure:

• If processes spend 80% of their time waiting for I/O:

• At least 10 processes must be in memory for CPU waste to fall below 10%;

• If processes spend 50% of their time waiting for I/O:

• At least 4 processes must be in memory for CPU waste to fall below 10%;

• If processes spend 20% of their time waiting for I/O:

• At least 3 processes must be in memory for CPU waste to fall below 10%;

L. Tarrataca Chapter 2 - Processes and Threads 25 / 274

Processes The process model

In reality:

• 6= processes will have 6= I/O times;

What do you think is the main conclusion to draw from the previous slides?

Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 26 / 274

Processes The process model

In reality:

• 6= processes will have 6= I/O times;

What do you think is the main conclusion to draw from the previous slides?

Any ideas?

• CPU Utilization rate should be close to 100%;

• Only possible with high degree of multiprogramming;

L. Tarrataca Chapter 2 - Processes and Threads 27 / 274

Processes The process model

In UNIX, it is possible to see processes through several commands:

• ps

• top

• htop

Which will show a listing of the processes:

• Most of them will be daemons:

• I.e.: process running in background to handle some activity;

L. Tarrataca Chapter 2 - Processes and Threads 28 / 274

Processes The process model

Process listing through htop:

L. Tarrataca Chapter 2 - Processes and Threads 29 / 274

Processes The process model

A running process may issue system calls to create new processes:

• In UNIX: fork system call;

• Useful if work can be performed by other processes;

• No need to develop additional code;

• Capitalize on existing knowledge: Save time on bugs;

• In UNIX: execv system call;

But you want to know the real reason why this is done?

L. Tarrataca Chapter 2 - Processes and Threads 30 / 274

Processes The process model

A running process may issue system calls to create new processes:

• In UNIX: fork system call

• Useful if work can be performed by other processes;

• No need to develop specific code;

• Reutilize everything that was already made:

• Capitalize on existing knowledge;

• Save time on bugs;

But you want to know the real reason why this is done?

• Programmers are lazy ;)

L. Tarrataca Chapter 2 - Processes and Threads 31 / 274

Processes The process model

After a process is created:

• parent and child have their own distinct address spaces;

• If either process changes a word in its address space:

• Change is not visible to the other process;

L. Tarrataca Chapter 2 - Processes and Threads 32 / 274

Processes Process Termination

Process Termination

After a process has been created:

• It starts running and does whatever its job is.

• Eventually the process will terminate, usually due to one of the following:

• Normal exit (voluntary).

• Error exit (voluntary).

• Fatal error (involuntary).

• Killed by another process (involuntary).

• Most processes terminate because they have done their work:

• In UNIX: exit system call

L. Tarrataca Chapter 2 - Processes and Threads 33 / 274

Processes Process States

Process States (1/2)

During the lifetime of a process, its state will change a number of times:

Figure: Five state process model (Source: [Stallings, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 34 / 274

Processes Process States

Process States (2/2)

During the lifetime of a process, its state will change a number of times:

• New: Process is created but not yet ready to execute.

• Ready: Process is ready to execute, awaiting processor availability;

• Running: Process is being executed by the processor;

• Waiting: Process is suspended from execution waiting a system resource;

• Halted: Process has terminated and will be destroyed by the OS.

L. Tarrataca Chapter 2 - Processes and Threads 35 / 274

Processes Process States

Process Control Block

OS represents each process by a control block (simplified) (1/2):

• Identifier: Unique process identifier;

• State: Current process state;

• Priority: Process priority level.;

• Program counter: Next instruction;

• Memory pointers: Process starting and

ending memory locations;

• Context data: Processor state registers;

• I/O status: I/O requests and I/O devices;

• Accounting Info: E.g. processor time,

clock time, time limits,...

Figure: Process Control Block (Source:

[Stallings, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 36 / 274

Processes Process States

OS represents each process by a control block (detailed) (2/2):

Figure: Scheduling Example (Source: [Stallings, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 37 / 274

Processes Scheduling Techniques

Scheduling Techniques

Consider the following scenario:

Figure: Scheduling Example (Source: [Stallings, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 38 / 274

Processes Scheduling Techniques

Initially process A is running and:

1 The processor is executing instructions from process A;

2 The processor then:

• ceases to execute A;

• begins executing OS instructions.

3 This will happen for one of three reasons:

1 Process A issues a service call (e.g., an I/O request) to the OS.

• Execution of A is suspended until this call is satisfied by the OS.

2 Process A causes an interrupt signal:

• When this signal is detected, the processor ceases to execute A;

• OS processes the interrupt signal;

3 An event unrelated to process A causes an interrupt.

• E.g. is the completion of an I/O operation.

L. Tarrataca Chapter 2 - Processes and Threads 39 / 274

Processes Scheduling Techniques

Process A therefore is going to block and control is passed to the OS:

1 The OS saves:

• Current processor context (registers);

• PC;

2 The OS:

1 changes the state of A to blocked;

2 decides which process should be executed next;

3 instructs the processor to restore B’s context data;

4 proceeds with the execution of B where it left off.

L. Tarrataca Chapter 2 - Processes and Threads 40 / 274

Processes Scheduling Techniques

This gives rise to the following model:

Figure: The lowest layer of a process-structured operating system handles interrupts and scheduling. Above

that layer are sequential processes. (Source: [Tanenbaum and Bos, 2015])

• OS lowest level is the scheduler;

L. Tarrataca Chapter 2 - Processes and Threads 41 / 274

Processes Scheduling Techniques

How does the scheduler choose among the various processes? Any

ideas?

L. Tarrataca Chapter 2 - Processes and Threads 42 / 274

Processes Scheduling Techniques

How does the scheduler choose among the various processes?

Well it depends on a lot of variables:

• Real-time operating systems: is the OS responsible for:

• Controlling a nuclear station?

• Controlling an airplane?

• General purpose operating systems:

• Do different processes have different priorities?

• How long has a process been allowed to run?

• ...

L. Tarrataca Chapter 2 - Processes and Threads 43 / 274

Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

L. Tarrataca Chapter 2 - Processes and Threads 44 / 274

Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 45 / 274

Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

• Array?

L. Tarrataca Chapter 2 - Processes and Threads 46 / 274

Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

• Array?

• List?

L. Tarrataca Chapter 2 - Processes and Threads 46 / 274

Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

• Array?

• List?

• Queue?

L. Tarrataca Chapter 2 - Processes and Threads 46 / 274

Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

• Array?

• List?

• Queue?

• Hash table?

L. Tarrataca Chapter 2 - Processes and Threads 46 / 274

Processes Scheduling Techniques

So, let me ask the question again:

How does the scheduler choose among the various processes? Any

ideas?

What would be a good way to make such a choice in a computational

manner? Any ideas?

• Array?

• List?

• Queue?

• Hash table?

• Tree?
L. Tarrataca Chapter 2 - Processes and Threads 46 / 274

Processes Scheduling Techniques

Linux Scheduler Example (1/3)

Linux kernel 2.6.23 included the Completely Fair Scheduler:

• Uses a Red-Black tree as the data structure. Why?;

• Tree nodes are indexed by processor "execution time" in nanoseconds;

• When choosing a new process the scheduler:

• Node with the lowest execution time (left-most) is chosen;

• If the process completes execution it is removed from the system and tree;

• If the process reaches its maximum execution time or is otherwise stopped:

• it is reinserted into the scheduling tree based on its new spent execution time;

• Otherwise, the new left-most node will then be selected from the tree.

L. Tarrataca Chapter 2 - Processes and Threads 47 / 274

Processes Scheduling Techniques

Linux Scheduler Example (2/3)

If the process spends a lot of its time sleeping:

• Spent time value is low;

• Automatically gets the priority boost when it finally needs it.

• Hence such tasks do not get less processor time than the tasks that are

constantly running.

L. Tarrataca Chapter 2 - Processes and Threads 48 / 274

Processes Scheduling Techniques

Linux Scheduler Example (3/3)

CFS scheduler has a scheduling complexity of:

• O(log (N)) where N is the number of processes;

• Choosing a task can be done in constant time, i.e. O(1);

• Reinserting a task after it has run requires O(log (N)) operations;

• These complexities are all a result of using Red-Black trees.

L. Tarrataca Chapter 2 - Processes and Threads 49 / 274

Threads

Threads

Each process has an address space and a single thread of control:

What if a process blocks? Why not run some other code of the process?

L. Tarrataca Chapter 2 - Processes and Threads 50 / 274

Threads

Threads

Each process has an address space and a single thread of control:

What if a process blocks? Why not run some other code of the process?

• Answer: Threads

• Threads can be thought of parallel entities within the process;

L. Tarrataca Chapter 2 - Processes and Threads 51 / 274

Threads

Threads

What if we wish to share the process data amongst different parallel

entities?

L. Tarrataca Chapter 2 - Processes and Threads 52 / 274

Threads

Threads

What if we wish to share the process data amongst different parallel

entities?

