
Objects and Classes

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

L. Tarrataca Objects and Classes 1 / 136

luis.tarrataca@gmail.com

1 Defining Classes for Objects

Object

State

Behaviour

Class

Unified Modeling Language

2 Creating Objects

3 Constructing Objects Using Constructors

L. Tarrataca Objects and Classes 2 / 136

4 Accessing objects via Reference Variable

Reference variables and reference types

Accessing an Object’s Data and Methods

Reference Data Fields and the null value

Differences between Variables of Primitive Types and Reference Types

5 Static Variables, Constants and Methods

L. Tarrataca Objects and Classes 3 / 136

6 Visibility Modifiers

7 Data Field Encapsulation

8 Passing Objects to Methods

L. Tarrataca Objects and Classes 4 / 136

9 Array of Objects

10 Immutable Objects and Classes

11 Scope of Variables

12 The this Reference

Using this to Reference Hidden Data Fields

Using this to Invoke a Constructor

L. Tarrataca Objects and Classes 5 / 136

Defining Classes for Objects

Defining Classes for Objects

What is the name of this class? Any ideas?

L. Tarrataca Objects and Classes 6 / 136

Defining Classes for Objects

Defining Classes for Objects

What is the name of this class? Any ideas?

• Object Oriented Programming;

But what is an object? Any ideas?

L. Tarrataca Objects and Classes 7 / 136

Defining Classes for Objects Object

Object

An object represents an entity that can be identified, e.g.:

• Student;

• Desk;

• Circle;

• Button,

• Loan

An object has a unique:

• State;

• Behaviour.

L. Tarrataca Objects and Classes 8 / 136

Defining Classes for Objects Object

But what is the state of an object? Any ideas?

But what is the behaviour of an object? Any ideas?

Lets have a look into these concepts =)

L. Tarrataca Objects and Classes 9 / 136

Defining Classes for Objects State

State

State of an object:

• A.k.a. as attributes;

• Represented by data fields with their current values;

• Examples:

• A circle object has an attribute radius;

• A rectangle object has attributes width and height;

L. Tarrataca Objects and Classes 10 / 136

Defining Classes for Objects Behaviour

Behaviour

Behaviour of an object is defined by methods:

• To invoke a method on an object is to ask the object to perform an action;

• Example:

• A circle object may define methods:

• getArea()

• getPerimeter()

• setRadius(radius)

L. Tarrataca Objects and Classes 11 / 136

Defining Classes for Objects Class

Class

Objects of the same type are defined using a common class:

But what is a class? Any ideas?

L. Tarrataca Objects and Classes 12 / 136

Defining Classes for Objects Class

Class

Objects of the same type are defined using a common class:

But what is a class? Any ideas?

Class is a abstraction defining (1/3):

• What attributes objects should have;

• What methods objects should have;

L. Tarrataca Objects and Classes 13 / 136

Defining Classes for Objects Class

Class

Objects of the same type are defined using a common class:

But what is a class? Any ideas?

Class is a abstraction defining (2/3):

• An object is an instance of a class;

• An instance is a concretization of an abstraction;

• You can create many instances of a class (i.e., instatiation);

L. Tarrataca Objects and Classes 14 / 136

Defining Classes for Objects Class

Class

Objects of the same type are defined using a common class:

But what is a class? Any ideas?

Class is a abstraction defining (3/3):

• Constructors:

• Invoked to create a new object;

• Designed to initialize attributes;

Lets try to make these concepts a little bit clearer =)

L. Tarrataca Objects and Classes 15 / 136

Defining Classes for Objects Class

Example (1/2)

Figure: A class is a template for creating objects.(Source: [Liang, 2014])

L. Tarrataca Objects and Classes 16 / 136

Defining Classes for Objects Class

Example (2/2)

class Circle {

/∗∗ The radius of this circle ∗/

double radius = 1;

/∗∗ Construct a circle object ∗/

Circle () { }

/∗∗ Construct a circle object ∗/

Circle (double newRadius) { radius = newRadius;

}

/∗∗ Return the area of this circle ∗/

double getArea() {

return radius ∗ radius ∗ Math.PI;

}

/∗∗ Return the perimeter of this circle ∗/

double getPerimeter() {

return 2 ∗ radius ∗ Math.PI;

}

/∗∗ Set new radius for this circle ∗/

double setRadius(double newRadius) {

radius = newRadius;

}

}

L. Tarrataca Objects and Classes 17 / 136

Defining Classes for Objects Unified Modeling Language

Unified Modeling Language

Class templates and objects can be standardized using Unified Modeling

Language (UML) notation.

Figure: A class is a template for creating objects.(Source: [Liang, 2014])

L. Tarrataca Objects and Classes 18 / 136

Creating Objects

Creating Objects

Once the constructor, attributes and methods have been defined:

How can we use it to build a new object? Any ideas?

L. Tarrataca Objects and Classes 19 / 136

Creating Objects

Creating Objects

Once the constructor, attributes and methods have been defined:

How can we use it to build a new object? Any ideas?

• Using the Java keyword: new ;)

L. Tarrataca Objects and Classes 20 / 136

Creating Objects

Example

/∗∗ Main method ∗/

public static void main(String [] args) {

// Create a circle with radius 1

Circle circle1 = new Circle() ;

System.out. println ("The area of the circle of radius " + circle1 . radius + " is " + circle1 .getArea());

// Create a circle with radius 25

Circle circle2 = new Circle(25);

System.out. println ("The area of the circle of radius "+ circle2 . radius + " is " + circle2 .getArea());

// Create a circle with radius 125

Circle circle3 = new Circle(125);

System.out. println ("The area of the circle of radius " + circle3 . radius + " is " + circle3 .getArea());

// Modify circle radius v1 − NOT GOOD PRACTICE

circle2 . radius = 100;

System.out. println ("The area of the circle of radius " + circle2 . radius + " is " + circle2 .getArea());

// Modify circle radius v2 − GOOD PRACTICE

circle2 . setRadius(100) ;

System.out. println ("The area of the circle of radius " + circle2 . radius + " is " + circle2 .getArea());

}

}

L. Tarrataca Objects and Classes 21 / 136

Creating Objects

TV Exercise (1/4)

Draw the UML diagram for the class television.

