Object Oriented Thinking

Luis Tarrataca
luis.tarratacal@gmail.com

CEFET-RJ

luis.tarrataca@gmail.com

© Introduction

® Class Abstraction and Encapsulation

©® Thinking in Objects

@ Class Relationships
Association

Aggregation and Composition

0O Case Study: Designing the Course Class

0O Case Study: Designing a Class for Stacks

@ The String Class

© Where to focus your study

© References

- mirodueton |
Infroduction

What did the previous chapter talked about? Any ideas? '

Introduction
What did the previous chapter talked about? Any ideas? '

e Introduced objects and classes;

o How to define classes;
o How to create objects;

o Ffc...

What do you think will be the focus of this chapter? Any ideas? '

What do you think will be the focus of this chapter? Any ideas? '

Focus of this chapter:

o Class design:

e Understand the advantages of the object-oriented approach.

e Exploring differences between:

e Procedural programming vs. object-oriented programming.

Lets start

Class Abstraction and Encapsulation

I e il
Class Abstraction and Encapsulation

The first thing we need to ask is:

What is class abstraction? Any ideas? '

Class Abstraction and Encapsulation

I e il
Class Abstraction and Encapsulation

The first thing we need to ask is:

What is class abstraction and encapsulation? Any ideas? '

o Class abstraction is the separation of class implementation from its use;

o Details of implementation are encapsulated and hidden from the user;

Lets see if we can make these concepts clearer...

Class Abstraction and Encapsulation

_ csAosmaction and Encapsuiation |
Class Abstraction

Class abstraction:
e Separates class implementation from how the class is used;
e Creator of a class describes:
e Functions of the class;
e How the class can be used;
e Class contract:
e Collection of methods and fields that are accessible;

e Description of how these members are expected to behave,

Class Abstraction and Encapsulation

Class Encapsulation

Class user does not need to know how the class is implemented:

Class implementation

g e Class Contract .

is like a black box - (signatures of Clients use the

hidden from the clients Class public methods and ~<— class thr(;ut,tglh ﬂlm
public eonstants) contract of the class

Figure: Class abstraction separates class implementation from the use of the class.(Source: (Liang, 2014))

* Implementation details are encapsulated and hidden from the user.

e This is called class encapsulation.

Class Abstraction and Encapsulation

I e il
Example 1

Create a Circle object:
e Find the area of the circle:
e Without knowing how the area is computed
For this reason:

e Class is a.k.a. an abstract data type (ADT).

Class Abstraction and Encapsulation

I e il
Example 2

Consider computer assembly:
o Many components: CPU, memory, disk, efc.;
e Each component can be viewed as an object:
o With properties and methods.
o Components work together by knowing how:
e Each component is used and how it interacts with the others.
e No need to know how the components work internally:

e Internal implementation is encapsulated and hidden

Class Abstraction and Encapsulation

I e il
Example 3

Bank loan:
o Can be viewed as an object of a Loan class;

o Attributes:

o |nterest rate, loan amount, and loan period;
* Methods:

o Compute monthly payment and total payment;
e As a user of the Loan class:

® No need to know how these methods are implemented.

Class Abstraction and Encapsulation

Exercise

Can you define the Java code for the Loan example?

Can you define the UML for the Loan example? '

Class Abstraction and Encapsulation

UML diagram serves as the contract for the Loan class:

Loan
-annualInterestRate: double The annual interest rate of the loan (default:2.5).
-numberOfYears: int The number of years for the loan (default: 1).
-loanAmount: double The loan amount (default: 1000).
-TloanDate: java.util.Date The date this loan was created.
+Loan() Constructs a default Loan object.
+Loan(annualInterestRate: double, Constructs a loan with specified interest rate, years,
numberOfYears: int,loanAmount: and loan amount.
double)
+getAnnualInterestRate(): double Returns the annual interest rate of this loan.
+getNumberOfyears(): int Returns the number of the years of this loan.
+getLoanAmount(): double Returns the amount of this loan.
+getLoanDate(): java.util.Date Returns the date of the creation of this loan.
+setAnnualInterestRate(Sets a new annual interest rate for this loan.
annualInterestRate: double): void
+setNumberOfYears (Sets a new number of years for this loan.
numberOfYears: int): void
+setLoanAmount(Sets a new amount for this loan.
loanAmount: double): void
+getMonthlyPayment(): double Returns the monthly payment for this loan.
+getTotalPayment(): double Returns the total payment for this loan.

