
Inheritance and Polymorphism

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

L. Tarrataca Inheritance and Polymorphism 1 / 72

luis.tarrataca@gmail.com

1 Introduction

2 Superclasses and Subclasses

3 Using the super Keyword

Calling Superclass Constructors

Constructor Chaining

Calling Superclass Methods

L. Tarrataca Inheritance and Polymorphism 2 / 72

4 Overriding Methods

5 Overriding vs. Overloading

6 Where to focus your study

L. Tarrataca Inheritance and Polymorphism 3 / 72

Introduction

Introduction

What did the previous chapter talked about? Any ideas?

L. Tarrataca Inheritance and Polymorphism 4 / 72

Introduction

What did the previous chapter talked about? Any ideas?

• Apply class abstraction to develop software;

• Explore 6=’s between procedural and OO paradigm;

• Express relationships between classes;

• Design programs using the object-oriented paradigm

L. Tarrataca Inheritance and Polymorphism 5 / 72

Introduction

What will this chapter discuss? Any ideas?

L. Tarrataca Inheritance and Polymorphism 6 / 72

Introduction

What will this chapter discuss? Any ideas?

Several concepts (1/3):

• How to define a subclass from a superclass through inheritance;

• How to invoke superclass’s constructors and methods;

• How to override instance methods in the subclass;

• How to distinguish differences between overriding and overloading;

L. Tarrataca Inheritance and Polymorphism 7 / 72

Introduction

What will this chapter discuss? Any ideas?

Several concepts (2/3):

• Explore the toString() method in the Object class;

• Discover polymorphism and dynamic binding;

• Describe casting and explain why explicit downcasting is necessary;

• Explore the equals method in the Object class;

L. Tarrataca Inheritance and Polymorphism 8 / 72

Introduction

What will this chapter discuss? Any ideas?

Several concepts (3/3):

• Enable data / methods in a superclass from subclasses:

• Protected visibility modifier;

• Prevent class extending and method overriding using the final modifier;

L. Tarrataca Inheritance and Polymorphism 9 / 72

Introduction

Lets start with a simple question:

What are the 6=’s between procedural and OO programming paradigms?

Any ideas?

L. Tarrataca Inheritance and Polymorphism 10 / 72

Introduction

Lets start with a simple question:

What are the 6=’s between procedural and OO programming paradigms?

Any ideas?

Procedural paradigm focus:

• Designing methods;

OO paradigm focus:

• Combines the power of the procedural paradigm:

• Whilst integrating data with operations into objects.

• Software reutilization;

L. Tarrataca Inheritance and Polymorphism 11 / 72

Introduction

Lets focus on the latter one:

Today we will see a concept that allows for software reutilization? Any

ideas?

L. Tarrataca Inheritance and Polymorphism 12 / 72

Introduction

Lets focus on the latter one:

Today we will see a concept that allows for software reutilization? Any

ideas?

Inheritance:

• Allows you to define new classes from existing classes;

• E.g. consider classes: circles, rectangles, and triangles.

• Classes have many common features;

• Best way to design these classes? Avoid redundancy?:

• Inheritance;

L. Tarrataca Inheritance and Polymorphism 13 / 72

Superclasses and Subclasses

Superclasses and Subclasses

Recall that:

• Classes are use to model objects of the same type;

However:

• 6= classes may have some common properties / behaviours:

What can we do with the common properties / behaviours? Any ideas?

L. Tarrataca Inheritance and Polymorphism 14 / 72

Superclasses and Subclasses

What can we do with the common properties / behaviours? Any ideas?

Define a generalized class:

• That can be shared by other classes;

Define specialized class:

• Extending generalized class;

• Specialized classes inherit properties / methods from general class;

Lets see more with an example

L. Tarrataca Inheritance and Polymorphism 15 / 72

Superclasses and Subclasses

Example

Suppose you want to design classes such as circles and rectangles.

• These can be seen as geometric objects:

• They share common attributes:

• Color;

• Filled;

• They share common methods:

• Corresponding setter / getter methods;

How can we model this situation? Any ideas?

L. Tarrataca Inheritance and Polymorphism 16 / 72

Superclasses and Subclasses

How can we model this situation? Any ideas?

