Inheritance and Polymorphism

Luis Tarrataca
luis.tarratacalgmail.com

CEFET-RJ

luis.tarrataca@gmail.com

© Introduction

® Superclasses and Subclasses

©® Using the super Keyword
Calling Superclass Constructors
Constructor Chaining

Calling Superclass Methods

@ Overriding Methods

© Overriding vs. Overloading

O Where to focus your study

- mirodueton |
Infroduction

What did the previous chapter talked about? Any ideas? '

What did the previous chapter talked about? Any ideas? '

o Apply class abstraction to develop software;
o Explore #’s between procedural and OO paradigm;
o Express relationships between classes;

e Design programs using the object-oriented paradigm

What will this chapter discuss? Any ideas? '

What will this chapter discuss? Any ideas? '

Several concepts (1/3):
e How to define a subclass from a superclass through inheritance;
e How to invoke superclass’s constructors and methods;
e How to override instance methods in the subclass;

e How to distinguish differences between overriding and overloading;

What will this chapter discuss? Any ideas? '

Several concepts (2/3):

Explore the toString() method in the Object class;

Discover polymorphismn and dynamic binding:

Describe casting and explain why explicit downcasting is necessary;

Explore the equals method in the Object class;

What will this chapter discuss? Any ideas? '

Several concepts (3/3):
e Enable data / methods in a superclass from subclasses:

e Protected visibility modifier;

e Prevent class extending and method overriding using the final modifier;

Lets start with a simple question:

What are the #’s between procedural and OO programming paradigms?

Any ideas?

Lets start with a simple question:

What are the s between procedural and OO programming paradigms?

Any ideas?

Procedural paradigm focus:
e Designing methods;
OO paradigm focus:

o Combines the power of the procedural paradigm:

e Whilst infegrating data with operations intfo objects.

e Software reutilization;

Lets focus on the latter one:

Today we will see a concept that allows for software reutilization? Any

ideas?

Lets focus on the latter one:

Today we will see a concept that allows for software reutilization? Any

ideas?

Inheritance:
o Allows you to define new classes from existing classes;
e E.g. consider classes: circles, rectangles, and friangles.
o Classes have many common features;

o Best way to design these classes? Avoid redundancy?:

® |nheritance;

Superclasses and Subclasses

Superclasses and Subclasses

Recall that:
e Classes are use to model objects of the same type;
However:

o = classes may have some common properties / behaviours:

What can we do with the common properties / behaviours? Any ideas? '

Superclasses and Subclasses

What can we do with the common properties / behaviours? Any ideas? '

Define a generalized class:

e That can be shared by other classes;
Define specialized class:
e Extending generalized class;
e Specialized classes inherit properties / methods from general class;

Lets see more with an example

Superclasses and Subclasses

Suppose you want to design classes such as circles and rectangles.

o These can be seen as geometric objects:
e They share common attributes:
e Color;
® Filled;
e They share common methods:

e Corresponding sefter / getter methods;

How can we model this situation? Any ideas?

Superclasses and Subclasses

How can we model this situation? Any ideas? '

Create general class GeometricObject:

e Used to model all geometric objects

o Contains attributes color and fill:

e And appropriate getter and setter methods;
e Assume that class also contains dateCreated property:;

° Add a toString() method:

o String representation of the object;

Superclasses and Subclasses

How can we represent class GeometricObject through UML? Any ideas?

Superclasses and Subclasses

How can we represent class GeometricObject through UML? Any ideas?

-color: String
-filled: boolean
-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,
filled: boolean)
+getColor(): String

+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

The color of the object (default: white).
Indicates whether the object is filled with a color (default: false).
The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled
values.
Returns the color.

Sets a new color.

Returns the fi17led property.

Sets a new fi17ed property.

Returns the dateCreated.

Returns a string representation of this object.

Figure: The GeometricObject class.(Source: (Liang, 2014))

Superclasses and Subclasses

How can we represent class Circle / Rectangle through UML? Any ideas?

Superclasses and Subclasses

How can we represent class Circle / Rectangle through UML? Any ideas? '

o Define Circle class extending GeometricObject class:

e Triangular arrow pointing to the superclass:

e Represents inheritance relationship;

Superclasses and Subclasses

Terminology:
e Consider two classes: C1 extends / inherits from C2
e Clis called a subclass or child class

e C2is called a superclass or parent class

Superclasses and Subclasses

Ok, but in practice what does inheritance mean? Any ideas?