• Answer: Threads

• Threads share an address space and all of its data among themselves;

• Essential ability for certain applications;

L. Tarrataca Chapter 2 - Processes and Threads 53 / 274

Threads

Also: creating a process is a heavy/slow computational task:

• Allocate memory;

• Setup data / text memory sections;

• Setup file descriptors;

• Setup all the necessary resources;

Sometimes there is no need to copy the same data again:

What if we wish to save on all this time?

L. Tarrataca Chapter 2 - Processes and Threads 54 / 274

Threads

Also: creating a process is a heavy/slow computational task:

• Allocate memory;

• Setup data / text memory sections;

• Setup file descriptors;

• Setup all the necessary resources;

Sometimes there is no need to copy the same data again:

What if we wish to save on all this time?

• Answer: Threads

• Creating threads is 10 - 100 times faster;

L. Tarrataca Chapter 2 - Processes and Threads 55 / 274

Threads

What if we have multiple cores?

• With processes:

• Each core could execute a process;

• With threads:

• Each process can run multiple threads;

• Each core could execute a thread;

L. Tarrataca Chapter 2 - Processes and Threads 56 / 274

Threads

Lets look at a specific example:

L. Tarrataca Chapter 2 - Processes and Threads 57 / 274

Threads

Can you give specific examples of threads for this game? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 58 / 274

Threads

Can you give specific examples of threads for this game? Any ideas?

• One thread responsible for drawing visual elements;

• One thread for calculating physics;

• One thread for processing audio;

• One thread for processing keyboard inputs;

• One thread for multiplayer;

• Etc...

L. Tarrataca Chapter 2 - Processes and Threads 59 / 274

Threads

However: this strict partition model is not the best;

• Sometimes threads will not have anything to execute;

• As a result: threads will be idle;

• Idle threads are bad since the CPU is not being fully utilized;

Can you think of a better model? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 60 / 274

Threads

Can you think of a better model? Any ideas?

Have a dipatcher thread that:

• Receives tasks that need to be performed;

• Dispatcher then:

1 Chooses an idle worker thread:

2 Wakes sleeping thread;

3 When the worker wakes up:

• Worker starts executing required task;

• As a result:

• As soon as a task is received it is allocated to a specific thread;

L. Tarrataca Chapter 2 - Processes and Threads 61 / 274

Threads

Pseudo-code for scheduler and worker threads:

wh i l e (TRUE) {

ge t _ ne x t _ re ques t (&b u f f e r) ;

handoff_work (&b u f f e r)

}

wh i l e (TRUE) {

wa i t _ f o r _ wo r k (&b u f f e r) ;

execute_work (&b u f f e r) ;

r e t u r n ;

}

L. Tarrataca Chapter 2 - Processes and Threads 62 / 274

Threads Classical Thread Model

Classical Thread Model

From our previous slides we know that a process has an:

• Address space containing:

• program text and data;

• open files;

• child processes;

• alarms;

• and more...

• As a result:

• processes can be seen as a collection of related resources;

L. Tarrataca Chapter 2 - Processes and Threads 63 / 274

Threads Classical Thread Model

Processes also have a thread of execution:

• Do not confuse with having multiple threads;

• Single thread of execution has:

• Program Counter;

• Registers;

• Function call stack;

L. Tarrataca Chapter 2 - Processes and Threads 64 / 274

Threads Classical Thread Model

In your opinion:

What are the differences between processes and threads? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 65 / 274

Threads Classical Thread Model

What are the differences between processes and threads? Any ideas?

• Processes group resources together;

• Threads are the entities scheduled for CPU execution:

• Allow multiple executions in the same process;

• Instead of having a single thread of execution;

• Because threads share the address space:

• They have access to all of the processes’ resources

L. Tarrataca Chapter 2 - Processes and Threads 66 / 274

Threads Classical Thread Model

Original model (i.e. single thread of execution):

Figure: Three processes each with one thread. (Source: [Tanenbaum and Bos, 2015])

• Each process has its own address space;

• Each process has its own single thread of control;

L. Tarrataca Chapter 2 - Processes and Threads 67 / 274

Threads Classical Thread Model

Thread model (i.e. various threads of execution):

Figure: One process with three threads. (Source: [Tanenbaum and Bos, 2015])

• E.g.: a single process with three threads of control;

• All three threads operate in the same address space;

L. Tarrataca Chapter 2 - Processes and Threads 68 / 274

Threads Classical Thread Model

When a multithreaded process is run on a single-CPU system:

• threads take turns running;

• similar to how having multiple processes work;

• gives the illusion of parallelism;

L. Tarrataca Chapter 2 - Processes and Threads 69 / 274

Threads Classical Thread Model

Because threads share the same address space:

• They also share the same global variables;

• This can lead to problems:

Can you see what type of problems can occur? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 70 / 274

Threads Classical Thread Model

Because threads share the same address space:

• They also share the same global variables;

• This can lead to problems:

Can you see what type of problem can occur? Any ideas?

• One thread can read / write other thread’s data;

• We will study this on later chapters =)

L. Tarrataca Chapter 2 - Processes and Threads 71 / 274

Threads Classical Thread Model

Each thread represents a different execution path:

What do you think the OS needs to keep track of? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 72 / 274

Threads Classical Thread Model

Each thread represents a different execution path:

What do you think the OS needs to keep track of? Any ideas?

What information was needed for a process with a single thread of

execution?

L. Tarrataca Chapter 2 - Processes and Threads 73 / 274

Threads Classical Thread Model

OS maintains per thread:

• Program counter;

• Registers;

• Function call stack;

• State;

Figure: Each thread has its own stack. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 74 / 274

Threads Classical Thread Model

In conclusion:

Figure: The first column lists some items shared by all threads in a process. The second one lists some items

private to each thread.(Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 75 / 274

Threads Classical Thread Model

Do you see any other similarities between threads and processes?

L. Tarrataca Chapter 2 - Processes and Threads 76 / 274

Threads Classical Thread Model

Do you see any other similarities between threads and processes?

Like a traditional process, a thread can be in one of several states:

• running;

• blocked;

• ready;

• terminated;

L. Tarrataca Chapter 2 - Processes and Threads 77 / 274

Threads Classical Thread Model

Can you guess what each state represents?

• Running:

• Thread is using the CPU;

• Blocked:

• Thread is waiting for some event to unblock it;

• Ready:

• Thread is scheduled to run but not yet running;

• Terminated

L. Tarrataca Chapter 2 - Processes and Threads 78 / 274

Threads Classical Thread Model

In essence the following procedures are required:

• thread_create:

• Specifies the name of a procedure for the new thread to run;

• thread_exit:

• Thread has finished its work and is no longer schedulable;

• thread_join:

• Blocks the calling thread until a certain thread has exited;

• thread_yield:

• Thread voluntarily gives up the CPU to let another thread run;

L. Tarrataca Chapter 2 - Processes and Threads 79 / 274

Threads Classical Thread Model

So the question now is:

How are threads implemented in Unix / Linux (posix) systems? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 80 / 274

Threads Classical Thread Model

So the question now is:

How are threads implemented in Unix / Linux (posix) systems? Any ideas?

• The same way that we have POSIX systems calls...

• ...We also have POSIX threads...

Care to guess how the POSIX threads are named Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 81 / 274

Threads Classical Thread Model

So the question now is:

How are threads implemented in Unix / Linux (posix) systems? Any ideas?

• The same way that we have POSIX systems calls...

• ...We also have POSIX threads...

Care to guess how the POSIX threads are named Any ideas?

• Pthreads =)

• Guess what we will be seeing next ;)

L. Tarrataca Chapter 2 - Processes and Threads 82 / 274

Threads POSIX threads

POSIX threads

IEEE defined a standard for threads call Pthreads:

• IEEE is an international organization for defining standards;

• Portable Operating System Interface (POSIX):

• Set of IEEE standards for maintaining compatibility between OS;

• POSIX threads or Pthreads:

• Execution model that allows for a parallel execution model.

• Available on many Unix-like POSIX-conformant OS:

• E.g.: Linux, Mac OS X, Android and Solaris:

• Typically bundled as library libpthread

L. Tarrataca Chapter 2 - Processes and Threads 83 / 274

Threads POSIX threads

Each Pthread thread has a set of attributes:

Can you guess some of these attributes? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 84 / 274

Threads POSIX threads

Each Pthread thread has a set of attributes:

Can you guess some of these attributes? Any ideas?

• Set of registers (PC, IR, ...);

• Function call stack;

• Stack size;

• Thread identifier;

• Scheduling parameters, e.g.:

• time thread has executed;

• Priority;

• All these attributes are represented in a single entity:

• Thread data type called pthread_t

L. Tarrataca Chapter 2 - Processes and Threads 85 / 274

Threads POSIX threads

Pthreads defines over 60 function calls:

• All of which you should know for your exam

L. Tarrataca Chapter 2 - Processes and Threads 86 / 274

Threads POSIX threads

Pthreads defines over 60 function calls:

• All of which you should know for your exam ;)

Here are the main ones:

Figure: Some of the Pthreads function calls (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 87 / 274

Threads POSIX threads

Guess what we will be seeing next? ;)

L. Tarrataca Chapter 2 - Processes and Threads 88 / 274

Threads POSIX threads

pthread_create:

• Creates a new thread;

• Thread identifier of the new thread is returned;

• Extremely Basic Example:

inc lude <pthread . h>

inc lude < s t d i o . h>

pthread_ t thread ;

pthread_create (&thread , NULL , NULL , NULL)

Can you see anything ‘‘wrong’’ with this example?