Write the Java code for the respective UML diagram.

L. Tarrataca Objects and Classes 22 / 136

Creating Objects

TV Exercise (2/4)

Figure: (Source: [Liang, 2014])

L. Tarrataca Objects and Classes 23 / 136

Creating Objects

TV Exercise (2/4)

Figure: (Source: [Liang, 2014])

L. Tarrataca Objects and Classes 24 / 136

Creating Objects

TV Exercise (3/4)

public class TV {

int channel = 1; // Default channel is 1

int volumeLevel = 1; // Default volume level is 1

boolean on = false; // TV is off

public TV() {}

public void turnOn() {

on = true ;

}

public void turnOff () {

on = false ;

}

public void setChannel(int newChannel) {

if (on && newChannel >= 1 && newChannel <= 120)

channel = newChannel;

}

public void setVolume(int newVolumeLevel) {

if (on && newVolumeLevel >= 1 && newVolumeLevel <= 7)

volumeLevel = newVolumeLevel;

}

// ... (continues next slide)

L. Tarrataca Objects and Classes 25 / 136

Creating Objects

TV Exercise (4/4)

// ... (continuation of previous slide)

public void channelUp() {

if (on && channel < 120)

channel++;

}

public void channelDown() {

if (on && channel > 1)

channel−−;

}

public void volumeUp() {

if (on && volumeLevel < 7)

volumeLevel++;

}

public void volumeDown() {

if (on && volumeLevel > 1)

volumeLevel−−;

}

}

L. Tarrataca Objects and Classes 26 / 136

Creating Objects

In retrospect, based on the concepts seen until now (1/4):

What is an object? Any ideas?

L. Tarrataca Objects and Classes 27 / 136

Creating Objects

In retrospect, based on the concepts seen until now (2/4):

What is an object? Any ideas?

1 Everything is an object:

• An object is just a fancy variable:

• Stores data;

• Requests can be made to an object;

• Concepts can be represented as objects;

L. Tarrataca Objects and Classes 28 / 136

Creating Objects

In retrospect, based on the concepts seen until now (3/4):

What is an object? Any ideas?

2 Program consists of objects telling each other what to:

• A request is a method call to a particular object;

3 Each object has its own memory made up of other objects:

• Allows for complex programs to be built...

• ...while hiding behind the simplicity of objects;

L. Tarrataca Objects and Classes 29 / 136

Creating Objects

In retrospect, based on the concepts seen until now (4/4):

What is an object? Any ideas?

4 Every object has a type:

• Each object is an instance of a class;

• ‘‘Class’’ is synonymous with ‘‘type’’;

5 All objects of a particular type can receive the same messages:

• This concept will be extended in further chapters;

L. Tarrataca Objects and Classes 30 / 136

Constructing Objects Using Constructors

Constructing Objects Using Constructors

Once a class is defined:

How can a class be used to construct a new object? Any ideas?

L. Tarrataca Objects and Classes 31 / 136

Constructing Objects Using Constructors

Constructing Objects Using Constructors

Once a class is defined:

How can a class be used to construct a new object? Any ideas?

• By using something called a constructor

But what is a constructor? Any ideas?

L. Tarrataca Objects and Classes 32 / 136

Constructing Objects Using Constructors

Constructing Objects Using Constructors

Once a class is defined:

How can a class be used to construct a new object? Any ideas?

• By using something called a constructor

But what is a constructor? Any ideas?

• Constructors are responsible for initializing objects;

L. Tarrataca Objects and Classes 33 / 136

Constructing Objects Using Constructors

Constructors are a special kind of method (1/2):

• Constructors must have the same name as the class itself;

• Constructors do not have a return type;

• Constructors are invoked using the new operator:

new ClassName(arguments);

L. Tarrataca Objects and Classes 34 / 136

Constructing Objects Using Constructors

Constructors are a special kind of method (2/2):

• Constructors can be overloaded:

What does it mean to overload a method? Any ideas?

L. Tarrataca Objects and Classes 35 / 136

Constructing Objects Using Constructors

Constructors are a special kind of method (2/2):

• Constructors can be overloaded:

What does it mean to overload a method? Any ideas?

• Multiples methods can have same name but different signatures;

// Create circle with radius 1

Circle c1 = new Circle() ;

// Create circle with radius 25

Circle c2 = new Circle(25) ;

L. Tarrataca Objects and Classes 36 / 136

Constructing Objects Using Constructors

Important observation:

• Every class has a default constructor:

• With an empty body;

• With no arguments;

L. Tarrataca Objects and Classes 37 / 136

Accessing objects via Reference Variable

Accessing objects via Reference Variable

Newly created objects are created in memory, but...

How can we access an object? Any ideas?

How can we access the attributes of an object? Any ideas?

How can we access the methods of an object? Any ideas?

Lets have a look at each one of these questions individually =)

L. Tarrataca Objects and Classes 38 / 136

Accessing objects via Reference Variable Reference variables and reference types

Reference variables and reference types

How can we access an object? Any ideas?

Objects are accessed via the object’s reference variables:

• Contain references to the objects;

• Such variables are declared using the following syntax:

ClassName objectRefVar;

• Examples:

Circle c1 = new Circle() ;

L. Tarrataca Objects and Classes 39 / 136

Accessing objects via Reference Variable Reference variables and reference types

But what is a reference? Any ideas?