Superclasses and Subclasses

Ok, but in practice what does inheritance mean? Any ideas? '

Subclass:
o Inherits accessible attributes / methods from superclass;

o May add new data fields / methods.

Superclasses and Subclasses

Circle class:
o Inherits accessible attributes / methods from GeometricObject class;
e Adds new data field: radius
e And associated getter and setter methods;
e Adds methods:
o getArea() - returns areq;
o getPerimeter() - returns perimeter;

o getDiameter() - returns diameter;

Superclasses and Subclasses

Rectangle class:
o Inherits accessible attributes / methods from GeometricObject class;
e Adds new data fields: width and height
o And associated getter and setter methods;
e Adds methods:
e getArea(- returns areq;

o getPerimeter(- returns perimeter;

Superclasses and Subclasses

-color: String The color of the object (default: white).
-filled: boolean Indicates whether the object is filled with a color (default: false).
-dateCreated: java.util.Date The date when the object was created.
+GeometricObject() Creates a GeometricObject.
+GeometricObject(color: String, Creates a Geomet ricObject with the specified color and filled
filled: boolean) values.
+getolor(): String Returns the color,
+setColor(color: String): void Sets a new color.
+isFilled(): boolean Returns the fi1Ted property.
+setFilled(filled: boolean): void Sets a new fi17ed property.
+getDateCreated(): java.util.Date Returns the dateCreated.
+toString(): String Returns a string representation of this object,
-radius: double -width: double
-height: double
+CircleQ)
+Circle(radius: double) +Rectangle()
+C"1 rcle(radius: double, color: String, +Rectangle(width: double, height: double)
filled: boolean) +Rectangle(width: double, height: double
+getRadius(): double color: String, filled: boolean
+setRadius(radius: double): void +getWidth(): double
+getArea(): double +setWidth(width: double): wvoid
+getPerimeter(): double +getHeight(): double
+getDiameter(): double +setHeight(height: double): void
+printCircle(): void +getArea(): double

+getPerimeter(): double

Figure: The GeometricObject class is the superclass for Circle and Rectangle. (Source: (Liang, 2014))

Superclasses and Subclasses

How is inheritance be implemented in Java? Any ideas?

Superclasses and Subclasses

How is inheritance be implemented in Java? Any ideas? '

Using the following syntax:

Subclass Superclass

N

public class Circle extends GeometricObject

Figure: (Source: (Liang, 2014))

L. Tarrataca Ii and Poly 29 /72

Superclasses and Subclasses

public class GeometricObject {
private String color = “white";
private boolean filled ;
private java. util .Date dateCreated;
/*#* Construct a default geometric object */
public SimpleGeometricObject({
dateCreated = new java.util.DateQ:

/#*#* Construct a geometric object with the specified color and filled value */

public SimpleGeometricObject(String color, boolean filled) {
dateCreated = new java.util.DateQ;
this .color = color;
this . filled = filled ;

/** Return color */
public String getColor() { return color; }

/** Set a new color *x/
public void setColor(String color) { this .color = color; }

/** Retun filled . Since filed is boolean,
its getter method is named isFilled */

public boolean isFiled () { return filled ; }

/** Setanew filled */
public void setFilled (boolean filed) { this . filed = filed :}

/** Get dateCreated */
public java. util .Date getDateCreated() { return dateCreated:; }

/** Return a string representation of this object */

public String toString O { retumn ‘creafed on " + dateCreated + "\ncolor: * + color + " and filled : * + filed ; }

}

and Poly

30/72

Superclasses and Subclasses

public class Circle extends GeometricObject{
private double radius:

public CircleFromSimpleGeometricObject() {}
public CircleFromSimpleGeometricObject(double radius) { this.radius = radius: }
public CircleFromSimpleGeometricObject(double radius, String color, boolean filled) {
this . radius = radius ;
setColor(color);
sefFilled (filled):

/** Return radius */
public double getRadiusQ { return radius; }

/5 Set a new radius */
public void setRadius(double radius) { this .radius = radius: }

/%3 Return area x/
public double getArea() { return radius * radius * Math.Pl;}

/** Return diameter */
public double getDiameterQ { return 2 * radius: }

/** Return perimeter */
public double getPerimeter({ retum 2 * radius * Math.Pl; }

/** Print the circle info *x/
public void printCircle () { System.out. printin (*The circle is created ' + getDateCreated() + " and the radius is

+ radius); }

Superclasses and Subclasses

Important point:

e Overloaded constructor Circle(double radius, String color, boolean filled):

o Implemented by invoking setColor / setFilled methods:

® Public methods defined in superclass GeometricObject

32/72

Superclasses and Subclasses

From the previous slide:

Could the constructor change the attributes from the superclass directly?

