
Object Oriented Thinking

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

L. Tarrataca Object Oriented Thinking 1 / 74

luis.tarrataca@gmail.com

1 Introduction

2 Class Abstraction and Encapsulation

3 Thinking in Objects

L. Tarrataca Object Oriented Thinking 2 / 74

4 Class Relationships

Association

Aggregation and Composition

5 Case Study: Designing the Course Class

6 Case Study: Designing a Class for Stacks

L. Tarrataca Object Oriented Thinking 3 / 74

7 The String Class

8 Where to focus your study

9 References

L. Tarrataca Object Oriented Thinking 4 / 74

Introduction

Introduction

What did the previous chapter talked about? Any ideas?

L. Tarrataca Object Oriented Thinking 5 / 74

Introduction

Introduction

What did the previous chapter talked about? Any ideas?

• Introduced objects and classes;

• How to define classes;

• How to create objects;

• Etc...

What do you think will be the focus of this chapter? Any ideas?

L. Tarrataca Object Oriented Thinking 6 / 74

Introduction

What do you think will be the focus of this chapter? Any ideas?

Focus of this chapter:

• Class design:

• Understand the advantages of the object-oriented approach.

• Exploring differences between:

• Procedural programming vs. object-oriented programming.

Lets start

L. Tarrataca Object Oriented Thinking 7 / 74

Class Abstraction and Encapsulation

Class Abstraction and Encapsulation

The first thing we need to ask is:

What is class abstraction? Any ideas?

L. Tarrataca Object Oriented Thinking 8 / 74

Class Abstraction and Encapsulation

Class Abstraction and Encapsulation

The first thing we need to ask is:

What is class abstraction and encapsulation? Any ideas?

• Class abstraction is the separation of class implementation from its use;

• Details of implementation are encapsulated and hidden from the user;

Lets see if we can make these concepts clearer...

L. Tarrataca Object Oriented Thinking 9 / 74

Class Abstraction and Encapsulation

Class Abstraction

Class abstraction:

• Separates class implementation from how the class is used;

• Creator of a class describes:

• Functions of the class;

• How the class can be used;

• Class contract:

• Collection of methods and fields that are accessible;

• Description of how these members are expected to behave,

L. Tarrataca Object Oriented Thinking 10 / 74

Class Abstraction and Encapsulation

Class Encapsulation

Class user does not need to know how the class is implemented:

Figure: Class abstraction separates class implementation from the use of the class.(Source: [Liang, 2014])

• Implementation details are encapsulated and hidden from the user.

• This is called class encapsulation.

L. Tarrataca Object Oriented Thinking 11 / 74

Class Abstraction and Encapsulation

Example 1

Create a Circle object:

• Find the area of the circle:

• Without knowing how the area is computed

For this reason:

• Class is a.k.a. an abstract data type (ADT).

L. Tarrataca Object Oriented Thinking 12 / 74

Class Abstraction and Encapsulation

Example 2

Consider computer assembly:

• Many components: CPU, memory, disk, etc.;

• Each component can be viewed as an object:

• With properties and methods.

• Components work together by knowing how:

• Each component is used and how it interacts with the others.

• No need to know how the components work internally:

• Internal implementation is encapsulated and hidden

L. Tarrataca Object Oriented Thinking 13 / 74

Class Abstraction and Encapsulation

Example 3

Bank loan:

• Can be viewed as an object of a Loan class;

• Attributes:

• Interest rate, loan amount, and loan period;

• Methods:

• Compute monthly payment and total payment;

• As a user of the Loan class:

• No need to know how these methods are implemented.

L. Tarrataca Object Oriented Thinking 14 / 74

Class Abstraction and Encapsulation

Exercise

Can you define the UML for the Loan example?

Can you define the Java code for the Loan example?

L. Tarrataca Object Oriented Thinking 15 / 74

Class Abstraction and Encapsulation

UML diagram serves as the contract for the Loan class:

Figure: The Loan class models the properties and behaviors of loans.(Source: [Liang, 2014])

L. Tarrataca Object Oriented Thinking 16 / 74

Class Abstraction and Encapsulation

public class Loan {

private double annualInterestRate;

private int numberOfYears;

private double loanAmount;

private java. util .Date loanDate;

/∗∗ Default constructor ∗/

public Loan() {

this (2.5, 1, 1000);

}

/∗∗ Construct a loan with specified annual interest rate ,

number of years, and loan amount ∗/

public Loan(double annualInterestRate, int numberOfYears, double loanAmount){

this .annualInterestRate = annualInterestRate ;

this .numberOfYears = numberOfYears;

this . loanAmount = loanAmount;

this . loanDate = new java.util .Date();

}

/∗∗ Return annualInterestRate ∗/

public double getAnnualInterestRate() { return annualInterestRate ; }

/∗∗ Set a new annualInterestRate ∗/

public void setAnnualInterestRate (double annualInterestRate) { this .annualInterestRate = annualInterestRate ; }

/∗∗ Return numberOfYears ∗/

public int getNumberOfYears() { return numberOfYears ;}

/∗∗ Set a new numberOfYears ∗/

public void setNumberOfYears(int numberOfYears) { this.numberOfYears = numberOfYears; }

...