L. Tarrataca Chapter 2 - Processes and Threads 89 / 274

Threads POSIX threads

Can you see anything ‘‘wrong’’ with this example?

• Threads are supposed to perform some computation...

• We need to tell threads what function to compute:

• This can be done by pointing thread to a function;

• Important:

• Function must return void*

• Function must take a single argument of type void*

• We can refine the previous example;

L. Tarrataca Chapter 2 - Processes and Threads 90 / 274

Threads POSIX threads

inc lude <pthread . h>

inc lude < s t d i o . h>

void∗ i sP r imeNumber (void∗ argument) { . . . }

p th read_ t thread ;

/∗ Check whether the f i r s t 1000 numbers are prime ∗/

f o r (i n t counter = 0 ; counter < 1000 ; counter ++) {

pthread_create (&thread , NULL , isPr imeNumber , &counter)

}

L. Tarrataca Chapter 2 - Processes and Threads 91 / 274

Threads POSIX threads

inc lude <pthread . h>

inc lude < s t d i o . h>

void∗ i sP r imeNumber (void∗ argument) { . . . }

p th read_ t thread ;

/∗ Check whether the f i r s t 1000 numbers are prime ∗/

f o r (i n t counter = 0 ; counter < 1000 ; counter ++) {

pthread_create (&thread , NULL , isPr imeNumber , &counter)

}

Can you see anything wrong with this code? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 92 / 274

Threads POSIX threads

Can you see anything wrong with this code? Any ideas?

• System calls may fail;

• Important to test if function has failed or not;

• If successful

• pthread_create() function will return zero

• Otherwise:

• An error number will be returned to indicate the error.

• We can refine the previous example;

L. Tarrataca Chapter 2 - Processes and Threads 93 / 274

Threads POSIX threads

i nc l ude <pthread . h>

i nc l ude < s t d i o . h>

void∗ i sPr imeNumber (void∗ argument) { . . . }

pthread_t thread ;

/∗ Check whether the f i r s t 1000 numbers are pr ime ∗/

f o r (i n t counter = 0 ; counter < 1000; counter++) {

i f (pthread_create (&thread , NULL , isPr imeNumber , &counter) ! = 0) {

p r i n t f (" E r r o r c rea t i ng thread \n ") ;

}

}

}

L. Tarrataca Chapter 2 - Processes and Threads 94 / 274

Threads POSIX threads

i nc l ude <pthread . h>

i nc l ude < s t d i o . h>

void∗ i sPr imeNumber (void∗ argument) { . . . }

pthread_t threads [1000] ;

/∗ Check whether the f i r s t 1000 numbers are pr ime ∗/

f o r (i n t counter = 0 ; counter < 1000; counter++) {

i f (pthread_create (&threads [counter] , NULL , isPr imeNumber , &counter) ! = 0) {

p r i n t f (" E r r o r c rea t i ng thread \n ") ;

}

}

}

Can you see anything wrong with this example? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 95 / 274

Threads POSIX threads

Can you see anything wrong with this example? Any ideas?

• Threads are created;

• Threads should eventually stop;

• Previous code:

• Just created threads;

• Does not wait for threads to terminate;

• This is done through two function calls:

• pthread_exit: terminates a thread;

• pthread_join: waits for a thread to terminate;

• We can thus refine our previous code;

L. Tarrataca Chapter 2 - Processes and Threads 96 / 274

Threads POSIX threads

i nc l ude <pthread . h>

i nc l ude < s t d i o . h>

void∗ i sPr imeNumber (void∗ argument) {

i n t r e s u l t = calcu late I fA rgument I sP r imeNumber ((i n t) ∗argument)

p th read_ex i t (& r e s u l t) ;

}

pthread_t threads [1000] ;

i n t r e s u l t s [1000]

/∗ Check whether the f i r s t 1000 numbers are pr ime ∗/

f o r (i n t counter = 0 ; counter < 1000; counter++) {

i f (pthread_create (&threads [counter] , NULL , isPr imeNumber , &counter) ! = 0) {

p r i n t f (" E r r o r c rea t i ng thread \n ") ;

}

}

/∗ wai t f o r a l l th reads to f i n i s h ∗/

f o r (i n t counter = 0 ; counter < 1000; counter++) {

i f (p th read_ jo i n (threads [counter] , (void∗∗)&(r e s u l t s [counter]))) {

p r i n t f (" E r r o r j o i n i n g thread \n ") ;

r e t u r n ERROR ;

} else { p r i n t f (‘ ‘ R e s u l t :%d\n ’ ’ , r e s u l t s [counter]) }

}

L. Tarrataca Chapter 2 - Processes and Threads 97 / 274

Threads POSIX threads

Other system calls:

• pthread_yield: give another thread a chance to run;

• pthread_attr_init: creates and initializes attribute structure of a thread;

• pthread_attr_destroy: frees memory from attribute structure of a thread;

L. Tarrataca Chapter 2 - Processes and Threads 98 / 274

Threads POSIX threads

Lets see if you understood all of these concepts:

Can you tell me what the following code is doing? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 99 / 274

Threads POSIX threads

Can you tell me what the following code is doing? Any ideas?

i nc l ude <pthread . h>

i nc l ude < s t d i o . h>

i nc l ude < s t d l i b . h>

def ine NUMBER_OF_THREADS 10

void∗ p r i n t _ h e l l o _ w o r l d (void∗ t i d) {

p r i n t f (" He l l o World . Greet ings f rom thread %d\n " , t i d) ; pthread e x i t (NULL) ;

}

i n t main (i n t argc , char ∗argv []) {

pthread_t threads [NUMBER OF THREADS] ;

i n t s t a t u s , i ;

f o r (i =0 ; i < NUMBER_OF_THREADS ; i ++) {

p r i n t f (" Main here . Creat ing thread %d\n " , i) ;

s t a t u s = pthread_create(& threads [i] , NULL , p r i n t _ h e l l o _ w o r l d , (void ∗) i) ;

i f (s t a t u s != 0) {

p r i n t f (" Oops . . . pthread create re tu rned e r r o r code %d\n " , s t a t u s) ;

e x i t (−1);

}

}

e x i t (NULL) ;

}

L. Tarrataca Chapter 2 - Processes and Threads 100 / 274

Threads POSIX threads

Previous code:

• Creates NUMBER_OF_THREADS pthreads;

• Initializes them to run print_hello_world function;

• If the thread creation fails: prints an error message and exits;

L. Tarrataca Chapter 2 - Processes and Threads 101 / 274

Threads POSIX threads

Important: When compiling pthread programs:

• You will need to add library libpthread;

• This can be done via the compile command:

$ gcc program . c −o program −l p th read

L. Tarrataca Chapter 2 - Processes and Threads 102 / 274

Threads POSIX threads

Lets talk about additional concepts:

• There are two main methods to implement threads:

• Threads in User Space;

• Threads in Kernel Mode;

Guess what we will be seeing next? ;)

L. Tarrataca Chapter 2 - Processes and Threads 103 / 274

Threads Threads in User Space

Threads in User Space

Threads package exist entirely in user space:

• Kernel:

• Knows nothing about threads;

• Is managing ordinary single-threaded processes;

Can you see any advantage of using this method?

L. Tarrataca Chapter 2 - Processes and Threads 104 / 274

Threads Threads in User Space

Threads in User Space

Threads package exist entirely in user space:

• Kernel:

• Knows nothing about threads;

• Is managing ordinary single-threaded proceses;

Can you see any advantage of using this method?

• Threads can be implemented in an OS that does not support threads;

• All OS used to fall in this category;

L. Tarrataca Chapter 2 - Processes and Threads 105 / 274

Threads Threads in User Space

Figure: User-level thread package (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 106 / 274

Threads Threads in User Space

From the previous picture (1/2):

• Threads run on top of OS;

• Threads are implemented by a library:

• thread_create;

• thread_join;

• etc;

• Each process needs its own thread table, keeping track of each thread:

• PC, SP, IR;

• state (blocked, running, finished, etc) ;

• etc;

L. Tarrataca Chapter 2 - Processes and Threads 107 / 274

Threads Threads in User Space

From the previous picture (2/2):

• Thread table is managed by run-time system;

• Threads are switched based on their state, execution time and others;

• If machine has instructions to save / load all registers:

• Only thread context is switched (little information);

• No need to switch context to kernel (much bigger information):

• Result: much faster than trapping to the kernel;

L. Tarrataca Chapter 2 - Processes and Threads 108 / 274

Threads Threads in User Space

Other advantages:

• Each process can have its own scheduler;

• Scale better since storing all information in kernel may be problematic;

L. Tarrataca Chapter 2 - Processes and Threads 109 / 274

Threads Threads in User Space

Can you see any disadvantages? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 110 / 274

Threads Threads in User Space

Can you see any disadvantages? Any ideas?