Any ideas?

Would the following code be correct? Any ideas? '

public CircleFromSimpleGeometricObject(double radius, String color, boolean
filled) {
this . radius = radius;
this . color = color;
this . filed = filled ;

Superclasses and Subclasses

Would the following code be correct? Any ideas? '

public CircleFromSimpleGeometricObject(double radius, String color, boolean
filed) {
this . radius = radius;
this . color = color;
this . filed = filled ;

Wrong: Color and filled are private attributes:
o Cannot be accessed in any class other than in the GeometricObject;

e Only way to read / write color and filled is through getter / setter methods.

Superclasses and Subclasses

public class Rectangle extends GeometricObject {
private double width;
private double height;

public RectangleFromSimpleGeometricObject({}
public RectangleFromSimpleGeometricObject(double width, double height) {
this .width = width;
this .height = height:
}
public RectangleFromSimpleGeometricObject(double width, double height, String color, boolean filled) {
this .width = width;
this .height = height:
seftColor(color) ;
seftFilled (filled);

/** Return width */
public double getWidthQ { return width; }

/** Set a new width */
public void setWidth(double width) { this .width = width; }

/** Return height */
public double getHeightQ { return height: }

/% Set a new height */
public void setHeight(double height) { this .height = height: }

/%3 Return area x/
public double getArea() { retumn width * height; }

/** Return perimeter */
public double getPerimeter({ return 2 * (width + height); }
}

Superclasses and Subclasses

Important points regarding inheritance (1/2):
e Subclass is not a subset of its superclass:
e Usually contains more information / methods than superclass;

o Private superclass atfiributes are not accessible outside the class:

o Only accessible through superclass public sefters / getters;

Superclasses and Subclasses

Important points regarding inheritance (2/2):
e Inheritance is used to model the is-a relationship:

e Subclass and superclass must have the is-a relationship;

e Java class may inherit directly from only one superclass:

e Ak.asingle inheritance;
e Ofther programming languages allow:

® Subclass to be derived from several classes.

37/72

Using the super Keyword

N o e b (el
Using the super Keyword

Subclass inherits accessible attributes / methods from superclass:

But does the subclass inherit the superclass constructors? Any ideas? '
Can the superclass’s constructors be invoked from a subclass? Any ideas? '

Using the super Keyword

N o e b (el
Using the super Keyword

Subclass inherits accessible attributes / methods from superclass:

But does the subclass inherit the superclass constructors? Any ideas? '

No, superclass constructors are not inherited...

Can the superclass’s constructors be invoked from a subclass? Any ideas? '

Yes, through the super keyword...

Using the super Keyword

super keyword:
o Refers to the superclass of the class;
e Can be used in two ways:
e Cadll a superclass constructor:;

o Cadll a superclass method:;

Using the super Keyword Calling Superclass Constructors

Calling Superclass Constructors

Unlike attributes / methods:

e Superclass constructors are not inherited by a subclass;
However, superclass constructors:

e Can be invoked from subclasses using super keyword:

super(), or super(parameters);

o Statement super() invokes:

e No-argument superclass constructor;
e Statement super(arguments) invokes:

e Superclass constructor that matches arguments;

Using the super Keyword Calling Superclass Constructors

How can we adapt previous Circle constructors to use super? Any ideas? '

public class Circle extends GeometricObject{
private double radius;

public CircleFromSimpleGeometricObject(double radius, String color, boolean
filled) {
this . radius = radius;
setColor(color);
setFilled (filed);

Using the super Keyword Calling Superclass Constructors

How can we adapt previous Circle constructors to use super? Any ideas?

public class Circle extends GeometricObject{ public class Circle extends GeometricObject{
private double radius: private double radius:
public CircleFromSimpleGeometricObject(double radius, public CircleFromSimpleGeometricObject(double radius,
String color, boolean filled) { String color, boolean filled) {
this . radius = radius ; super(color, filed)
setColor(color); this . radius = radius;
sefFilled (filled): }
}
} }
Important:

e super call must be 15 statement in the constructor;

o Invoking superclass constructor name in subclass causes a syntax error.