Figure: The Loan class models the properties and behaviors of loans.(Source: (Liang, 2014))

Class Abstraction and Encapsulation

public class Loan {
private double annualinterestRate ;
private int numberOfYears;
private double loanAmount;
private java. util .Date loanDate;

/** Default constructor */
public Loan({
this ¢ 2.5, 1, 1000);

/*x Construct a loan with specified annual interest rate,
number of years, and loan amount */
public Loan(double annuallnterestRate, int numberOfYears, double loanAmount X{
this .annualinterestRate = annualinterestRate ;
this .numberOfYears = numberOfYears;
this .loanAmount = loanAmount;
this .loanDate = new java.util .Date(;

/** Return annualinterestRate /
public double getAnnualinterestRate O { return annualinterestRate ; }

/** Set a new annualinterestRate */
public void setAnnualinterestRate (double annualinterestRate) { this .annualinterestRate = annualinterestRate ; }

/%% Return numberOfYears */
public int getNumberOfYearsO { return numberOfYears :}

/** Set a new numberOfYears */
public void setNumberOfYears(int numberOfYears) { this.numberOfYears = numberOfYears; }

Class Abstraction and Encapsulation

/%% Return loanAmount */
public double getLoanAmountQ { return loanAmount: }

/** Set a new loanAmount s/
public void setLoanAmount(double loanAmount) { this.loanAmount = loanAmount; }

/** Find monthly payment */
public double getMonthlyPayment() {
double monthlylnterestRate = annualinterestRate / 1200;
double monthlyPayment = loanAmount * monthlylnterestRate / (1 —
(1 / Math.pow(1 + monthlylnterestRate , numberOfYears * 12)));

return monthlyPayment;
/*x* Find total payment */

public double getTotalPaymentQ {
double totalPayment = getMonthlyPayment(* numberOfYears * 12; return totalPayment:

/** Return loan date */
public java. util .Date getLloanDate({ return loanDate; }

Class Abstraction and Encapsulation

Class definition # Class use:

o Class definition:

e UML Diagram + Java code for class definition

o Class use:

o Object instantiation of the class defined

Thinking in Objects

Thinking in Objects

How many of you have used the C-programming language? '

Thinking in Objects

Thinking in Objects

How many of you have used the C-programming language? '
What is the programming paradigm of C-language? Any ideas? '

Thinking in Objects

Thinking in Objects

How many of you have used the C-programming language? '
What is the programming paradigm of C-language? Any ideas? '

e Procedural programming

Thinking in Objects

Thinking in Objects

How many of you have used the C-programming language? '
What is the programming paradigm of C-language? Any ideas? '

e Procedural programming

Thinking in Objects

What is the procedural programming paradigm? Any ideas?

e Based on the concept of the procedure call, a.k.a.:

e Procedures, routines, subroutines, or functions;
e Contain a series of computational steps to be carried out.

e Focus on designing methods;

Thinking in Objects

What is the name of the programming paradigm taught in this class? Any

ideas?

Thinking in Objects

What is the name of the programming paradigm taught in this class? Any

ideas?

o Object Oriented Programming ;)

Thinking in Objects

Object-oriented paradigm couples:
e Data and methods together into object:;
e Focuses on objects and operations on objects:
o Combines power of the procedural paradigm;

e With an added dimension:

e Integrates data with operations intfo objects.

e Classes provide more flexibility / modularity for building reusable software.

Thi g in Objects

So what are the main differences between procedural and O.O.P? Any

ideas?

Thinking in Objects

Procedural vs. O.O.P

Procedural programming:
o Data and operations on the data are separate;
e Requires passing dafta to methods
Object-oriented programming (1/2):
e Groups data and related operations in an object;
e Solves many of the problems of procedural programming;

e Mirrors the real world:

o All objects are associated with both attributes and activities.

Thinking in Objects

Procedural vs. O.O.P

Object-oriented programming (2/2):
o Improves software reusability. Why?
o Makes programs easier to develop and easier to maintain. Why?

e Java program can be viewed as a collection of cooperating objects.