• Blocking system calls will block threads:

• Precisely what we were trying to avoid by using calls;

• Cannot be changed without changes to OS;

• Page faults:

• Kernel blocks entire process to fetch information;

• But other threads belonging to the same process could be executed;

L. Tarrataca Chapter 2 - Processes and Threads 111 / 274

Threads Threads in the Kernel

Threads in the Kernel

Figure: Threads packaged managed by the kernel (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 112 / 274

Threads Threads in the Kernel

From the previous picture (1/2):

• Kernel has a thread table;

• Thread management is done through a kernel call:

• Much slower: since kernel context needs to be loaded;

• Kernel can detect blocking system calls and switch threads:

• Switching to threads of the same process;

• Or switching to threads belonging to other processes;

L. Tarrataca Chapter 2 - Processes and Threads 113 / 274

Threads Threads in the Kernel

From the previous picture (2/2):

• With user-level threads:

• Process threads keep running until kernel takes CPU away;

• If one thread in a process causes a page fault:

• Kernel can choose another runnable thread;

L. Tarrataca Chapter 2 - Processes and Threads 114 / 274

Threads Hybrid Implementations

Hybrid Implementations

Idea: use kernel-level threads and multiplex user-level threads in them:

• Try to get only advantages and mitigate disadvantages;

• Programmer determines:

• How many kernel threads to use;

• How many user-level threads to use;

• Kernel:

• Aware of kernel-level threads and schedules those;

• Some of those threads may have multiple user-level threads:

L. Tarrataca Chapter 2 - Processes and Threads 115 / 274

Threads Making Single Threaded Code Multithreaded

Making Single Threaded Code Multithreaded

Many existing programs were written for single-threaded processes:

• Converting to multithreading is very tricky

Thread code normally consists of multiple procedures with:

• Local variables, global variables, and parameters;

• Global variables are problem:

• Lets see why.

L. Tarrataca Chapter 2 - Processes and Threads 116 / 274

Threads Making Single Threaded Code Multithreaded

Example

Consider the errno variable maintained by UNIX:

• When a system call fails: error code is put into errno.

• Now lets consider the following scenario:

Figure: Conflicts between threads over the use of a global variable. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 117 / 274

Threads Making Single Threaded Code Multithreaded

From the previous figure:

• Thread 1 executes system call access to check file permissions;

• OS returns answer in global variable errno;

• After control has returned to thread 1, but before errno is read:

• Scheduler switches to thread 2;

• Thread 2 executes an open system call that fails:

• This causes errno to be overwritten;

• Thread 1 access code is lost!

• When thread 1 resumes it will read wrong value and behave incorrectly!

L. Tarrataca Chapter 2 - Processes and Threads 118 / 274

Threads Making Single Threaded Code Multithreaded

How can we solve this problem? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 119 / 274

Threads Making Single Threaded Code Multithreaded

How can we solve this problem? Any ideas?

• One easy solution: prohibit global variables:

• Possible conflicts with existing software;

• Not a very good solution. What else can be done?

L. Tarrataca Chapter 2 - Processes and Threads 120 / 274

Threads Making Single Threaded Code Multithreaded

How can we solve this problem? Any ideas?

• One easy solution: prohibit global variables:

• Possible conflicts with existing software;

• Not a very good solution. What else can be done?

• Another solution: each thread has its own private global variables

• Lets have a look at this approach;

L. Tarrataca Chapter 2 - Processes and Threads 121 / 274

Threads Making Single Threaded Code Multithreaded

Another solution: each thread has its own private global variables

Figure: Threads can have private global variables. (Source: [Tanenbaum and Bos, 2015])

• Each thread has its own errno variable and other global variables;

L. Tarrataca Chapter 2 - Processes and Threads 122 / 274

Threads Making Single Threaded Code Multithreaded

Another solution: procedures to create, set and read global variables:

create_g lobal (‘ ‘ va r i ab l e ’ ’)

s e t _ g l o b a l (‘ ‘ va r i ab l e ’ ’ , &b u f f e r)

b u f f e r = read_g lobal (‘ ‘ va r i ab l e ’ ’)

• Only the calling thread has access to the global variable;

• If another thread creates a global variable with the same name:

• Variable is mapped to a different memory position

L. Tarrataca Chapter 2 - Processes and Threads 123 / 274

Threads Making Single Threaded Code Multithreaded

Can you see any other problems besides global variables? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 124 / 274

Threads Making Single Threaded Code Multithreaded

Can you see any other problems besides global variables? Any ideas?

• Many library procedures are not reentrant:

• I.e. not designed for additional calls before the original call has finished,

• Library variables such as buffers will be reused between different threads!

• Threads will rewrite these variables, which is a big problem;

• Nontrivial activity to rewrite all libraries:

• Bugs may be introduced...

L. Tarrataca Chapter 2 - Processes and Threads 125 / 274

Threads Making Single Threaded Code Multithreaded

What can we do besides rewriting entire libraries? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 126 / 274

Threads Making Single Threaded Code Multithreaded

What can we do besides rewriting entire libraries? Any ideas?

• Whenever a thread uses a library we can set a bit to one;

• Any attempt by another thread to use the library:

• Is blocked until library is freed;

• However: greatly eliminates potential parallelism... =(

L. Tarrataca Chapter 2 - Processes and Threads 127 / 274

Threads Making Single Threaded Code Multithreaded

What about signals? How should signals be adapted from single to

multi-threading?

L. Tarrataca Chapter 2 - Processes and Threads 128 / 274

Threads Making Single Threaded Code Multithreaded

What about signals? How should signals be adapted from single to

multi-threading?

• Who should catch the signals generated from timers, keyboard interrupts

and others?

• One designated thread?

• All the threads?

• The latest created thread?

• Managing signals is difficult enough in a single-threaded environment:

• Going to a multithreaded environment only makes this worse...

L. Tarrataca Chapter 2 - Processes and Threads 129 / 274

Threads Making Single Threaded Code Multithreaded

Also, what are the implications with stack management? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 130 / 274

Threads Making Single Threaded Code Multithreaded

Also, what are the implications with stack management? Any ideas?

Usually: when a process’ stack overflows

• Kernel just provides that process with more stack automatically;

• When a process has multiple threads, it must also have multiple stacks;

• If the kernel is not aware of all these stacks:

• Cannot grow them automatically upon stack fault;

• May not even realize that a memory fault is related to the growth of some

thread’s stack.

L. Tarrataca Chapter 2 - Processes and Threads 131 / 274

Threads Making Single Threaded Code Multithreaded

Conclusion:

• These problems are not insurmountable...

• However, these problems show that:

• Difficult to introduce threads to a single-threaded environment...

• ...Without substantial system redesign;

L. Tarrataca Chapter 2 - Processes and Threads 132 / 274

Threads Making Single Threaded Code Multithreaded

Now that we have talked a little about threads:

• Lets look at another topic:

• Interprocess communication;

L. Tarrataca Chapter 2 - Processes and Threads 133 / 274

Interprocess Communication

Interprocess Communication

As we previously saw:

• Processes may need to communicate with other processes:

Essentially, there are three issues here (1/3):

How to pass information from one process to another?

L. Tarrataca Chapter 2 - Processes and Threads 134 / 274

Interprocess Communication

Interprocess Communication

As we previously saw:

• Processes may need to communicate with other processes:

Essentially, there are three issues here (2/3):

How to guarantee that two processes do not interfere with each other?

L. Tarrataca Chapter 2 - Processes and Threads 135 / 274

Interprocess Communication

Interprocess Communication

As we previously saw:

• Processes may need to communicate with other processes:

Essentially, there are three issues here (3/3):

How to guarantee proper sequencing when dependencies are present?

L. Tarrataca Chapter 2 - Processes and Threads 136 / 274

Interprocess Communication

Interprocess Communication

As we previously saw:

• Processes may need to communicate with other processes:

Essentially, there are three issues here:

• How to pass information from one process to another?

• How to guarantee that two processes do not interfere with each other?

• How to guarantee proper sequencing when dependencies are present?