L. Tarrataca Objects and Classes 40 / 136

Accessing objects via Reference Variable Reference variables and reference types

But what is a reference? Any ideas?

• Objects are stored in memory;

• Memory positions are accessed through addresses;

• Reference: Address where an object’s variables and methods are stored.

• Reference can be thought of as pointers;

• However: There are no explicit pointers or pointer arithmetic in Java;

L. Tarrataca Objects and Classes 41 / 136

Accessing objects via Reference Variable Accessing an Object’s Data and Methods

Accessing an Object’s Data and Methods

How can we access the attributes of an object? Any ideas?

How can we access the methods of an object? Any ideas?

Through the dot operator (.):

• objectRefVar.dataField references a data field in the object, e.g.:

// Access c1 attribute radius

c1.radius ;

• objectRefVar.method(arguments) invokes a method on the object, e.g.:

// Calculate c1 area

c1.getArea()

L. Tarrataca Objects and Classes 42 / 136

Accessing objects via Reference Variable Reference Data Fields and the null value

Reference Data Fields

To what values are the attributes of an object initialized? Any ideas?

L. Tarrataca Objects and Classes 43 / 136

Accessing objects via Reference Variable Reference Data Fields and the null value

Reference Data Fields

To what values are the attributes of an object initialized? Any ideas?

Consider the following Student class:

class Student {

String name;

int age;

boolean isEnrolled ;

char gender;

}

• What is the default value of attribute name?

• What is the default value of attribute age?

• What is the default value of attribute isEnrolled?

• What is the default value of attribute gender?

L. Tarrataca Objects and Classes 44 / 136

Accessing objects via Reference Variable Reference Data Fields and the null value

Reference Data Fields

To what values are the attributes of an object initialized? Any ideas?

Consider the following Student class:

class Student {

String name; // name has the default value null

int age; // age has the default value 0

boolean isEnrolled ; // isEnrolled has default value false

char gender; // gender has default value ’\u0000’

}

• What is the default value of attribute name? null

• What is the default value of attribute age? 0

• What is the default value of attribute isEnrolled? false

• What is the default value of attribute gender? \u0000

L. Tarrataca Objects and Classes 45 / 136

Accessing objects via Reference Variable Differences between Variables of Primitive Types and Reference Types

Differences between Variables of Primitive Types and

Reference Types

Every variable represents a memory location that holds a value:

• When a variable is declared: compiler knows what type of value to hold;

Figure: A variable of a primitive type holds a value of the primitive type, and a variable of a reference type

holds a reference to where an object is stored in memory. (Source: [Liang, 2014])

L. Tarrataca Objects and Classes 46 / 136

Accessing objects via Reference Variable Differences between Variables of Primitive Types and Reference Types

But what happens when we try to assign one variable to another? Any

ideas?

L. Tarrataca Objects and Classes 47 / 136

Accessing objects via Reference Variable Differences between Variables of Primitive Types and Reference Types

But what happens when we try to assign one variable to another? Any

ideas?

Well it depends:

• Is the variable primitive?

• Is the variable an object?

Lets see some examples...

L. Tarrataca Objects and Classes 48 / 136

Accessing objects via Reference Variable Differences between Variables of Primitive Types and Reference Types

Consider the following primitive attribution:

int i = 1;

int j = 2;

i = j ;

What is the value of i?

L. Tarrataca Objects and Classes 49 / 136

Accessing objects via Reference Variable Differences between Variables of Primitive Types and Reference Types

Consider the following primitive attribution:

int i = 1;

int j = 2;

i = j ;

What is the value of i?

• i = 2

For a variable of primitive type:

• the value is copied;

L. Tarrataca Objects and Classes 50 / 136

Accessing objects via Reference Variable Differences between Variables of Primitive Types and Reference Types

Consider the following object attribution:

Circle c1 = new Circle(5) ;

Circle c2 = new Circle (9) ;

c1 = c2

What happens in this case? Any ideas?

L. Tarrataca Objects and Classes 51 / 136

Accessing objects via Reference Variable Differences between Variables of Primitive Types and Reference Types

Consider the following object attribution:

Circle c1 = new Circle(5) ;

Circle c2 = new Circle (9) ;

c1 = c2

What happens in this case? Any ideas?

Figure: Before reference variable c2 is copied to variable c1. (Source: [Liang, 2014])L. Tarrataca Objects and Classes 52 / 136

Accessing objects via Reference Variable Differences between Variables of Primitive Types and Reference Types

Some important observations of the previous example:

• After the assignment statement c1 = c2:

• c1 points to the same object referenced by c2;

• Object previously referenced by c1 is no longer useful;

• The object is know as garbage;

• Garbage occupies memory space:

• Java runtime system detects garbage and automatically reclaims the

space;

• This process is called garbage collection.

L. Tarrataca Objects and Classes 53 / 136

Static Variables, Constants and Methods

Static Variables, Constants and Methods

Suppose that you create the following objects:

Circle circle1 = new Circle() ;

Circle circle2 = new Circle(5) ;

• Radius in circle1 is independent of the radius in circle2:

• 6= objects → stored in a 6= memory location.

• I.e. Changes made to circle1’s radius do not affect circle2’s radius, and vice

versa;

L. Tarrataca Objects and Classes 54 / 136

Static Variables, Constants and Methods

But what if we need to share memory between 6= objects of the same

class? Any ideas?

L. Tarrataca Objects and Classes 55 / 136

Static Variables, Constants and Methods

But what if we need to share memory between 6= objects of the same

class? Any ideas?

This can be done through the use of static variables:

• Variables are stored in a common memory location;

• If one object changes the value of a static variable

• All objects of the same class are affected.