Using the super Keyword Constructor Chaining

Constructor Chaining

If superclass constructor is not invoked explicitly:

o Compiler automatically puts super() as the first statement in the constructor

public ClassName() { public ClassName() {
// some statements Equivalent super();
= // some statements
}
public ClassName(double d) { public ClassName(double d) {
// some statements Equivalent super();
} =———— // some statements
1

Using the super Keyword Constructor Chaining

When constructing an object of a subclass:
e Subclass constructor first invokes its superclass constructor;
e Superclass constructor invokes its parent-class constructor;

e Process continues until last constructor in inheritance chain is called

Using the super Keyword Constructor Chaining

Conclusion: constructing an instance of a class invokes:
o Constructors of all the superclasses along the inheritance chain.

This is called constructor chaining.

g the super Keyword Constructor Chaining

What is the output of the following code? Any ideas?

public class Faculty extends Employee {
public static void main(String 0 args) {
new FacultyQ;
}

public Faculty O {
System.out. printin (*(4) Performs Faculty’s tasks");
}
}

class Employee extends Person {
public Employee({
this (" (2) Invoke Employee’s overloaded constructor”);
System.out. printin (*(3) Performs Employee’s tasks ") :
}

public Employee(String s) {
System.out. printin (s);
}
}

class Person{
public Person(){
System.out. printin (* (1) Performs Person’s tasks");
}

Using the super Keyword Constructor Chaining

What is the output of the following code? Any ideas? '

(1) Performs Person’s tasks

(2) Invoke Employee’s overloaded constructor
(3) Performs Employee’s tasks

(4) Performs Faculty ‘s tasks

Why does the program produces the previous output? Any ideas? '

Using the super Keyword Constructor Chaining

Why does the program produces the previous output? Any ideas?

© new Faculty() invokes Faculty’s no-arg constructor;

@ Faculty is a subclass of Employee

e Employee’s no-arg constructor is invoked;

©® Employee is a subclass of Person:

e Person’s no-arg constructor is invoked before any statements

Using the super Keyword Constructor Chaining

Why does the program produces the previous output? Any ideas?

© new Faculty() invokes Faculty’s no-arg constructor;

©® Faculty is a subclass of Employee

o Employee’s no-arg constructor is invoked;

©® Employee is a subclass of Person:

e Person’s no-arg constructor is invoked before any statements

Faculty () { » Employee() { |- Em_;]kﬁeﬁ:t_r'iﬁ_s)_{__._, Person() {
——— | this("(2) ...");—|
| -— |
Performs Faculty's \ Performs Employee's ™ Performs Employee's \\ Performs Person's
tasks; tasks; tasks; tasks;
} } } 1

Figure: (Source: (Liang, 2014))

Using the super Keyword Constructor Chaining

Example
What about the following code? Any ideas? '

public class Apple extends Fruit {
}

class Fruit {
public Fruit (String name) {
System.out. printin (" Fruit “s constructor is invoked");

ing the super Keywor Constructor Chaining

Example

What about the following code? Any ideas?

public class Apple extends Fruit {
}

class Fruit {
public Fruit (Sting name) {
System.out. printin (* Fruit “s constructor is invoked");
}

No constructor is explicitly defined in Apple:
® Apple’s default no-arg constructor is defined implicitly:
® Since Apple is a subclass of Fruit:
® Apple’s default constructor automatically invokes Fruit's no-arg constructor:
® Fruit does not have a no-arg constructor;

® Therefore, the program cannot be compiled.

Using the super Keyword Constructor Chaining

What can be done to solve the previous problem? Any ideas?

Design tip:
o [If possible, provide a no-arg constructor for every class:

o Makes class easy to extend and avoids errors.

Using the super Keyword Calling Superclass Methods

Calling Superclass Methods

If super keyword is used to represent the superclass:

How can we access the superclass methods? Any ideas? '

Using the super Keyword Calling Superclass Methods

Calling Superclass Methods

If super keyword is used to represent the superclass:

How can we access the superclass methods? Any ideas? '

Through the syntax:

super.method(parameters);

Using the super Keyword Calling Superclass Methods

printCircle() method (Slide 31) could be rewritten:

public void printCircle Q) {
System.out. printin ("The circle is created * +
super.getDateCreated() + * and the radius is * + radius);
}

However, in this case, this is not necessary:
o getDateCreated is a method in the GeometricObject class:

e Inherited by the Circle class.
However, in some cases:

e super keyword is necessary;

Overriding Methods

o OveridnoMenod |
Overriding Methods

What is the concept of method overriding? Any ideas? '

Overriding Methods

Overriding Methods
What is the concept of method overriding? Any ideas? '

Method Overriding:

e Subclass provides implementation for inherited superclass method(s);

e Do not confuse with previously seen method overloading:

e “Sobrecarga’’ in Portuguese =P

Lets see an example =)

Overriding Methods

toString() method in GeometricObject class (Slide 30):
e returns the string representation of a geometric object.