These issues are known as InterProcess Communication (IPC)

• The same problems and solutions also apply to threads;

L. Tarrataca Chapter 2 - Processes and Threads 137 / 274

Interprocess Communication Race Conditions

Race Conditions

Lets see how IPC works with a printer spooler (1/5):

• Program that feeds files for a printer to print;

• When a process wants to print a file:

• Process enters file name in a directory;

• Another process, the printer daemon:

• Periodically checks if there are files to be printed:

• If there are: files are printed and names removed from directory;

L. Tarrataca Chapter 2 - Processes and Threads 138 / 274

Interprocess Communication Race Conditions

Race Conditions

Lets see how IPC works with a printer spooler (2/5):

• Directory has a very large number of slots:

• Numbered 0, 1, 2, ... with each capable of holding a file name;

• There are two shared variables:

• out: points to the next file to be printed;

• in: points to the next free directory slot;

L. Tarrataca Chapter 2 - Processes and Threads 139 / 274

Interprocess Communication Race Conditions

Race Conditions

Lets see how IPC works with a printer spooler (3/5):

• At a certain instant:

• Slots 0 to 3 are empty:

• the files were printed

• Slots 4 to 6 are full

• with the names of files queued for printing

• More or less simultaneously:

• Processes A and B decide they want to queue a file for printing;

L. Tarrataca Chapter 2 - Processes and Threads 140 / 274

Interprocess Communication Race Conditions

Race Conditions

Lets see how IPC works with a printer spooler (4/5):

• More or less simultaneously:

• Processes A and B decide they want to queue a file for printing;

Figure: Two processes want to access shared memory at the same time. (Source:

[Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 141 / 274

Interprocess Communication Race Conditions

Lets see how IPC works with a printer spooler (5/5):

• The following could happen:

• Process A reads in and sees the value 7;

• OS switches to process B;

• Process B reads in and also sees the value 7;

• At this instant both processes think the next available slot is 7;

• Process B continues to run:

• Stores file name in slot 7 and updates in to 8;

• Eventually: process A runs again:

• Stores file name in slot 7 and updates in to 8;

• Conclusion: Process B’s file will never get printed;

L. Tarrataca Chapter 2 - Processes and Threads 142 / 274

Interprocess Communication Race Conditions

Situations like this:

• Where two or more processes are reading / writing some shared data

Are called race conditions:

• Debugging programs with race conditions is a nightmare;

• Everything will seem alright:

• But eventually something weird will happen...

• With increasing parallelism due to increasing number of cores:

• Race conditions are becoming more common...

L. Tarrataca Chapter 2 - Processes and Threads 143 / 274

Interprocess Communication Critical Regions

How do we avoid race conditions? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 144 / 274

Interprocess Communication Critical Regions

How do we avoid race conditions? Any ideas?

• Key: whenever we have shared data:

• Prohibit reading / writing at the same time;

• This is known as mutual exclusion

• Choice of appropriate operations for achieving mutual exclusion:

• Represents a major design issue in an OS!

L. Tarrataca Chapter 2 - Processes and Threads 145 / 274

Interprocess Communication Critical Regions

In abstract terms, part of the time:

• Process is busy doing things that do not produce race conditions;

• However, sometimes a process has to access shared data;

• The part of the program where shared data is accessed is called:

• critical region

Now I can ask again the same question:

How do we avoid race conditions? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 146 / 274

Interprocess Communication Critical Regions

We need four conditions to hold to have a good solution:

• No two processes may be simultaneously inside their critical regions.

L. Tarrataca Chapter 2 - Processes and Threads 147 / 274

Interprocess Communication Critical Regions

We need four conditions to hold to have a good solution:

• No two processes may be simultaneously inside their critical regions.

• No assumptions may be made about speeds or the number of CPUs.

L. Tarrataca Chapter 2 - Processes and Threads 148 / 274

Interprocess Communication Critical Regions

We need four conditions to hold to have a good solution:

• No two processes may be simultaneously inside their critical regions.

• No assumptions may be made about speeds or the number of CPUs.

• No process running outside its critical region may block any process.

L. Tarrataca Chapter 2 - Processes and Threads 149 / 274

Interprocess Communication Critical Regions

We need four conditions to hold to have a good solution:

• No two processes may be simultaneously inside their critical regions:

• Accessing shared data implies processes share critical regions;

• No assumptions may be made about speeds or the number of CPUs.

• No process running outside its critical region may block any process.

• No process should have to wait forever to enter its critical region.

L. Tarrataca Chapter 2 - Processes and Threads 150 / 274

Interprocess Communication Critical Regions

Figure: Mutual exclusion using critical regions (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 151 / 274

Interprocess Communication Critical Regions

From the previous figure:

• Process A enters critical region at T1;

• Process B tries to enter critical region at T2:

• But fails since A is already in the critical region;

• Consequently: B is temporarily suspended until T3:

• Time when A leaves its critical region, allowing B to enter immediately;

• Eventually B leaves (at T4) and no process is in a critical region;

L. Tarrataca Chapter 2 - Processes and Threads 152 / 274

Interprocess Communication Critical Regions

So the question now is:

How do we implement mutual exclusion? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 153 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Mutual Exclusion with Busy Waiting

There are several mutual exclusion mechanisms guaranteeing that:

• While one process is busy updating shared memory in its critical region:

• No other process will enters its critical region and cause trouble;

• Lets have a look at the following:

• Disabling interrupts;

• Lock variables;

• Strict alternation;

• TSL instruction;

L. Tarrataca Chapter 2 - Processes and Threads 154 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Disabling interrupts

Have each process disable interrupts before entering critical region:

• Re-enable interruptions before leaving critical region;

• With interrupts disabled no clock interrupts can occur;

• CPU is only switched from process to process as a result of a clock;

• If interrupts are turned off, the CPU will not switch to another process;

• Conclusion: No other process will enter critical region

L. Tarrataca Chapter 2 - Processes and Threads 155 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problem with disabling interrupts? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 156 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problem with disabling interrupts? Any ideas?

• Unwise to give user processes power to turn off interrupts:

• What if the interrupts are never restored?

• What if the process crashes?

• If the system is a multiprocessor:

• Disabling interrupts affects only CPU with the disable instruction;

• Other one will continue running and can access shared memory;

L. Tarrataca Chapter 2 - Processes and Threads 157 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Disabling interruptions should only be done by the kernel:

• To update internal variables;

• E.g.: Disable interrupts to update list of ready processes:

• This way no inconsistent state exists;

L. Tarrataca Chapter 2 - Processes and Threads 158 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Lock Variables

Idea: have a single shared variable called lock:

• Initialized to zero;

• When a process wants to enter its critical regions:

• Tests the lock;

• If the lock is 0:

• process sets it to 1 and enters critical regions;

• If the lock is 1:

• process waits until it becomes 0;

L. Tarrataca Chapter 2 - Processes and Threads 159 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problem with the lock variables strategy? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 160 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problem with the lock variables strategy? Any ideas?

• Exact same problem with the spooler directory;

• Lock variable is a shared data:

• Susceptible to race conditions!

L. Tarrataca Chapter 2 - Processes and Threads 161 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Strict Alternation

Figure: A proposed solution to the critical-region problem (Source: [Tanenbaum and Bos, 2015])

• Variable turn, initially zero:

• Keeps track of whose turn it is to enter the critical region;

• Process 0 inspects turn, finds it to be zero and enters its critical region;

• Process 1 also finds it to be zero and continually tests turn until it becomes 1;

• Continuously testing a variable is called busy waiting;

L. Tarrataca Chapter 2 - Processes and Threads 162 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problems with the strict alternation approach? Any

ideas?

L. Tarrataca Chapter 2 - Processes and Threads 163 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problems with the strict alternation approach? Any

ideas?

• Loops are a waste of CPU time!

L. Tarrataca Chapter 2 - Processes and Threads 164 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problems with the strict alternation approach? Any

ideas?

• Loops are a waste of CPU time!

Can you see any other problems with the strict alternation approach?

Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 165 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any other problems with the strict alternation approach?

Any ideas?

• Assume both processes are in their noncritical regions with turn set to 0;

• Assume process 0 executes its whole loop quickly and sets turn to 1:

• At this point turn is 1 and both processes are in noncritical regions;

• If process 0 continues it is not permitted to enter its critical region:

• Process 0 is being blocked by a process not in its critical region;

• Conclusion: Violates condition 3!!!

L. Tarrataca Chapter 2 - Processes and Threads 166 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

TSL Instruction

Some computers have an instruction like:

T SL RX , LOCK

• Test and Set Lock works as follows:

• Reads contents of the memory word lock into register RX;

• Stores a nonzero value in lock address;

• Reading and storing operations are guaranteed to be indivisible:

• No other processor can access the memory word until instruction is finished;

• CPU executing TSL locks memory bus:

• Prohibiting other CPUs from accessing memory;

L. Tarrataca Chapter 2 - Processes and Threads 167 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

TSL instruction is used alongside a shared variable lock:

• To coordinate memory access to shared memory;

• When lock is 0:

• Any process may set it 1 using TSL instruction;

• And then read / write the shared memory;

• When process is done it sets lock back to zero;

L. Tarrataca Chapter 2 - Processes and Threads 168 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

How can this method be used to guarantee mutual exclusion? Any

ideas?

L. Tarrataca Chapter 2 - Processes and Threads 169 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Figure: Entering and leaving a critical region using the TSL instruction.(Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 170 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

From the previous figure (1/2):

1 1st instruction copies old lock value and then sets lock to 1:

• Old value is compared with 0;

• If lock is nonzero:

• lock was already set and program waits until lock is free;

• Sooner or later lock will become 0 (busy waiting);

• Otherwise:

• Lock is set and process / thread enters critical region;

• When process leaves critical region: Lock is set to 0;

L. Tarrataca Chapter 2 - Processes and Threads 171 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

From the previous figure (2/2):

2 Overall solution:

• Processes / Threads must call at the correct times:

• enter_region before entering critical region;

• leave_region before leaving critical region;

L. Tarrataca Chapter 2 - Processes and Threads 172 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

From the previous figure (2/2):

2 Overall solution:

• Processes / Threads must call at the correct times:

• enter_region before entering critical region;

• leave_region before leaving critical region;

But what happens if one process cheats? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 173 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

From the previous figure (2/2):

2 Overall solution:

• Processes / Threads must call at the correct times:

• enter_region before entering critical region;

• leave_region before leaving critical region;

But what happens if one process cheats? Any ideas?