• Java supports static methods as well as static variables:

• Static methods can be called without creating an instance of the class.

L. Tarrataca Objects and Classes 56 / 136

Static Variables, Constants and Methods

But why do we need static variables? Any ideas?

L. Tarrataca Objects and Classes 57 / 136

Static Variables, Constants and Methods

But why do we need static variables? Any ideas?

This is equivalent to the question:

But why do we need global variables? Any ideas?

L. Tarrataca Objects and Classes 58 / 136

Static Variables, Constants and Methods

But why do we need static variables? Any ideas?

This is equivalent to the question:

But why do we need global variables? Any ideas?

• Global variables are used extensively to pass information;

• This can be problematic when dealing with multi-threaded environments:

• Ask your OS professor about these;

• Oh wait, I am your OS professor ;)

L. Tarrataca Objects and Classes 59 / 136

Static Variables, Constants and Methods

Lets see an example why static variables are interesting:

public class CircleWithStaticMembers {

/∗∗ The radius of the circle ∗/

double radius;

/∗∗ The number of objects created ∗/

static int numberOfObjects = 0;

/∗∗ Construct a circle with radius 1 ∗/

CircleWithStaticMembers() {

radius = 1;

numberOfObjects++;

}

/∗∗ Construct a circle with a specified radius ∗/

CircleWithStaticMembers(double newRadius) {

radius = newRadius;

numberOfObjects++;

}

/∗∗ Return numberOfObjects ∗/

static int getNumberOfObjects(){

return numberOfObjects;

}

/∗∗ Return the area of this circle ∗/

double getArea() {

return radius ∗ radius ∗ Math.PI;

}

}

L. Tarrataca Objects and Classes 60 / 136

Static Variables, Constants and Methods

What is happening in the previous code? Any ideas?

L. Tarrataca Objects and Classes 61 / 136

Static Variables, Constants and Methods

What is happening in the previous code? Any ideas?

• Modifier static in the variable or method declaration;

• Static variable numberOfObjects counts number of circle objects created;

• Each time an object is created the numberOfObjects is incremented;

• Static method getNumberOfObjects was also created:

• Makes it easy to retrieve the numberOfObjects created;

L. Tarrataca Objects and Classes 62 / 136

Static Variables, Constants and Methods

Now in UML:

Figure: Instance variables belong to the instances and have memory storage independent of one another.

Static variables are shared by all the instances of the same class. (Source: [Liang, 2014])

• Static variables and methods are underlined in the UML class diagram

L. Tarrataca Objects and Classes 63 / 136

Static Variables, Constants and Methods

You did not notice but you were already using static variables

Can you tell where in our previous codes we were using static variables?

Any ideas?

L. Tarrataca Objects and Classes 64 / 136

Static Variables, Constants and Methods

You did not notice but you were already using static variables

Can you tell where in our previous codes we were using static variables?

Any ideas?

Math.PI

• Notice that we are accessing a java class named Math;

• But no object of class Math was ever created;

• We are just interested in obtaining the value of a constant named PI:

• No need for that constant to exist in every object;

• It would be a waste of memory;

L. Tarrataca Objects and Classes 65 / 136

Static Variables, Constants and Methods

Some important observations:

• An instance method can:

• Invoke an instance or static method;

• Access an instance or static data field.

• A static method can

• Invoke a static method;

• Access a static data field;

• However, static method cannot:

• Invoke an instance method;

• Access an instance data field;

L. Tarrataca Objects and Classes 66 / 136

Static Variables, Constants and Methods

Figure: Difference between instance and static methods (Source: [Liang, 2014])

L. Tarrataca Objects and Classes 67 / 136

Static Variables, Constants and Methods

Why does this happen? Any ideas?

L. Tarrataca Objects and Classes 68 / 136

Static Variables, Constants and Methods

Why does this happen? Any ideas?

• Static methods and static data fields don’t belong to a particular object;

• They are global methods;

• No instance attributes or methods are therefore associated;

L. Tarrataca Objects and Classes 69 / 136

Static Variables, Constants and Methods

Consider the following code:

public class A{

int i = 5;

static int k = 2;

public static void main(String [] args) {

int j = i ;

m1();

}

public void m1(){

i = i + k + m2(i, k) ;

}

public static int m2(int i , int j) {

return (int) (Math.pow(i,j)) ;

}

}

L. Tarrataca Objects and Classes 70 / 136

Static Variables, Constants and Methods

Consider the following code:

public class A{

int i = 5;

static int k = 2;

public static void main(String [] args) {

int j = i ;

m1();

}

public void m1(){

i = i + k + m2(i, k) ;

}

public static int m2(int i , int j) {

return (int) (Math.pow(i,j)) ;

}

}

Can you see anything wrong? Any ideas?

L. Tarrataca Objects and Classes 71 / 136

Static Variables, Constants and Methods

Several wrong things:

public class A{

int i = 5;

static int k = 2;

public static void main(String [] args) {

int j = i ; // Wrong because i is an instance variable

m1(); // Wrong because m1() is an instance method

}

public void m1(){

// Correct since instance and static variables and methods

// can be used in an instance method

i = i + k + m2(i, k) ;

}

public static int m2(int i , int j) {

// Correct since pow is accessing arguments i and j

// from the m2 function, and not the attribute i

return (int) (Math.pow(i, j)) ;

}

}

L. Tarrataca Objects and Classes 72 / 136

Static Variables, Constants and Methods

So the question now is:

How can we fix the previous code? Any ideas?