Thinking in Objects

Procedural vs. O.O.P

Object-oriented programming (2/2):
o Improves software reusability. Why?
e The same class can be reused in the code;

° Makes programs easier to develop and easier fo maintain. Why?
o Complexity can be added to preexisting classes:

e Through class relationships

e Java program can be viewed as a collection of cooperating objects.

Class Relationships

st eie)
Class Relationships

From all the previous concepfs:

What is the main philosophy of O.O.P? '

Class Relationships

st eie)
Class Relationships

From all the previous concepts:

What is the main philosophy of O.O.P? '

o Everything is an object ;)

e Doing so requires the ability to design classes;

Class Relationships

To design classes, we need to explore relationships among classes:
e Association;
e Aggregation;
o Composition;
e Inheritance.
Lets have a look intfo these:

o Inheritance relationship will be infroduced in the next chapter.

Class Relationships Association

Association

Association:
e General binary relationship describing an activity between two classes

Lets look at a specific example.

Class Relationships Association

A student may take any number of courses:

o Association between the Student class and the Course class;
A faculty member may teach at most three courses course:

o Association between the Faculty class and the Course class.
A course:

o May have from five to sixty students;

e |s taught by only one faculty member

How can the following relationships be represented through UML? '

Example (2/2)

How can the following relationships be represented through UML?

Take p Teach 4
5..60 0.3 1
Student Il £ Course Il Faculty I

Teacher

Figure: Student may take any number of courses. A faculty member may teach at most three courses. A course may have from five fo sixty
students, and a course is faught by only one faculty member. (Source: (Liang, 2014))

® Association s illustrated by a solid line between two classes:
® Optional labels describing relationship (e.g.: “Take’* and “Teach’");
® Optional black triangle indicating direction of the relationship

® Each class of an association may specify a multiplicity:
® Number / interval specifying how many instances exist;

® Character * means an unlimited number of objects,

Class Relationships Association

Exercise

So the question now is:

How can these associations be implemented in Java? Any ideas?

Exercise

So the question now is:

How can these associations be implemented in Java? Any ideas?

o Using attributes and methods ;)

public class Student{ public class Course { public class Faculty {
private Student() classList : private Course() courselist :
private Course() courselist : private Faculty faculty :
public void addStudent(Student s) { public void addCourse(Course ©) {
public void addCourse(Course s} o b o}
public void setFaculty (Faculty
} faculty) { .. }

Class Relationships Aggregation and Composition

Aggregation and Composition

Aggregation:
e Special form of association representing ownership between two objects:
o Owner object / class is called aggregating object / class;

e Subject object / class is called aggregated object / class;

o Models has-a relationships;

Class Relationships Aggregation and Composition

Aggregation and Composition

Composition:

o If an object is exclusively owned by an aggregating object;

Class Relationships Aggregation and Composition

Can you thing of any examples illustrating #’s between aggregation and

composition?

Class Relationships Aggregation and Composition

Can you thing of any examples illustrating #’s between aggregation and

composition?

o Example: “‘student has a name’”:
o Composition between Student and Name;
o Example: “‘student has an address’”:

e Aggregation, since address can be shared between multiple students;

Class Relationships Aggregation and Composition

Example

How can the previous relationships be modelled in UML?

Class Relationships Aggregation and Composition

Example
How can the previous relationships be modelled in UML? '

Composition Aggregation

1 1\‘ ’{3 1
Name II ’ Student F} Address I

Figure: Each student has a name and an address. (Source: (Liang, 2014))

e Each student has one address;
e Each address can be shared by up to 3 students;
e Filled diamond denotes composition;

e Empty diamond denotes aggregation;

Class Relationships Aggregation and Composition

How can composition / aggregation be represented in Java? Any ideas?

Class Relationships Aggregation and Composition

How can composition / aggregation be represented in Java? Any ideas?

e Aggregation relationship is represented as an attribute in the aggregating

class.
public class Name { public class Student { public class Address {
private Name name:
private Address address;
} } }
Listing 1: Aggregated class Listing 2: Aggregating class Listing 3: Aggregated class

Class Relationships Aggregation and Composition

Aggregation may exist between objects of the same class:

e Example: person may have a supervisor.

1
Person F }

1 Supervisor

Figure: A person may have a supervisor. (Source: (Liang, 2014))

Class Relationships Aggregation and Composition

How can the previous relationship be modelled in Java? Any ideas?