Create general class GeometricObject:

• Used to model all geometric objects

• Contains attributes color and fill:

• And appropriate getter and setter methods;

• Assume that class also contains dateCreated property;

• Add a toString() method:

• String representation of the object;

L. Tarrataca Inheritance and Polymorphism 17 / 72

Superclasses and Subclasses

How can we represent class GeometricObject through UML? Any ideas?

L. Tarrataca Inheritance and Polymorphism 18 / 72

Superclasses and Subclasses

How can we represent class GeometricObject through UML? Any ideas?

Figure: The GeometricObject class.(Source: [Liang, 2014])

L. Tarrataca Inheritance and Polymorphism 19 / 72

Superclasses and Subclasses

How can we represent class Circle / Rectangle through UML? Any ideas?

L. Tarrataca Inheritance and Polymorphism 20 / 72

Superclasses and Subclasses

How can we represent class Circle / Rectangle through UML? Any ideas?

• Define Circle class extending GeometricObject class:

• Triangular arrow pointing to the superclass:

• Represents inheritance relationship;

L. Tarrataca Inheritance and Polymorphism 21 / 72

Superclasses and Subclasses

Terminology:

• Consider two classes: C1 extends / inherits from C2

• C1 is called a subclass or child class

• C2 is called a superclass or parent class

L. Tarrataca Inheritance and Polymorphism 22 / 72

Superclasses and Subclasses

Ok, but in practice what does inheritance mean? Any ideas?

L. Tarrataca Inheritance and Polymorphism 23 / 72

Superclasses and Subclasses

Ok, but in practice what does inheritance mean? Any ideas?

Subclass:

• Inherits accessible attributes / methods from superclass;

• May add new data fields / methods.

L. Tarrataca Inheritance and Polymorphism 24 / 72

Superclasses and Subclasses

Circle class:

• Inherits accessible attributes / methods from GeometricObject class;

• Adds new data field: radius

• And associated getter and setter methods;

• Adds methods:

• getArea() - returns area;

• getPerimeter() - returns perimeter;

• getDiameter() - returns diameter;

L. Tarrataca Inheritance and Polymorphism 25 / 72

Superclasses and Subclasses

Rectangle class:

• Inherits accessible attributes / methods from GeometricObject class;

• Adds new data fields: width and height

• And associated getter and setter methods;

• Adds methods:

• getArea() - returns area;

• getPerimeter() - returns perimeter;

L. Tarrataca Inheritance and Polymorphism 26 / 72

Superclasses and Subclasses

Figure: The GeometricObject class is the superclass for Circle and Rectangle. (Source: [Liang, 2014])

L. Tarrataca Inheritance and Polymorphism 27 / 72

Superclasses and Subclasses

How is inheritance be implemented in Java? Any ideas?

L. Tarrataca Inheritance and Polymorphism 28 / 72

Superclasses and Subclasses

How is inheritance be implemented in Java? Any ideas?

Using the following syntax:

Figure: (Source: [Liang, 2014])

L. Tarrataca Inheritance and Polymorphism 29 / 72

Superclasses and Subclasses

public class GeometricObject {

private String color = "white" ;

private boolean filled ;

private java. util .Date dateCreated;

/∗∗ Construct a default geometric object ∗/

public SimpleGeometricObject() {

dateCreated = new java.util.Date();

}

/∗∗ Construct a geometric object with the specified color and filled value ∗/

public SimpleGeometricObject(String color, boolean filled) {

dateCreated = new java.util.Date();

this . color = color ;

this . filled = filled ;

}

/∗∗ Return color ∗/

public String getColor() { return color ; }

/∗∗ Set a new color ∗/

public void setColor(String color) { this .color = color ; }

/∗∗ Return filled . Since filled is boolean,

its getter method is named isFilled ∗/

public boolean isFilled () { return filled ; }

/∗∗ Set a new filled ∗/

public void setFilled (boolean filled) { this . filled = filled ;}

/∗∗ Get dateCreated ∗/

public java. util .Date getDateCreated() { return dateCreated; }

/∗∗ Return a string representation of this object ∗/

public String toString () { return "created on " + dateCreated + "\ncolor: " + color + " and filled : " + filled ; }