L. Tarrataca Objects and Classes 73 / 136

Static Variables, Constants and Methods

So the question now is:

How can we fix the previous code? Any ideas?

public class A{

int i = 5;

static int k = 2;

public static void main(String [] args) {

A a = new A();

int j = a. i ;

a.m1();

}

public void m1(){

i = i + k + m2(i, k) ;

}

public static int m2(int i , int j) {

return (int) (Math.pow(i, j)) ;

}

}

L. Tarrataca Objects and Classes 74 / 136

Static Variables, Constants and Methods

How do you decide whether a variable or a method should be an

instance one or a static one?

L. Tarrataca Objects and Classes 75 / 136

Static Variables, Constants and Methods

How do you decide whether a variable or a method should be an

instance one or a static one?

Variable / method dependent on a specific instance of the class:

• Should be an instance variable or method;

Variable / method independent on a specific instance of the class:

• Should be a static variable or method. F

L. Tarrataca Objects and Classes 76 / 136

Static Variables, Constants and Methods

Examples

Every circle has its own radius:

• Radius is dependent on the specific circle;

• Therefore, radius is an instance variable;

getArea() method is dependent on a specific circle:

• Instance method;

Methods Math.random, Math.pow, Math.sin and Math.cos:

• Independent of the instance;

• Therefore, static methods;

L. Tarrataca Objects and Classes 77 / 136

Visibility Modifiers

Visibility Modifiers

Sometimes:

• Useful to control access to attributes / methods from other classes:

How can this be done? Any ideas?

L. Tarrataca Objects and Classes 78 / 136

Visibility Modifiers

Visibility Modifiers

Sometimes:

• Useful to control access to attributes / methods from other classes:

How can this be done? Any ideas?

• Using visibility Modifiers ;)

L. Tarrataca Objects and Classes 79 / 136

Visibility Modifiers

Visibility Modifiers

Sometimes:

• Useful to control access to attributes / methods from other classes:

How can this be done? Any ideas?

• Using visibility Modifiers ;)

So what is a visibility modifier? Any ideas?

L. Tarrataca Objects and Classes 80 / 136

Visibility Modifiers

Visibility Modifiers

Sometimes:

• Useful to control access to attributes / methods from other classes:

How can this be done? Any ideas?

• Using visibility Modifiers ;)

So what is a visibility modifier? Any ideas?

L. Tarrataca Objects and Classes 81 / 136

Visibility Modifiers

So what is a visibility modifier? Any ideas?

Set of keywords that:

• Change the visibility of classes, methods and attributes:

• To denote how they can be accessed from other classes;

• If no visibility modifier is used then by default:

• Classes, methods, and data fields are accessible in the same package;

L. Tarrataca Objects and Classes 82 / 136

Visibility Modifiers

But wait:

What is a package? Any ideas?

L. Tarrataca Objects and Classes 83 / 136

Visibility Modifiers

But wait:

What is a package? Any ideas?

• Packages can be used to organize classes;

• Requires the following first line:

package packageName;

• If a class is defined without the package statement:

• ‘‘default’’ package is used;

Now back to the modifiers...

L. Tarrataca Objects and Classes 84 / 136

Visibility Modifiers

What are the modifiers available in Java? Any ideas?

L. Tarrataca Objects and Classes 85 / 136

Visibility Modifiers

What are the modifiers available in Java? Any ideas?

• public

• private

• protected

Can you guess what each one of the modifiers does? Any ideas?

L. Tarrataca Objects and Classes 86 / 136

Visibility Modifiers

What are the modifiers available in Java? Any ideas?

• public:

• Classes, methods and attributes can be accessed from other classes;

• private:

• Classes, methods and attributes cannot be accessed from other classes;

• protected:

• Classes, methods and attributes can be accessed from descendant classes;

L. Tarrataca Objects and Classes 87 / 136

Visibility Modifiers

Example

private modifier:

• methods and data fields accessible only from within its own class:

package p1;

public class C1{

public int x ;

int y;

private int z ;

public void m1(){}

void m2(){}

private void m3(){}

}

package p1;

public class C2{

void aMethod(){

C1 o = new C1();

//Can access o.x

//Can access o.y

//Cannot access o.z

//Can invoke o.m1()

//Can invoke o.m2()

//Cannot invoke o.m3()

}

}

package p2;

public class C3{

void aMethod(){

C1 o = new C1();

//Can access o.x

//Cannot access o.y

//Cannot access o.z

//Can invoke o.m1()

//Cannot invoke o.m2()

//Cannot invoke o.m3()

}

}

L. Tarrataca Objects and Classes 88 / 136

Visibility Modifiers

Example

If a class is not defined as public:

• Can be accessed only within the same package;

package p1;

class C1{

...

}

package p1;

public class C2{

// can access C1

}

package p2;

public class C3{

// Cannot access C1

// Can access C2

}

L. Tarrataca Objects and Classes 89 / 136

Visibility Modifiers

Visibility modifier specifies how:

• Attributes / methods in a class can be accessed from outside the class:

• No restriction exists on accessing attributes / methods from inside the class;

• Example:

public class C {

private boolean x;

public static void main(String [] args) {

C c = new C();

System.out. println (c.x) ;

System.out. println (c.convert()) ;

}

private int convert() {

return x ? 1 : −1;

}

}

Listing 1: Correct: Object c of class C can access

its private members;

L. Tarrataca Objects and Classes 90 / 136

Visibility Modifiers

But what about the following code? Any ideas?

public class C {

private boolean x;

public static void main(String [] args) {

C c = new C();

System.out. println (c.x) ;

System.out. println (c.convert()) ;

}

private int convert() {

return x ? 1 : −1;

}

}

Listing 2: Correct: Object c of class C can access

its private members;

public class Test {

public static void main(String [] args) {

C c = new C();

System.out. println (c.x) ;

System.out. println (c.convert()) ;

}

}

Listing 3: Correct/Wrong?