Class Relationships Aggregation and Composition

How can the previous relationship be modelled in Java? Any ideas?

public class Person {
// The type for the data is the class itself
private Person supervisor ;

Class Relationships Aggregation and Composition

What if a person can have multiple supervisors? Any ideas?

Class Relationships Aggregation and Composition

What if a person can have multiple supervisors? Any ideas?

1

n Supervisor

Figure: A person can have several supervisor. (Source: (Liang, 2014))

public class Person{

private Person() supervisors ;

Case Study: Designing the Course Class

_ cosestdy:Designingihe Cowse Ciow |
Case Study: Designing the Course Class

Suppose you need to process course information:

e Each course has a name and has students enrolled;

You should be able to add/drop a student to/from the course;

e Course can be created using constructor Course(String courseName);

Students can be:
e Added to the course through addStudent(String student);
e Dropped from the course through dropStudent(String student);

e Returned through getStudentsQ;

Case Study: Designing the Course Class

What is the UML diagram for the previous domain?

What is the respective Java code for the previous domain?

Lets answer these individually =)

Case Study: Designing the Course Class

What is the UML diagram for the previous domain?

Case Study: Designing the Course Class

What is the UML diagram for the previous domain?

-courseName: String The name of the course.

-students: String[] An array to store the students for the course.
-numberOfStudents: int The number of students (default: 0).
+Course(courseName: String) Creates a course with the specified name.
+getCourseName(): String Returns the course name.

+addStudent (student: String): void Adds a new student to the course.
+dropStudent(student: String): void Drops a student from the course.
+getStudents(): String[] Returns the students for the course.
+getNumberOfStudents(): 1int Returns the number of students for the course.

Figure: The Course class models the courses. (Source: (Liang, 2014))

Case Study: Designing the Course Class

What is the respective Java code for the previous domain?

Case Study: D ing the Course Class

public class Course {
private String courseName:
private String O students = new String (100);
private int numberOfStudents;

public Course(String courseName) {
this .courseName = courseName;
}

public void addStudent(String student){
students (numberOfStudents) = student;
numberOfStudents++;

}

public String 0 getStudentsO{
return students;
}

public int getNumberOfStudentsO{
return numberOfStudents;

}

public String getCourseName0f
return courseName;

}

public void dropStudent(String student){

}

Case Study: D ing a Class for Stacks

Case Study: Designing a Class for Stacks

Develop a stack that holds data in a LIFO:

Data1~—"ﬂ\ Data2

Data3

Data2
Datal Datal

Data3 ﬁ Data2 4——\ Datalﬁ

Data2
Datal Datal

Figure: Stack holds data in a last-in, first-out fashion(Source: (Liang, 2014))

L. Tarrataca Object Oriented Thinking 59 /74

Case Study: Designing a Class for Stacks

What is the UML diagram for the previous domain?

What is the respective Java code for the previous domain?

Lets answer these individually =)

Case Study: Designing a Class for Stacks

What is the UML diagram for the previous domain?

Case Study: Designing a Class for Stacks

What is the UML diagram for the previous domain?

-elements: int[] An array to store integers in the stack.

-size: int The number of integers in the stack.

+StackOfIntegers() Constructs an empty stack with a default capacity of 16.

+StackOfIntegers(capacity: int) Constructs an empty stack with a specified capacity.

+empty(): boolean Returns true if the stack is empty.

+peek(): int Returns the integer at the top of the stack without
removing it from the stack.

+push(value: int): void Stores an integer into the top of the stack.

+pop(): int Removes the integer at the top of the stack and returns it.

+getSize(): int Returns the number of elements in the stack.

Figure: StackOfintegers class encapsulates the stack storage and provides the operations for manipulating
the stack. (Source: (Liang, 2014))

Case Study: Designing a Class for Stacks

What is the respective Java code for the previous domain?