}

L. Tarrataca Inheritance and Polymorphism 30 / 72

Superclasses and Subclasses

public class Circle extends GeometricObject{

private double radius;

public CircleFromSimpleGeometricObject() {}

public CircleFromSimpleGeometricObject(double radius) { this.radius = radius ; }

public CircleFromSimpleGeometricObject(double radius, String color, boolean filled) {

this . radius = radius ;

setColor(color) ;

setFilled (filled) ;

}

/∗∗ Return radius ∗/

public double getRadius() { return radius ; }

/∗∗ Set a new radius ∗/

public void setRadius(double radius) { this . radius = radius ; }

/∗∗ Return area ∗/

public double getArea() { return radius ∗ radius ∗ Math.PI;}

/∗∗ Return diameter ∗/

public double getDiameter() { return 2 ∗ radius ; }

/∗∗ Return perimeter ∗/

public double getPerimeter() { return 2 ∗ radius ∗ Math.PI; }

/∗∗ Print the circle info ∗/

public void printCircle () { System.out. println ("The circle is created " + getDateCreated() + " and the radius is " + radius) ; }

}

L. Tarrataca Inheritance and Polymorphism 31 / 72

Superclasses and Subclasses

Important point:

• Overloaded constructor Circle(double radius, String color, boolean filled):

• Implemented by invoking setColor / setFilled methods:

• Public methods defined in superclass GeometricObject

L. Tarrataca Inheritance and Polymorphism 32 / 72

Superclasses and Subclasses

From the previous slide:

Could the constructor change the attributes from the superclass directly?

Any ideas?

Would the following code be correct? Any ideas?

public CircleFromSimpleGeometricObject(double radius, String color, boolean

filled) {

this . radius = radius ;

this .color = color ;

this . filled = filled ;

}

L. Tarrataca Inheritance and Polymorphism 33 / 72

Superclasses and Subclasses

Would the following code be correct? Any ideas?

public CircleFromSimpleGeometricObject(double radius, String color, boolean

filled) {

this . radius = radius ;

this .color = color ;

this . filled = filled ;

}

Wrong: Color and filled are private attributes:

• Cannot be accessed in any class other than in the GeometricObject;

• Only way to read / write color and filled is through getter / setter methods.

L. Tarrataca Inheritance and Polymorphism 34 / 72

Superclasses and Subclasses

public class Rectangle extends GeometricObject {

private double width;

private double height;

public RectangleFromSimpleGeometricObject() {}

public RectangleFromSimpleGeometricObject(double width, double height) {

this .width = width;

this .height = height;

}

public RectangleFromSimpleGeometricObject(double width, double height, String color, boolean filled) {

this .width = width;

this .height = height;

setColor(color) ;

setFilled (filled) ;

}

/∗∗ Return width ∗/

public double getWidth() { return width; }

/∗∗ Set a new width ∗/

public void setWidth(double width) { this .width = width; }

/∗∗ Return height ∗/

public double getHeight() { return height; }

/∗∗ Set a new height ∗/

public void setHeight(double height) { this .height = height; }

/∗∗ Return area ∗/

public double getArea() { return width ∗ height; }

/∗∗ Return perimeter ∗/

public double getPerimeter() { return 2 ∗ (width + height) ; }

}

L. Tarrataca Inheritance and Polymorphism 35 / 72

Superclasses and Subclasses

Important points regarding inheritance (1/2):

• Subclass is not a subset of its superclass:

• Usually contains more information / methods than superclass;

• Private superclass attributes are not accessible outside the class:

• Only accessible through superclass public setters / getters;

L. Tarrataca Inheritance and Polymorphism 36 / 72

Superclasses and Subclasses

Important points regarding inheritance (2/2):

• Inheritance is used to model the is-a relationship:

• Subclass and superclass must have the is-a relationship;

• Java class may inherit directly from only one superclass:

• A.k.a single inheritance;

• Other programming languages allow:

• Subclass to be derived from several classes.

L. Tarrataca Inheritance and Polymorphism 37 / 72

Using the super Keyword

Using the super Keyword

Subclass inherits accessible attributes / methods from superclass:

But does the subclass inherit the superclass constructors? Any ideas?

Can the superclass’s constructors be invoked from a subclass? Any ideas?