L. Tarrataca Objects and Classes 91 / 136

Visibility Modifiers

But what about the following code? Any ideas?

public class C {

private boolean x;

public static void main(String [] args) {

C c = new C();

System.out. println (c.x) ;

System.out. println (c.convert()) ;

}

private int convert() {

return x ? 1 : −1;

}

}

Listing 4: Correct: Object c of class C can access

its private members;

public class Test {

public static void main(String [] args) {

C c = new C();

System.out. println (c.x) ;

System.out. println (c.convert()) ;

}

}

Listing 5: Wrong: x and convert are private in

class C. Compile error.

L. Tarrataca Objects and Classes 92 / 136

Data Field Encapsulation

Data Field Encapsulation

Recall our previous example: CircleWithStaticMembers

• Attributes radius and numberOfObjects can be modified directly;

Is this a good practice? Any ideas?

L. Tarrataca Objects and Classes 93 / 136

Data Field Encapsulation

Data Field Encapsulation

Recall our previous example: CircleWithStaticMembers

• Attributes radius and numberOfObjects can be modified directly;

Is this a good practice? Any ideas?

Not a good practice, for two reasons:

• Data tampering: attribute may be wrongly set;

• Class becomes difficult to maintain and vulnerable to bugs;

L. Tarrataca Objects and Classes 94 / 136

Data Field Encapsulation

What does it mean: ‘‘Class becomes difficult to maintain and vulnerable

to bugs’’? Any ideas?

L. Tarrataca Objects and Classes 95 / 136

Data Field Encapsulation

What does it mean: ‘‘Class becomes difficult to maintain and vulnerable

to bugs’’? Any ideas?

Suppose we want to modify CircleWithStaticMembers class:

• To ensure that the radius is nonnegative:

• After other programs have already used the class;

• Modifications to be done:

• Update CircleWithStaticMembers;

• Update programs that use class CircleWithStaticMembers:

• These may have modified radius directly (e.g., c1.radius = -5).

Better to have an alternative approach...

L. Tarrataca Objects and Classes 96 / 136

Data Field Encapsulation

To prevent direct modifications of attributes:

• Declare the attributes as private, a.k.a. encapsulation:

• Private attributes cannot be accessed by an object from outside the class;

However, an object often needs to retrieve and modify a data field:

How can we perform such accesses / modifications? Any ideas?

L. Tarrataca Objects and Classes 97 / 136

Data Field Encapsulation

However, an object often needs to retrieve and modify a data field:

How can we perform such accesses / modifications? Any ideas?

To make a private data field accessible:

• Provide a getter method to return its value;

• Getter methods have the following signature:

public returnType getPropertyName()

• If the returnType is boolean, getter is be defined as follows:

public boolean isPropertyName()

L. Tarrataca Objects and Classes 98 / 136

Data Field Encapsulation

However, an object often needs to retrieve and modify a data field:

How can we perform such accesses / modifications? Any ideas?

To enable a private data field to be modified

• Provide a setter method to set a new value;

• Setter methods have the following signature:

public void setPropertyName(dataType propertyValue)

L. Tarrataca Objects and Classes 99 / 136

Data Field Encapsulation

Example

Create a new circle class with:

• Private data-field radius;

• Associated getters and setters;

L. Tarrataca Objects and Classes 100 / 136

Data Field Encapsulation

Create a new circle class (UML + Java) with:

• Private data-field radius;

• Associated getters and setters;

Figure: Circle class encapsulates circle properties and provides getter/setter and and other methods (Source:

[Liang, 2014])

L. Tarrataca Objects and Classes 101 / 136

Data Field Encapsulation

public class CircleWithPrivateDataFields {

/∗∗ The radius of the circle ∗/

private double radius = 1;

/∗∗ The number of objects created ∗/

private static int numberOfObjects = 0;

/∗∗ Construct a circle with radius 1 ∗/

public CircleWithPrivateDataFields () {

numberOfObjects++;

}

/∗∗ Construct a circle with a specified radius ∗/

public CircleWithPrivateDataFields (double newRadius) {

radius = newRadius;

numberOfObjects++;

}

/∗∗ Return radius ∗/

public double getRadius() {

return radius ;

}

...

}

...

/∗∗ Set a new radius ∗/

public void setRadius(double newRadius) {

radius = (newRadius >= 0) ? newRadius : 0;

}

/∗∗ Return numberOfObjects ∗/

public static int getNumberOfObjects() {

return numberOfObjects;

}

/∗∗ Return the area of this circle ∗/

public double getArea() {

return radius ∗ radius ∗ Math.PI;

}

}

L. Tarrataca Objects and Classes 102 / 136

Passing Objects to Methods

Passing Objects to Methods

Objects can be passed to methods:

• I.e. the reference of the object is actually passed;

• Example:

public static void main(String [] args) {

CircleWithPrivateDataFields myCircle = new CircleWithPrivateDataFields(5.0) ;

printCircle (myCircle);

}

public static void printCircle (CircleWithPrivateDataFields c){

System.out. println ("The area of the circle of radius "

+ c.getRadius() + " is " + c.getArea());

}

Java uses pass-by-value:

• Value of myCircle is passed to the printCircle method;

• Value is a reference to a Circle object.