• Mutual exclusion will fail: processes must cooperate!

L. Tarrataca Chapter 2 - Processes and Threads 174 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Sleep and Wakeup

Can you any problems with the previous approach? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 175 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Sleep and Wakeup

Can you any problems with the previous approach? Any ideas?

Busy waiting:

• When a process wants to enter critical region:

• Checks to see if the entry is allowed:

• If it is not, the process just sits in a tight loop waiting;

• Wasteful of processor time!

L. Tarrataca Chapter 2 - Processes and Threads 176 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

What can we do to circumvent the busy waiting approach? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 177 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

What can we do to circumvent the busy waiting approach? Any ideas?

• Block processes instead of having them on a busy wait;

• This is done through sleep and wakeup OS primitives;

L. Tarrataca Chapter 2 - Processes and Threads 178 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Sleep:

• System call that causes the caller to block;

• Process is suspended until another process wakes it up;

• Scheduler can choose another process that is in ready state;

Wakeup:

• Wakes another process;

• Has one parameter: process to be awakened.

L. Tarrataca Chapter 2 - Processes and Threads 179 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Producer-consumer problem

These primitives can be exemplified through the producer-consumer

problem:

• Two processes share a common buffer;

• Producer: puts information into the buffer;

• Consumer: takes information out of the buffer;

L. Tarrataca Chapter 2 - Processes and Threads 180 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

What happens when producer wants to put a new item in the buffer, but

it is already full?

What happens? A problem happens!

What can we do to solve the problem? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 181 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

What happens when producer wants to put a new item in the buffer, but

it is already full?

What happens? A problem happens!

What can we do to solve the problem? Any ideas?

The solution is for the producer to go to sleep:

• and awakened when consumer has removed one or more items;

L. Tarrataca Chapter 2 - Processes and Threads 182 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

What happens when the consumer wants to take an item of the buffer,

but it is empty?

What happens? A problem happens!

What can we do to solve the problem? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 183 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

What happens when the consumer wants to take an item of the buffer,

but it is empty?

What happens? A problem happens!

What can we do to solve the problem? Any ideas?

The solution is for the consumer to go to sleep:

• and awakened when producer has put something into the buffer!

L. Tarrataca Chapter 2 - Processes and Threads 184 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

So now the question is:

How do we solve the consumer-producer problem? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 185 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

First: lets define the following:

• count variable keeps track of the number of items in the buffer:

• N is the maximum number of items the buffer can hold;

L. Tarrataca Chapter 2 - Processes and Threads 186 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Producer’s code will first test to see if count is N:

• If it is: producer will go to sleep;

• If it is not: producer will add an item and increment count.

Consumer’s code will first test to see if count is 0:

• If it is: consumer will go to sleep;

• If it is not: consumer will consume an item and decrement count.

Each process tests to see if the other should be awakened:

• and if so, wakes it up.

L. Tarrataca Chapter 2 - Processes and Threads 187 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Figure: Producer-consumer problem with a fatal race condition.(Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 188 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Can you see any problems with the previous code? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 189 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

The following situation could possibly occur (1/2):

• Buffer is empty and the consumer has just read count to see if it is 0:

• At that instant, the scheduler decides to stop running the consumer:

• And starts running the producer:

• Producer inserts an item in the buffer...

• ...increments count, and notices that it is now 1...

• ...reasoning that count was just 0: producer wakes consumer...

• ...consumer is not yet logically asleep, so the wakeup signal is lost.

L. Tarrataca Chapter 2 - Processes and Threads 190 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

The following situation could possibly occur (2/2):

• When consumer next runs:

• it will test the value of count it previously read:

• find it to be 0, and go to sleep

• Sooner or later the producer will fill up the buffer and also go to sleep:

• Both will sleep forever.

L. Tarrataca Chapter 2 - Processes and Threads 191 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Do you have any basic idea of how to solve the previous problem? Any

ideas?

L. Tarrataca Chapter 2 - Processes and Threads 192 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Do you have any basic idea of how to solve the previous problem? Any

ideas?

• Everything would be fine if the wake signal had not been lost...

L. Tarrataca Chapter 2 - Processes and Threads 193 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Semaphores

Semaphores data type were introduced to solve the previous problem:

• A semaphore could have the value 0:

• indicating that no wakeups were saved

• Or some positive value if one or more wakeups were pending;

• Semaphores have two possible operations: Down and Up;

L. Tarrataca Chapter 2 - Processes and Threads 194 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Down operation (1/2):

• If the value is greater than 0:

• Value is decremented (one wakeup is used) and just continues.

• If the value is 0:

• Process is put to sleep without completing the down for the moment;

L. Tarrataca Chapter 2 - Processes and Threads 195 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Down operation (2/2):

• All semaphore operations are done as a single indivisible atomic action:

• Checking the value;

• Changing the value;

• Possibly going to sleep;

• No other process can access the semaphore until the operation has

completed or blocked

• OS guarantees this by implementing operation as a system call:

• Control is not on the user-level side...

L. Tarrataca Chapter 2 - Processes and Threads 196 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Atomic actions

• Group of related operations where:

• All operations performed are done without interruption;

• or not performed at all;

• Fundamental concept in many areas of computer science;

L. Tarrataca Chapter 2 - Processes and Threads 197 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Up operation (1/2):

• Increments value of the semaphore;

• If one or more processes were sleeping on that semaphore:

• One is chosen by the system and allowed to complete its down;

• I.e.: after an up on a semaphore with processes sleeping on it:

• Semaphore will still be 0;

• But there will be one fewer process sleeping on it;

• Incrementing the semaphore and waking up one process is also indivisible:

L. Tarrataca Chapter 2 - Processes and Threads 198 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

How are the up / down operations performed in an indivisible way?

L. Tarrataca Chapter 2 - Processes and Threads 199 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

How are the up / down operations performed in an indivisible way?

OS guarantees this by implementing operation as a system call (1/3):

• Control is not on the user-level side...

• OS disables interrupts while it is:

• Testing the semaphore;

• Updating the semaphore;

• Putting the process to sleep;

L. Tarrataca Chapter 2 - Processes and Threads 200 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

How are the up / down operations performed in an indivisible way?

OS guarantees this by implementing operation as a system call (2/3):

• As all of these actions take only a few instructions:

• No harm is done in disabling interrupts.

L. Tarrataca Chapter 2 - Processes and Threads 201 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

How are the up / down operations performed in an indivisible way?

OS guarantees this by implementing operation as a system call (3/3):

• If multiple CPUs are being used:

• Disabling the interrupts will only work for one CPU;

• Therefore access to the system bus should forbidden:

• Protect each semaphore by a lock variable with the TSL instruction;

• Semaphore operation will take only a few microseconds of busy waiting;

L. Tarrataca Chapter 2 - Processes and Threads 202 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Now the question is:

How can we solve the producer-consumer problem using semaphores?

Any ideas?

We need to identify:

• When to put producer / consumer to sleep;

• When to awake producer / consumer;

L. Tarrataca Chapter 2 - Processes and Threads 203 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Now the question is:

How can we solve the producer-consumer problem using semaphores?

Any ideas?

Maybe we need to (1/2):

• Put producer to sleep when no more empty slots exist:

• One semaphore to represent number of empty slots;

• Put consumer to sleep when no more full slots exist:

• One semaphore to represent number of full slots;

L. Tarrataca Chapter 2 - Processes and Threads 204 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Now the question is:

How can we solve the producer-consumer problem using semaphores?

Any ideas?

Maybe we need to (2/2):

• Awake producer when one item was consumed:

• One semaphore to represent number of empty slots;

• Awake consumer when one item was produced:

• One semaphore to represent number of full slots;

L. Tarrataca Chapter 2 - Processes and Threads 205 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Are these two semaphores enough? Or is there still something missing?

Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 206 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Are these two semaphores enough? Or is there still something missing?

Any ideas?

• Up / Down operations are done in atomic way:

• So this is not what it is missing...

L. Tarrataca Chapter 2 - Processes and Threads 207 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Are these two semaphores enough? Or is there still something missing?

Any ideas?

• Up / Down operations are done in atomic way:

• So this is not what it is missing...

But what about when we access the data structure representing the

buffer?

L. Tarrataca Chapter 2 - Processes and Threads 208 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Are these two semaphores enough? Or is there still something missing?

Any ideas?

• Up / Down operations are done in atomic way:

• So this is not what it is missing...

But what about when we access the data structure representing the

buffer?