L. Tarrataca Inheritance and Polymorphism 38 / 72

Using the super Keyword

Using the super Keyword

Subclass inherits accessible attributes / methods from superclass:

But does the subclass inherit the superclass constructors? Any ideas?

No, superclass constructors are not inherited...

Can the superclass’s constructors be invoked from a subclass? Any ideas?

Yes, through the super keyword...

L. Tarrataca Inheritance and Polymorphism 39 / 72

Using the super Keyword

super keyword:

• Refers to the superclass of the class;

• Can be used in two ways:

• Call a superclass constructor;

• Call a superclass method;

L. Tarrataca Inheritance and Polymorphism 40 / 72

Using the super Keyword Calling Superclass Constructors

Calling Superclass Constructors

Unlike attributes / methods:

• Superclass constructors are not inherited by a subclass;

However, superclass constructors:

• Can be invoked from subclasses using super keyword:

• Statement super() invokes:

• No-argument superclass constructor;

• Statement super(arguments) invokes:

• Superclass constructor that matches arguments;

L. Tarrataca Inheritance and Polymorphism 41 / 72

Using the super Keyword Calling Superclass Constructors

How can we adapt previous Circle constructors to use super? Any ideas?

public class Circle extends GeometricObject{

private double radius;

...

public CircleFromSimpleGeometricObject(double radius, String color, boolean

filled) {

this . radius = radius ;

setColor(color) ;

setFilled (filled) ;

}

...

}

L. Tarrataca Inheritance and Polymorphism 42 / 72

Using the super Keyword Calling Superclass Constructors

How can we adapt previous Circle constructors to use super? Any ideas?

public class Circle extends GeometricObject{

private double radius;

...

public CircleFromSimpleGeometricObject(double radius,

String color, boolean filled) {

this . radius = radius ;

setColor(color) ;

setFilled (filled) ;

}

...

}

public class Circle extends GeometricObject{

private double radius;

...

public CircleFromSimpleGeometricObject(double radius,

String color, boolean filled) {

super(color , filled)

this . radius = radius ;

}

...

}

Important:

• super call must be 1st statement in the constructor;

• Invoking superclass constructor name in subclass causes a syntax error.

L. Tarrataca Inheritance and Polymorphism 43 / 72

Using the super Keyword Constructor Chaining

Constructor Chaining

If superclass constructor is not invoked explicitly:

• Compiler automatically puts super() as the first statement in the constructor

L. Tarrataca Inheritance and Polymorphism 44 / 72

Using the super Keyword Constructor Chaining

When constructing an object of a subclass:

• Subclass constructor first invokes its superclass constructor;

• Superclass constructor invokes its parent-class constructor;

• ...

• Process continues until last constructor in inheritance chain is called

L. Tarrataca Inheritance and Polymorphism 45 / 72

Using the super Keyword Constructor Chaining

Conclusion: constructing an instance of a class invokes:

• Constructors of all the superclasses along the inheritance chain.

This is called constructor chaining.

L. Tarrataca Inheritance and Polymorphism 46 / 72

Using the super Keyword Constructor Chaining

What is the output of the following code? Any ideas?

public class Faculty extends Employee {

public static void main(String [] args) {

new Faculty();

}

public Faculty () {

System.out. println (" (4) Performs Faculty’ s tasks ") ;

}

}

class Employee extends Person {

public Employee(){

this (" (2) Invoke Employee’s overloaded constructor");

System.out. println (" (3) Performs Employee’s tasks ") ;

}

public Employee(String s) {

System.out. println (s) ;

}

}

class Person{

public Person() {

System.out. println (" (1) Performs Person’s tasks ") ;

}

}

L. Tarrataca Inheritance and Polymorphism 47 / 72

Using the super Keyword Constructor Chaining

What is the output of the following code? Any ideas?

(1) Performs Person’s tasks

(2) Invoke Employee’s overloaded constructor

(3) Performs Employee’s tasks

(4) Performs Faculty ’ s tasks

Why does the program produces the previous output? Any ideas?

L. Tarrataca Inheritance and Polymorphism 48 / 72

Using the super Keyword Constructor Chaining

Why does the program produces the previous output? Any ideas?