L. Tarrataca Objects and Classes 103 / 136

Passing Objects to Methods

What is the output of the following code?

public class TestPassObject {

public static void main(String [] args) {

CircleWithPrivateDataFields myCircle = new CircleWithPrivateDataFields(1) ;

}

// Print areas for radius 1, 2, 3, 4, and 5.

int n = 5;

printAreas (myCircle, n) ;

// See myCircle.radius and times

System.out. println ("\n" + "Radius is " + myCircle.getRadius()) ;

System.out. println ("n is " + n) ;

/∗∗ Print a table of areas for radius ∗/

public static void printAreas (CircleWithPrivateDataFields c, int times) {

System.out. println ("Radius \t\tArea") ;

while (times >= 1) {

System.out. println (c.getRadius() + "\t\t " + c.getArea());

c.setRadius(c.getRadius() + 1) ;

times−−;

}

}

}

L. Tarrataca Objects and Classes 104 / 136

Passing Objects to Methods

Output:

Radius Area

1.0 3.141592653589793

2.0 12.566370614359172

3.0 29.274333882308138

4.0 50.26548245743669

5.0 79.53981633974483

Radius is 6.0

n is 5

L. Tarrataca Objects and Classes 105 / 136

Array of Objects

Array of Objects

Arrays of objects can also be created, example:

Circle [] circleArray = new Circle[10];

Does this mean that 10 circleArray objects have been created? Any

ideas?

L. Tarrataca Objects and Classes 106 / 136

Array of Objects

Array of Objects

Arrays of objects can also be created, example:

Circle [] circleArray = new Circle[10];

Does this mean that 10 circleArray objects have been created? Any

ideas?

• No....

• Only space in memory for 10 circleArray’s has been created;

So what is missing? Any ideas?

L. Tarrataca Objects and Classes 107 / 136

Array of Objects

So what is missing? Any ideas?

Initialization...

How can the array be initialized then? Any ideas?

L. Tarrataca Objects and Classes 108 / 136

Array of Objects

So what is missing? Any ideas?

Initialization...

How can the array be initialized then? Any ideas?

for (int i = 0; i < circleArray . length; i ++) {

circleArray [i] = new Circle() ;

}

L. Tarrataca Objects and Classes 109 / 136

Array of Objects

Figure: In an array of objects, an element of the array contains a reference to an object. (Source:

[Liang, 2014])

L. Tarrataca Objects and Classes 110 / 136

Immutable Objects and Classes

Immutable Objects and Classes

Normally:

• Objects are created and its contents can later be changed;

However, sometimes it is desirable to:

• Create an object whose contents cannot be changed once:

• The object has been created.

• These are known as immutable objects / classes;

L. Tarrataca Objects and Classes 111 / 136

Immutable Objects and Classes

How can we specify immutable objects / classes? Any ideas?

L. Tarrataca Objects and Classes 112 / 136

Immutable Objects and Classes

How can we specify immutable objects / classes? Any ideas?

If a class is immutable, then:

• All attributes are private;

• Cannot contain public setter methods for any attributes;

However:

• Class with private attributes and no mutators is not necessarily immutable.

Lets see an example...

L. Tarrataca Objects and Classes 113 / 136

Immutable Objects and Classes

Example

public class Student {

private int id ;

private String name;

private java. util .Date dateCreated;

public Student(int ssn , String newName) {

id = ssn ;

name = newName;

dateCreated = new java.util.Date();

}

public int getId() {

return id ;

}

public String getName() {

return name;

}

public java. util .Date getDateCreated() {

return dateCreated;

}

Is this class immutable? Any ideas?

L. Tarrataca Objects and Classes 114 / 136

Immutable Objects and Classes

Is this class immutable? Any ideas?

No...:

• Attribute dateCreated is returned using the getDateCreated();

• This is a reference to a Date object:

• Through this reference, the content for dateCreated can be changed.

public class Test {

public static void main(String [] args) {

Student student = new Student(111223333, "John");

java. util .Date dateCreated = student.getDateCreated();

dateCreated.setTime(200000); // Now dateCreated field is changed!

}

}

L. Tarrataca Objects and Classes 115 / 136

Immutable Objects and Classes

So then what are the requirements for an immutable object / class? Any

ideas?

L. Tarrataca Objects and Classes 116 / 136

Immutable Objects and Classes

So then what are the requirements for an immutable object / class? Any

ideas?

• All data fields must be private;

• There can’t be any setter methods;

• No getter methods can return a reference to a mutable attribute;

L. Tarrataca Objects and Classes 117 / 136

Scope of Variables

Scope of Variables

Lets start with something basic:

What is a local variable? Any ideas?

L. Tarrataca Objects and Classes 118 / 136

Scope of Variables

Scope of Variables

Lets start with something basic:

What is a local variable? Any ideas?

• Local variables are declared and used inside a method locally.

But what about the scope of variable within a class?

Lets have a look into the scope rules of all the variables of a class...

L. Tarrataca Objects and Classes 119 / 136

Scope of Variables

Instance and static variables in a class are referred to as:

• Class’s variables or attributes;

A variable defined inside a method is referred to as:

• Local variable.

L. Tarrataca Objects and Classes 120 / 136

Scope of Variables

What is the scope of a class variable? Any ideas?

L. Tarrataca Objects and Classes 121 / 136

Scope of Variables

What is the scope of a class variable? Any ideas?

• Entire class: regardless of where the variables are declared;

• Class’s variables and methods can appear in any order in the class:

• Exception: when attribute is initialized based on another attribute;

public class Circle {

public double findArea() {

return radius ∗ radius ∗ Math.PI;

}

private double radius = 1;

}

Listing 6: The variable radius and method

findArea() can be declared in any order.

public class F {

private int i ;

private int j = i + 1;

}

Listing 7: i has to be declared before j because

j’s initial value is dependent on i.

• Convention: declares attributes at the beginning of the class.

L. Tarrataca Objects and Classes 122 / 136

Scope of Variables

What about local variables? Any ideas?

L. Tarrataca Objects and Classes 123 / 136

Scope of Variables

What about local variables? Any ideas?

If a local variable has the same name as a class’s variable:

• Local variable takes precedence and:

• Class’s variable with the same name is hidden

Lets look at an example...