Case Study: De: ing a Class for Stacks

public class StackOfintegers{
private int) elements,
private int size ;
public static final int DEFAULT_CAPACITY = 16;

public StackOfintegersO {
this (DEFAULT_CAPACITY),

public StackOfintegers(int capacity){
elements = new int(capacity);

public void push(int value){
if (size >= elements.length){
int 0 temp = new int(elements.length * 2);
System.arraycopy(elements, 0, temp, 0, elements.length);
elements = temp;
}

elemetns(size ++) = value;

public int popO{ return elements(— —size); }

public int peekO{ refurn elements(size — 1); }

public boolean emptyQf retum size == 0; }

public int getSize O{ retumn size ; }

L. Tarrataca Object Oriented Thinking 64 /74

The String Class

The String Class

A String object is immutable:
e Contents cannot be changed once string is created;
e Multitude of useful methods:
e charAt(index) returns character at specified index;
e lengthQ returns string size;
e substring method returns a substring;

o indexOf and lastindexOf methods return first or last index of a character;

The String Class

The String class has:
e 15 constructors;

e More than 40 methods for manipulating strings.

Are the students supposed to know each and every one of these? '

The String Class

The String class has:
e 15 constructors;

e More than 40 methods for manipulating strings.

Are the students supposed to know each and every one of these? '

e Yes!

The String Class

The String class has:
e 15 constructors;

e More than 40 methods for manipulating strings.

Are the students supposed to know each and every one of these? '

e Yes! ;)

How can we find out about the constructors / methods available for

String? Any ideas?

The String Class

How can we find out about the constructors / methods available for

String? Any ideas?

Through the Java APl Documentation:
e Google “‘javadoc 8’ ;)
o Contains detailed documentation for the Java API specification:

e Thousands of classes;

The String Class

Constructor Summary

Constructor and Description

String()
Initializes a newly created String object so that it represents an empty character sequence.

String(byte[] bytes)
Constructs a new String by decoding the specified array of bytes using the platform's default charset.

String(byte[] bytes, Charset charset)
Constructs a new String by decoding the specified array of bytes using the specified charset.

String(byte[] ascii, int hibyte)

Deprecated.

This method does not properly convert bytes into characters. As of JDK 1.1, the preferred way to do this is via the
String constructors that take a Charset, charset name, or that use the platform's default charset.

String(byte[] bytes, int offset, int length)

Constructs a new String by decoding the specified subarray of bytes using the platform's default charset.
String(byte[] bytes, int offset, int length, Charset charset)

Constructs a new String by decoding the specified subarray of bytes using the specified charset.

String(byte[] ascii, int hibyte, int offset, int count)

Deprecated.

This method does not properly convert bytes into characters. As of JDK 1.1, the preferred way to do this is via the
String constructors that take a Charset, charset name, or that use the platform's default charset.
String(byte[] bytes, int offset, int length, String charsetName)

Constructs a new String by decoding the specified subarray of bytes using the specified charset.

The String Class

Method Summary

_ Static Methods Instance Methods Concrete Methods | Deprecated Methods

Modifier and Type Method and Description

char charAt(int index)
Returns the char value at the specified index.

int codePointAt(int index)
Returns the character (Unicode code point) at the specified index.

int codePointBefore(int index)
Returns the character (Unicode code point) before the specified index.

int codePointCount(int beginIndex, int endIndex)
Returns the number of Unicode code points in the specified text range of this String.

int compareTo(String anotherString)
Compares two strings lexicographically.

int compareToIgnoreCase(String str)
Compares two strings lexicographically, ignoring case differences.

String concat(String str)
Concatenates the specified string to the end of this string.

boolean contains(CharSequence s)
Returns true if and only if this string contains the specified sequence of char values.

boolean contentEquals (CharSequence cs)
Compares this string to the specified CharSequence.

boolean contentEquals (StringBuffer sb)
Compares this string to the specified StringBuffer.

Important notice:
e Java API Specification manuals should always be open:
o When developing code useful to have documentation on-hand =)
o There are a lot of other important Java classes already defined:
e Date
e Time
o StringBuilder, StringBuffer;
o LinkedList, HashMap, TreeMap (RB Tree), efc...

o All with appropriate examples that will help you =)

Where to focus your study

Where to focus your study

After this class you should be able to:
o Apply class abstraction to develop software;
e Explore #’s between procedural and OO paradigm;
o Express relationships between classes;

e Design programs using the object-oriented paradigm

References

References |

@ Liang, Y. (2014).
Introduction to Java Programming.

Pearson Education.

	Introduction
	Class Abstraction and Encapsulation
	Thinking in Objects
	Class Relationships
	Association
	Aggregation and Composition

	Case Study: Designing the Course Class
	Case Study: Designing a Class for Stacks
	The String Class
	Where to focus your study
	References