• Data buffer is a critical region;

• Needs to be accessed in mutual exclusion;

• This can be done through a binary semaphore, a.k.a. mutex;

L. Tarrataca Chapter 2 - Processes and Threads 209 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Figure: Producer-consumer problem using semaphores.(Source: [Tanenbaum and Bos, 2015])L. Tarrataca Chapter 2 - Processes and Threads 210 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

This solution uses three semaphores:

• Full for counting the number of slots that are full;

• Initialized to zero;

• Empty for counting the number of slots that are empty;

• Initialized to N;

• Mutex ensures producer/consumer do not access the buffer

simultaneously;

• Initialized to 1;

• If each process:

• does a down just before entering its critical region and...

• ...an up just after leaving it...

• mutual exclusion is guaranteed.

L. Tarrataca Chapter 2 - Processes and Threads 211 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

Mutex semaphore is used for mutual exclusion:

• Only one process at a time will be reading or writing the buffer;

Other semaphores are for synchronization:

• full and empty semaphores are needed to:

• Guarantee that certain event sequences do or do not occur.

• Ensure producer stops running when the buffer is full;

• Ensure consumer stops running when it is empty;

L. Tarrataca Chapter 2 - Processes and Threads 212 / 274

Interprocess Communication Mutual Exclusion with Busy Waiting

POSIX systems have semaphores:

• Library: semaphore.h

• Data type: sem_t

• Methods:

• sem_init

• sem_wait

• sem_post

• sem_getvalue

• sem_destroy

L. Tarrataca Chapter 2 - Processes and Threads 213 / 274

Interprocess Communication Mutexes

Mutexes

But what if we don’t need the semaphore’s ability to count?

What if we only need to manage mutual exclusion for some shared

resource?

L. Tarrataca Chapter 2 - Processes and Threads 214 / 274

Interprocess Communication Mutexes

Mutex

Mutex is a shared variable that can be in one of two states:

• Unlocked

• Locked

L. Tarrataca Chapter 2 - Processes and Threads 215 / 274

Interprocess Communication Mutexes

Thread / process calls mutex_lock to access a critical region:

• If mutex is unlocked:

• Call succeeds and the thread enters critical region;

• Closing the mutex;

• If mutex is locked:

• Call blocks until thread in critical region calls mutex_unlock

• If multiple threads are blocked:

• One is chosen and allowed to acquire the lock

L. Tarrataca Chapter 2 - Processes and Threads 216 / 274

Interprocess Communication Mutexes

This leads to the following solution:

Figure: Implementation of mutex_lock and mutex_unlock (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 217 / 274

Interprocess Communication Mutexes

Can you notice an important difference from previous examples? Any

ideas

L. Tarrataca Chapter 2 - Processes and Threads 218 / 274

Interprocess Communication Mutexes

Can you notice an important difference from previous examples? Any

ideas

• Previous examples relied on busy waiting;

• This one invokes thread_yield when failing to acquire the lock:

• CPU is passed to another thread;

• Consequence: No busy waiting! =)

L. Tarrataca Chapter 2 - Processes and Threads 219 / 274

Interprocess Communication Mutexes

Mutexes in Pthreads

Pthreads provides mutex functions:

Figure: Some of the Pthreads calls relating to mutexes. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 220 / 274

Interprocess Communication Monitors

Monitors

Higher-level synchronization primitive:

• Collection of procedures, variables, and data structures:

• Grouped together in a module or package;

• Not part of the C language!

• Processes may call the procedures in a monitor:

• Processes cannot directly access monitor’s internal data structures;

L. Tarrataca Chapter 2 - Processes and Threads 221 / 274

Interprocess Communication Monitors

Monitors have an important property:

• Only one process can be active in a monitor at any instant;

• Monitor procedure calls are handled differently from other procedure calls;

• When a process calls a monitor procedure:

• Procedure will check if any other process is active within the monitor:

• If so: calling process will be suspended until other process has left the monitor

• If no: other process is using the monitor, the calling process may enter.

L. Tarrataca Chapter 2 - Processes and Threads 222 / 274

Interprocess Communication Monitors

Figure: A monitor example. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 223 / 274

Interprocess Communication Monitors

How can monitors guarantee that only one process / thread will be active

at any one point in time in the monitor? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 224 / 274

Interprocess Communication Monitors

How can monitors guarantee that only one process / thread will be active

at any one point in time in the monitor? Any ideas?

• A Mutex can be used =)

• A binary semaphore can be used =)

L. Tarrataca Chapter 2 - Processes and Threads 225 / 274

Interprocess Communication Monitors

How do monitors enable better synchronization than other alternatives?

Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 226 / 274

Interprocess Communication Monitors

How do monitors enable better synchronization than other alternatives?

Any ideas?

The monitor package is arranging for mutual exclusion:

• Instead of the programmer:

• much less likely that something will go wrong.

L. Tarrataca Chapter 2 - Processes and Threads 227 / 274

Interprocess Communication Monitors

Monitors also allow for condition variables:

• Used to determine whether or not a process / thread can continue;

• This is done through two operations: wait and signal;

L. Tarrataca Chapter 2 - Processes and Threads 228 / 274

Interprocess Communication Monitors

Recall the producer - consumer problem (1/2):

• Producer finds the buffer full::

• It does a wait on some condition variable, say, full;

• This action causes the calling process to block;

• Allows another process to enter the monitor, if one exists;

L. Tarrataca Chapter 2 - Processes and Threads 229 / 274

Interprocess Communication Monitors

Recall the producer - consumer problem (2/2):

• Consumer can wake up its sleeping partner :

• By doing a signal on variable full;

• Important: Condition variables are not counters:

• Do not accumulate signals for later use the way semaphores do

• if a condition variable is signaled with no one waiting on it:

• signal is lost forever.

L. Tarrataca Chapter 2 - Processes and Threads 230 / 274

Interprocess Communication Monitors

We can now define the pseudocode for the monitor:

Figure: An outline of the producer-consumer problem with monitors. Only one monitor procedure at a time is

active. The buffer has N slots. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 231 / 274

Interprocess Communication Monitors

Monitor can now be used to implement the consumer - producer

problem:

L. Tarrataca Chapter 2 - Processes and Threads 232 / 274

Interprocess Communication Monitors

What is the difference between wait/signal and sleep/wakeup? Any

ideas?

L. Tarrataca Chapter 2 - Processes and Threads 233 / 274

Interprocess Communication Monitors

What is the difference between wait/signal and sleep/wakeup? Any

ideas?

Automatic mutual exclusion on monitor procedures guarantees that:

• Producer inside a monitor will be able to complete wait operation:

• Without worrying about scheduler switching to other process / thread;

• Consumer will not even be let into the monitor at all until the wait is finished:

• and the producer has been marked as no longer runnable.

L. Tarrataca Chapter 2 - Processes and Threads 234 / 274

Interprocess Communication Monitors

What is the main conclusion you can draw from using monitors? Any

ideas?

L. Tarrataca Chapter 2 - Processes and Threads 235 / 274

Interprocess Communication Monitors

What is the main conclusion you can draw from using monitors? Any

ideas?

By making the mutual exclusion of critical regions automatic:

• monitors make parallel programming much less error prone;

L. Tarrataca Chapter 2 - Processes and Threads 236 / 274

Interprocess Communication Monitors

This concludes our study of synchronization primitives =)

L. Tarrataca Chapter 2 - Processes and Threads 237 / 274

Interprocess Communication Monitors

Message Passing

Method of interprocess communication that uses two system calls:

• send(destination, &message)

• Sends the contents of message to a given destination

• receive(source, &message)

• Receives a message from a given source:

• If no message is available: receiver can block until one arrives;

• Alternatively, receiver can return immediately with an error code;

• Destination and source fields can be specified using other OS system calls;

L. Tarrataca Chapter 2 - Processes and Threads 238 / 274

Scheduling

Scheduling

Lets have a more detailed look at scheduling:

First, what is the oficial definition of scheduling? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 239 / 274

Scheduling

Scheduling

Lets have a more detailed look at scheduling:

First, what is the oficial definition of scheduling? Any ideas?

• Normal for computers to execute multiple processes / threads

• Who to choose to execute next when multiple processes / threads exist in

‘‘ready’’ state?

• Scheduler: OS part that makes this choice:

• According to some scheduling algorithm;

L. Tarrataca Chapter 2 - Processes and Threads 240 / 274

Scheduling

Remember this?

Figure: Scheduling Example (Source: [Stallings, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 241 / 274

Scheduling When to schedule

When to schedule

When should the scheduler make scheduling decisions? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 242 / 274

Scheduling When to schedule

When to schedule

When should the scheduler make scheduling decisions? Any ideas?

Possibility 1: When a new process is created.

• Who should run? The parent? Or the child?

• Both processes are in ready state;

• Scheduler can legitimately choose to run either process;

L. Tarrataca Chapter 2 - Processes and Threads 243 / 274

Scheduling When to schedule

When to schedule

When should the scheduler make scheduling decisions? Any ideas?

Possibility 2: When a process exits.

• Who should run next?

• Some other process must be chosen from the set of ready processes;

L. Tarrataca Chapter 2 - Processes and Threads 244 / 274

Scheduling When to schedule

When to schedule

When should the scheduler make scheduling decisions? Any ideas?