L. Tarrataca Objects and Classes 124 / 136

Scope of Variables

Example (1/3)

public class F {

private int x = 0; // Instance variable

private int y = 0;

public F() { }

public void p() {

int x = 1; // Local variable

System.out. println ("x = " + x) ;

System.out. println ("y = " + y) ;

}

}

What is the output for f.p(), where f is an instance of F? Any ideas?

L. Tarrataca Objects and Classes 125 / 136

Scope of Variables

Example (2/3)

What is the output for f.p(), where f is an instance of F? Any ideas?

Output for f.p() is 1 for x and 0 for y. Here is why:

• x:

• Declared as a attribute with initial value of 0;

• Also declared in the method p() with an initial value of 1;

• Local variable takes precedence over class variable;

• Therefore x = 1;

L. Tarrataca Objects and Classes 126 / 136

Scope of Variables

Example (3/3)

What is the output for f.p(), where f is an instance of F? Any ideas?

Output for f.p() is 1 for x and 0 for y. Here is why:

• y:

• Declared outside the method p(), but y is accessible inside the method;

• Therefore y = 0;

L. Tarrataca Objects and Classes 127 / 136

The this Reference

The this Reference

this keyword:

• Sometimes: useful for an object to refer to itself:

• Can be used to reference the object’s instance members

Lets see an example:

public class Circle { private double radius;

...

public double getArea() {

return this . radius ∗ this . radius ∗ Math.PI; }

public String toString () {

return " radius : " + this . radius

+ "area: " + this .getArea() ; }

}

Listing 8: Equivalent to the code on the right.

public class Circle { private double radius;

...

public double getArea() {

return radius ∗ radius ∗ Math.PI; }

public String toString () {

return " radius : " + radius

+ "area: " + getArea() ; }

}

Listing 9: Equivalent to the code on the left.

L. Tarrataca Objects and Classes 128 / 136

The this Reference

However: this keyword is needed to:

• Reference hidden data fields or

• Invoke an overloaded constructor.

How can we then use this to reference hidden data fields? Any ideas?

How can we then use this to invoke a constructor? Any ideas?

Lets have a look at each one of these questions

L. Tarrataca Objects and Classes 129 / 136

The this Reference Using this to Reference Hidden Data Fields

Using this to Reference Hidden Data Fields

How can we then use this to reference hidden data fields? Any ideas?

• this keyword can be used to reference a class’s hidden data fields.

Is the following code correct? Any ideas?

public class F {

private int i = 5;

private static double k = 0;

public void setI (int i) {

i = i ;

}

public static void setK(double k) { F .k = k ; }

// Other methods omitted

}

L. Tarrataca Objects and Classes 130 / 136

The this Reference Using this to Reference Hidden Data Fields

Example

public class F {

private int i = 5;

private static double k = 0;

public void setI (int i) {

i = i ;

}

public static void setK(double k) { F .k = k ; }

// Other methods omitted

}

Suppose that f1 and f2 are two objects of F. What does this refer to?:

• When f1.setI(10) is executed?

• When f2.setI(45) is executed?

• When F.setK(33) is executed?

L. Tarrataca Objects and Classes 131 / 136

The this Reference Using this to Reference Hidden Data Fields

Example

public class F {

private int i = 5;

private static double k = 0;

public void setI (int i) {

i = i ;

}

public static void setK(double k) { F .k = k ; }

// Other methods omitted

}

Suppose that f1 and f2 are two objects of F. What does this refer to?:

• When f1.setI(10) is executed?

• this.i = 10, where this refers f1

• When f2.setI(45) is executed?

• this.i = 45, where this refers f2

• When F.setK(33) is executed?

• F.k = 33. setK is a static method

L. Tarrataca Objects and Classes 132 / 136

The this Reference Using this to Reference Hidden Data Fields

From the previous example:

• Attribute name is used as the parameter in a setter for the data-field;

• In this case: data-field is hidden in the setter method:

• Need to reference the hidden data-field name in the method...

• ...in order to set a new value to it

L. Tarrataca Objects and Classes 133 / 136

The this Reference Using this to Invoke a Constructor

Using this to Invoke a Constructor

How can we then use this to invoke a constructor? Any ideas?

L. Tarrataca Objects and Classes 134 / 136

The this Reference Using this to Invoke a Constructor

Using this to Invoke a Constructor

How can we then use this to invoke a constructor? Any ideas?

By following exactly the previous logic:

public class Circle {

private double radius;

// The this keyword is used to reference the

// hidden data field radius of the object being constructed

public Circle(double radius) {

this . radius = radius ;

}

// The this keyword is used to invoke another constructor .

public Circle () {

this (1.0) ;

}

...

}

Line this(1.0) in 2nd constructor invokes 1st constructor with a double

L. Tarrataca Objects and Classes 135 / 136

The this Reference Using this to Invoke a Constructor

Important note: Java requires that the

• this(arg-list) statement appear 1st in the constructor:

• before any other executable statements.

L. Tarrataca Objects and Classes 136 / 136

References

References I

Liang, Y. (2014).

Introduction to Java Programming.

Pearson Education.

L. Tarrataca Objects and Classes 137 / 136

	Defining Classes for Objects
	Object
	State
	Behaviour
	Class
	Unified Modeling Language

	Creating Objects
	Constructing Objects Using Constructors
	Accessing objects via Reference Variable
	Reference variables and reference types
	Accessing an Object’s Data and Methods
	Reference Data Fields and the null value
	Differences between Variables of Primitive Types and Reference Types

	Static Variables, Constants and Methods
	Visibility Modifiers
	Data Field Encapsulation
	Passing Objects to Methods
	Array of Objects
	Immutable Objects and Classes
	Scope of Variables
	The this Reference
	Using this to Reference Hidden Data Fields
	Using this to Invoke a Constructor

	References