1 new Faculty() invokes Faculty’s no-arg constructor;

2 Faculty is a subclass of Employee

• Employee’s no-arg constructor is invoked;

3 Employee is a subclass of Person:

• Person’s no-arg constructor is invoked before any statements

L. Tarrataca Inheritance and Polymorphism 49 / 72

Using the super Keyword Constructor Chaining

Why does the program produces the previous output? Any ideas?

1 new Faculty() invokes Faculty’s no-arg constructor;

2 Faculty is a subclass of Employee

• Employee’s no-arg constructor is invoked;

3 Employee is a subclass of Person:

• Person’s no-arg constructor is invoked before any statements

Figure: (Source: [Liang, 2014])

L. Tarrataca Inheritance and Polymorphism 50 / 72

Using the super Keyword Constructor Chaining

Example

What about the following code? Any ideas?

public class Apple extends Fruit {

}

class Fruit {

public Fruit (String name) {

System.out. println (" Fruit ’ s constructor is invoked") ;

}

}

L. Tarrataca Inheritance and Polymorphism 51 / 72

Using the super Keyword Constructor Chaining

Example

What about the following code? Any ideas?

public class Apple extends Fruit {

}

class Fruit {

public Fruit (String name) {

System.out. println (" Fruit ’ s constructor is invoked") ;

}

}

No constructor is explicitly defined in Apple:

• Apple’s default no-arg constructor is defined implicitly;

• Since Apple is a subclass of Fruit:

• Apple’s default constructor automatically invokes Fruit’s no-arg constructor:

• Fruit does not have a no-arg constructor;

• Therefore, the program cannot be compiled.

L. Tarrataca Inheritance and Polymorphism 52 / 72

Using the super Keyword Constructor Chaining

What can be done to solve the previous problem? Any ideas?

Design tip:

• If possible, provide a no-arg constructor for every class:

• Makes class easy to extend and avoids errors.

L. Tarrataca Inheritance and Polymorphism 53 / 72

Using the super Keyword Calling Superclass Methods

Calling Superclass Methods

If super keyword is used to represent the superclass:

How can we access the superclass methods? Any ideas?

L. Tarrataca Inheritance and Polymorphism 54 / 72

Using the super Keyword Calling Superclass Methods

Calling Superclass Methods

If super keyword is used to represent the superclass:

How can we access the superclass methods? Any ideas?

Through the syntax:

super.method(parameters);

L. Tarrataca Inheritance and Polymorphism 55 / 72

Using the super Keyword Calling Superclass Methods

printCircle() method (Slide 31) could be rewritten:

public void printCircle () {

System.out. println ("The circle is created " +

super.getDateCreated() + " and the radius is " + radius) ;

}

However, in this case, this is not necessary:

• getDateCreated is a method in the GeometricObject class:

• Inherited by the Circle class.

However, in some cases:

• super keyword is necessary;

L. Tarrataca Inheritance and Polymorphism 56 / 72

Overriding Methods

Overriding Methods

What is the concept of method overriding? Any ideas?

L. Tarrataca Inheritance and Polymorphism 57 / 72

Overriding Methods

Overriding Methods

What is the concept of method overriding? Any ideas?

Method Overriding:

• Subclass provides implementation for inherited superclass method(s);

• Do not confuse with previously seen method overloading:

• ‘‘Sobrecarga’’ in Portuguese =P

Lets see an example =)

L. Tarrataca Inheritance and Polymorphism 58 / 72

Overriding Methods

toString() method in GeometricObject class (Slide 30):

• returns the string representation of a geometric object.

Idea: have toString method specific to Circle class:

How can we define a toString method specific to Circle class? Any ideas?

L. Tarrataca Inheritance and Polymorphism 59 / 72

Overriding Methods

How can we define a toString method specific to Circle class? Any ideas?

Simple: Redefine the method in the subclass:

public class CircleFromSimpleGeometricObject extends SimpleGeometricObject {

// Override the toString method defined in the superclass

public String toString () {

return super. toString () + "\nradius is " + radius ;

}

}

L. Tarrataca Inheritance and Polymorphism 60 / 72

Overriding Methods

Important points (1/2):

• Instance method can be overridden only if it is accessible:

• Private method cannot be overridden:

• Not accessible outside its own class

• If a method defined in a subclass is private in its superclass:

• Two methods are completely unrelated.