Possibility 3: When a process blocks on I/O, semaphore or for other

reason.

• Who should run next?

• Some other process must be chosen from the set of ready processes;

L. Tarrataca Chapter 2 - Processes and Threads 245 / 274

Scheduling When to schedule

When to schedule

When should the scheduler make scheduling decisions? Any ideas?

Possibility 4: When an I/O interrupt occurs.

• Who should run next?

• Some other process that was blocked waiting for the I/O may now be

ready.

• The process that was running at the time of the interrupt?

• Or some other third process?

• Scheduler can legitimately choose any of these processes;

L. Tarrataca Chapter 2 - Processes and Threads 246 / 274

Scheduling When to schedule

When to schedule

When should the scheduler make scheduling decisions? Any ideas?

Possibility 5: When a process / thread exceeds its time.

• Who should run next?

• Some other process from the ready set.

• Scheduler can legitimately choose any of these processes;

L. Tarrataca Chapter 2 - Processes and Threads 247 / 274

Scheduling Scheduling Algorithm Goals

Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

L. Tarrataca Chapter 2 - Processes and Threads 248 / 274

Scheduling Scheduling Algorithm Goals

Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

Depends on the system requirements:

• All computational systems

• Interactive systems

• Real-time systems

L. Tarrataca Chapter 2 - Processes and Threads 249 / 274

Scheduling Scheduling Algorithm Goals

Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

All computational systems: (1/3)

• Fairness - giving each process a fair share of the CPU:

• However, different categories of processes may be treated differently.

• E.g.: Minecraft vs. nuclear reactor’s computer;

L. Tarrataca Chapter 2 - Processes and Threads 250 / 274

Scheduling Scheduling Algorithm Goals

Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

All computational systems: (2/3)

• Policy enforcement - seeing that stated policy is carried out.

• More vs. Less priority processes / threads

L. Tarrataca Chapter 2 - Processes and Threads 251 / 274

Scheduling Scheduling Algorithm Goals

Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

All computational systems: (3/3)

• CPU utilization - keep the CPU busy all the time.

• Increase CPU efficiency.

L. Tarrataca Chapter 2 - Processes and Threads 252 / 274

Scheduling Scheduling Algorithm Goals

Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

Interactive Systems:

• Response time - respond to requests quickly

• Minimize response time to user’s request;

• Processing interactive requests first will be perceived as good service;

L. Tarrataca Chapter 2 - Processes and Threads 253 / 274

Scheduling Scheduling Algorithm Goals

Scheduling Algorithm Goals

What do you think are the main goals of the scheduling algorithm?

Real time systems:

• Meeting deadlines - avoid losing data

• E.g.: the processes / threads handling aircraft’s sensors;

L. Tarrataca Chapter 2 - Processes and Threads 254 / 274

Scheduling Scheduling

Scheduling

A lot of scheduling techniques were developed over time:

• round-robin scheduling;

• priority scheduling;

• multiple queues;

• etc;

As we have seen previously:

• Linux Kernel 2.6 implements the CFS scheduler;

L. Tarrataca Chapter 2 - Processes and Threads 255 / 274

Scheduling Scheduling

Linux Kernel 2.6 implements the CFS scheduler (1/3):

Figure: (Source: IBM)

L. Tarrataca Chapter 2 - Processes and Threads 256 / 274

Scheduling Scheduling

Linux Kernel 2.6 implements the CFS scheduler (2/3):

Figure: (Source: IBM)

L. Tarrataca Chapter 2 - Processes and Threads 257 / 274

Scheduling Scheduling

Linux Kernel 2.6 implements the CFS scheduler (1/3):

• The virtual_runtime is used to determine who should be executed next:

• Higher priority processes will be allowed to execute:

• for a longer time;

• more frequently;

• Lower priority processes will be allowed to execute:

• for a smaller time;

• less frequently;

L. Tarrataca Chapter 2 - Processes and Threads 258 / 274

Classical IPC Problems

Classical IPC Problems

OS literature is full of interesting synchronization problems, e.g.:

• The Dining Philosophers Problem;

• The Readers and Writers Problem;

Guess what we will be seeing next ;)

L. Tarrataca Chapter 2 - Processes and Threads 259 / 274

Classical IPC Problems The Dining Philosophers Problem

The Dining Philosophers Problem

Five philosophers are seated around a circular table:

• Each philosopher has a plate of spaghetti;

• The spaghetti is so slippery that a philosopher needs two forks to eat it;

• Between each pair of plates is one fork.

Figure: (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 260 / 274

Classical IPC Problems The Dining Philosophers Problem

Philosopher alternates between thinking and eating.

• When a philosopher gets sufficiently hungry:

• Tries to acquire her left and right forks, one at a time

• If successful in acquiring two forks:

• eats for a while then puts down the forks;

Can you write a program for each philosopher that does what it is

supposed to do and never gets stuck?

L. Tarrataca Chapter 2 - Processes and Threads 261 / 274

Classical IPC Problems The Dining Philosophers Problem

The obvious solution:

Figure: (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 2 - Processes and Threads 262 / 274

Classical IPC Problems The Dining Philosophers Problem

Can you see anything wrong with the previous solution? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 263 / 274

Classical IPC Problems The Dining Philosophers Problem

Can you see anything wrong with the previous solution? Any ideas?

Suppose that all five philosophers take their left forks simultaneously:

• None will be able to take their right forks

• This will result in a deadlock

L. Tarrataca Chapter 2 - Processes and Threads 264 / 274

Classical IPC Problems The Dining Philosophers Problem

Can you see anything wrong with the previous solution? Any ideas?

Suppose that all five philosophers take their left forks simultaneously:

• None will be able to take their right forks

• This will result in a deadlock

How can we circumvent this problem? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 265 / 274

Classical IPC Problems The Dining Philosophers Problem

Obtaining maximum parallelism for N philosophers:

• Each philosopher’s state needs to be maintained:

• eating, thinking, or hungry (trying to acquire forks);

• Philosopher may move into eating state only if neither neighbour is eating;

• An array of semaphores, one per philosopher, is needed:

• so hungry philosophers can block if the needed forks are busy;

L. Tarrataca Chapter 2 - Processes and Threads 266 / 274

Classical IPC Problems The Dining Philosophers Problem

The revised solution:

Figure: (Source: [Tanenbaum and Bos, 2015])L. Tarrataca Chapter 2 - Processes and Threads 267 / 274

Classical IPC Problems Readers and Writers Problem

Readers and Writers Problem

Example:

• Airline reservation system:

• with many competing processes wishing to read and write it.

• Multiple processes may be reading the database at the same time:

• However: if one process is updating the database:

• no other processes may have access to the database, not even readers

The question is how do you program the readers and the writers?

L. Tarrataca Chapter 2 - Processes and Threads 268 / 274

Classical IPC Problems Readers and Writers Problem

The obvious solution:

Figure: (Source: [Tanenbaum and Bos, 2015])
L. Tarrataca Chapter 2 - Processes and Threads 269 / 274

Classical IPC Problems Readers and Writers Problem

In this solution:

• First reader to get access to the database does a down(&db);

• Subsequent readers merely increment a counter rc;

• As readers leave:

• They decrement the counter;

• Last reader to leave does an up on the semaphore:

• Allowing a blocked writer, if there is one, to get in.

L. Tarrataca Chapter 2 - Processes and Threads 270 / 274

Classical IPC Problems Readers and Writers Problem

Can you see any problem with the previous solution? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 271 / 274

Classical IPC Problems Readers and Writers Problem

Can you see any problem with the previous solution? Any ideas?

While there is a reader other readers my be admitted:

• As long as at least one reader is still active:

• A writer will never be allowed to work

What can we do to solve this problem? Any ideas?

L. Tarrataca Chapter 2 - Processes and Threads 272 / 274

Classical IPC Problems Readers and Writers Problem

What can we do to solve this problem? Any ideas?

A reader arrives and a writer is waiting:

• Reader is suspended behind the writer:

• Instead of being admitted immediately;

• In this way:

• Writer has to wait for readers that were active when it arrived to finish...

• ...but does not have to wait for readers that came along after it

L. Tarrataca Chapter 2 - Processes and Threads 273 / 274

References

References I

Stallings, W. (2015).

Computer Organization and Architecture.

Pearson Education.

Tanenbaum, A. and Bos, H. (2015).

Modern Operating Systems.

Pearson Education Limited.

L. Tarrataca Chapter 2 - Processes and Threads 274 / 274

	Motivation
	Processes
	The process model
	Process Termination
	Process States
	Scheduling Techniques

	Threads
	Classical Thread Model
	POSIX threads
	Threads in User Space
	Threads in the Kernel
	Hybrid Implementations
	Making Single Threaded Code Multithreaded

	Interprocess Communication
	Race Conditions
	Critical Regions
	Mutual Exclusion with Busy Waiting
	Mutexes
	Monitors

	Scheduling
	When to schedule
	Scheduling Algorithm Goals
	Scheduling

	Classical IPC Problems
	The Dining Philosophers Problem
	Readers and Writers Problem

	References