Idea: have toString method specific to Circle class:

How can we define a toString method specific to Circle class? Any ideas? '

Overriding Methods

How can we define a toString method specific o Circle class? Any ideas? '

Simple: Redefine the method in the subclass:

public class CircleFromSimpleGeometricObject extends SimpleGeometricObject {

// Override the toString method defined in the superclass
public String toString O {
return super. toString O + "\nradius is " + radius;

Overriding Methods

Important points (1/2):
o Instance method can be overridden only if it is accessible:

o Private method cannot be overridden:

® Not accessible outside its own class

o |f a method defined in a subclass is private in its superclass:

e Two methods are completely unrelated.

61/72

Overriding Methods

Important points (2/2):
e Static methods can be inherited:
*» However, they cannot be overridden;
o |f a static method defined in the superclass is redefined in a subclass
® Method defined in the superclass is hidden

e Hidden static methods can be invoked: SuperClassName.staticMethodName

Overriding vs. Overloading

Overriding vs. Overloading

What is the # between Overloading and Overriding? Any ideas? '

Overriding vs. Overloading

Overriding vs. Overloading
What is the # between Overloading and Overriding? Any ideas? '

Overloading methods:

o Define multiple methods with the same name but different signatures.
Overriding methods:

® Provide a new implementation for a method in the subclass;

Example

What is the # between these two codes? Any ideas?

public class Test {
public static void main(String 0 args) {
Aa=newAQ;
a.p(10);
a.p(10.0);

}

class B {
public void p(double i) {
System.out. printin (i * 2);
}
}

class A extends B {
// This method overrides the method in B
public void p(double i) {
System.out. printin (i);
}

public class Test {
public static void main(String 0 args) {
Aa=newAQ;
a.p(10);
a.p(10.0);

}

class B {
public void p(double i) {
System.out. printin (i * 2);
}
}

class A extends B {
// This method overloads the method in B
public void p(int i) {
System.out. printin (i);
}

Listing 1: Overriding

Listing 2: Overloading

Overriding vs. Overloading

Test class in overriding example:
e a.p(10) and a.p(10.0) invoke p(double i) method defined in class A:
e Displays 10
Test class in overloading example:
e a.p(10) invokes p(int i) method defined in class A:
o Displays 10
e a.p(10.0) invokes p(double i) method defined in class B:

e Displays 20

Overriding vs. Overloading

Overridden methods:
o Are in different classes related by inheritance;
Overloaded methods:

e Can be either in the same class or different classes related by inheritance.;

Overriding vs. Overloading

To avoid mistakes:

e Use Java special override annotation syntax:

e Place @Override before the method in the subclass

public class CircleFromSimpleGeometricObject extends SimpleGeometricObject {

?@Override
public String toString O {

?retun super. toString O + “\nradius is ** + radius:
}

Where to focus your study

Where to focus your study

After this class you should be able to (1/3):
e How to define a subclass from a superclass through inheritance;
e How to invoke superclass’s constructors and methods;
e How to override instance methods in the subclass;

e How to distinguish differences between overriding and overloading:

Where to focus your study

Where to focus your study

After this class you should be able to (2/3):
o Explore the toString() method in the Object class;
e Discover polymorphism and dynamic binding;
o Describe casting and explain why explicit downcasting is necessary;

o Explore the equals method in the Object class;

Where to focus your study

Where to focus your study

After this class you should be able to (3/3):

e Enable data / methods in a superclass from subclasses:

e Protected visibility modifier;

® Prevent class extending and method overriding using the final modifier;

References

References |

@ Liang, Y. (2014).
Introduction to Java Programming.

Pearson Education.

72/72

	Introduction
	Superclasses and Subclasses
	Using the super Keyword
	Calling Superclass Constructors
	Constructor Chaining
	Calling Superclass Methods

	Overriding Methods
	Overriding vs. Overloading
	Where to focus your study
	References