L. Tarrataca Inheritance and Polymorphism 61 / 72

Overriding Methods

Important points (2/2):

• Static methods can be inherited:

• However, they cannot be overridden;

• If a static method defined in the superclass is redefined in a subclass

• Method defined in the superclass is hidden

• Hidden static methods can be invoked: SuperClassName.staticMethodName

L. Tarrataca Inheritance and Polymorphism 62 / 72

Overriding vs. Overloading

Overriding vs. Overloading

What is the 6= between Overloading and Overriding? Any ideas?

L. Tarrataca Inheritance and Polymorphism 63 / 72

Overriding vs. Overloading

Overriding vs. Overloading

What is the 6= between Overloading and Overriding? Any ideas?

Overloading methods:

• Define multiple methods with the same name but different signatures.

Overriding methods:

• Provide a new implementation for a method in the subclass;

L. Tarrataca Inheritance and Polymorphism 64 / 72

Overriding vs. Overloading

Example

What is the 6= between these two codes? Any ideas?

public class Test {

public static void main(String [] args) {

A a = new A();

a.p(10);

a.p(10.0) ;

}

}

class B {

public void p(double i) {

System.out. println (i ∗ 2);

}

}

class A extends B {

// This method overrides the method in B

public void p(double i) {

System.out. println (i) ;

}

}

Listing 1: Overriding

public class Test {

public static void main(String [] args) {

A a = new A();

a.p(10);

a.p(10.0) ;

}

}

class B {

public void p(double i) {

System.out. println (i ∗ 2);

}

}

class A extends B {

// This method overloads the method in B

public void p(int i) {

System.out. println (i) ;

}

}

Listing 2: Overloading

L. Tarrataca Inheritance and Polymorphism 65 / 72

Overriding vs. Overloading

Test class in overriding example:

• a.p(10) and a.p(10.0) invoke p(double i) method defined in class A:

• Displays 10

Test class in overloading example:

• a.p(10) invokes p(int i) method defined in class A:

• Displays 10

• a.p(10.0) invokes p(double i) method defined in class B:

• Displays 20

L. Tarrataca Inheritance and Polymorphism 66 / 72

Overriding vs. Overloading

Overridden methods:

• Are in different classes related by inheritance;

Overloaded methods:

• Can be either in the same class or different classes related by inheritance.;

L. Tarrataca Inheritance and Polymorphism 67 / 72

Overriding vs. Overloading

To avoid mistakes:

• Use Java special override annotation syntax:

• Place @Override before the method in the subclass

public class CircleFromSimpleGeometricObject extends SimpleGeometricObject {

...

?@Override

public String toString () {

?return super. toString () + ‘‘\nradius is ’ ’ + radius ;

}

}

L. Tarrataca Inheritance and Polymorphism 68 / 72

Where to focus your study

Where to focus your study

After this class you should be able to (1/3):

• How to define a subclass from a superclass through inheritance;

• How to invoke superclass’s constructors and methods;

• How to override instance methods in the subclass;

• How to distinguish differences between overriding and overloading;

L. Tarrataca Inheritance and Polymorphism 69 / 72

Where to focus your study

Where to focus your study

After this class you should be able to (2/3):

• Explore the toString() method in the Object class;

• Discover polymorphism and dynamic binding;

• Describe casting and explain why explicit downcasting is necessary;

• Explore the equals method in the Object class;

L. Tarrataca Inheritance and Polymorphism 70 / 72

Where to focus your study

Where to focus your study

After this class you should be able to (3/3):

• Enable data / methods in a superclass from subclasses:

• Protected visibility modifier;

• Prevent class extending and method overriding using the final modifier;

L. Tarrataca Inheritance and Polymorphism 71 / 72

References

References I

Liang, Y. (2014).

Introduction to Java Programming.

Pearson Education.

L. Tarrataca Inheritance and Polymorphism 72 / 72

	Introduction
	Superclasses and Subclasses
	Using the super Keyword
	Calling Superclass Constructors
	Constructor Chaining
	Calling Superclass Methods

	Overriding Methods
	Overriding vs. Overloading
	Where to focus your study
	References