L. Tarrataca Object Oriented Thinking 17 / 74

Class Abstraction and Encapsulation

...

/∗∗ Return loanAmount ∗/

public double getLoanAmount() { return loanAmount; }

/∗∗ Set a new loanAmount ∗/

public void setLoanAmount(double loanAmount) { this.loanAmount = loanAmount; }

/∗∗ Find monthly payment ∗/

public double getMonthlyPayment() {

double monthlyInterestRate = annualInterestRate / 1200;

double monthlyPayment = loanAmount ∗ monthlyInterestRate / (1 −

(1 / Math.pow(1 + monthlyInterestRate, numberOfYears ∗ 12)));

return monthlyPayment;

}

/∗∗ Find total payment ∗/

public double getTotalPayment() {

double totalPayment = getMonthlyPayment() ∗ numberOfYears ∗ 12; return totalPayment;

}

/∗∗ Return loan date ∗/

public java. util .Date getLoanDate() { return loanDate; }

}

L. Tarrataca Object Oriented Thinking 18 / 74

Class Abstraction and Encapsulation

Class definition 6= Class use:

• Class definition:

• UML Diagram + Java code for class definition

• Class use:

• Object instantiation of the class defined

L. Tarrataca Object Oriented Thinking 19 / 74

Thinking in Objects

Thinking in Objects

How many of you have used the C-programming language?

L. Tarrataca Object Oriented Thinking 20 / 74

Thinking in Objects

Thinking in Objects

How many of you have used the C-programming language?

What is the programming paradigm of C-language? Any ideas?

L. Tarrataca Object Oriented Thinking 21 / 74

Thinking in Objects

Thinking in Objects

How many of you have used the C-programming language?

What is the programming paradigm of C-language? Any ideas?

• Procedural programming

L. Tarrataca Object Oriented Thinking 22 / 74

Thinking in Objects

Thinking in Objects

How many of you have used the C-programming language?

What is the programming paradigm of C-language? Any ideas?

• Procedural programming

L. Tarrataca Object Oriented Thinking 23 / 74

Thinking in Objects

What is the procedural programming paradigm? Any ideas?

• Based on the concept of the procedure call, a.k.a.:

• Procedures, routines, subroutines, or functions;

• Contain a series of computational steps to be carried out.

• Focus on designing methods;

L. Tarrataca Object Oriented Thinking 24 / 74

Thinking in Objects

What is the name of the programming paradigm taught in this class? Any

ideas?

L. Tarrataca Object Oriented Thinking 25 / 74

Thinking in Objects

What is the name of the programming paradigm taught in this class? Any

ideas?

• Object Oriented Programming ;)

L. Tarrataca Object Oriented Thinking 26 / 74

Thinking in Objects

Object-oriented paradigm couples:

• Data and methods together into object;

• Focuses on objects and operations on objects:

• Combines power of the procedural paradigm;

• With an added dimension:

• Integrates data with operations into objects.

• Classes provide more flexibility / modularity for building reusable software.

L. Tarrataca Object Oriented Thinking 27 / 74

Thinking in Objects

So what are the main differences between procedural and O.O.P? Any

ideas?

L. Tarrataca Object Oriented Thinking 28 / 74

Thinking in Objects

Procedural vs. O.O.P

Procedural programming:

• Data and operations on the data are separate;

• Requires passing data to methods

Object-oriented programming (1/2):

• Groups data and related operations in an object;

• Solves many of the problems of procedural programming;

• Mirrors the real world:

• All objects are associated with both attributes and activities.

L. Tarrataca Object Oriented Thinking 29 / 74

Thinking in Objects

Procedural vs. O.O.P

Object-oriented programming (2/2):

• Improves software reusability. Why?

• Makes programs easier to develop and easier to maintain. Why?

• Java program can be viewed as a collection of cooperating objects.

L. Tarrataca Object Oriented Thinking 30 / 74

Thinking in Objects

Procedural vs. O.O.P

Object-oriented programming (2/2):

• Improves software reusability. Why?

• The same class can be reused in the code;

• Makes programs easier to develop and easier to maintain. Why?

• Complexity can be added to preexisting classes:

• Through class relationships

• Java program can be viewed as a collection of cooperating objects.

L. Tarrataca Object Oriented Thinking 31 / 74

Class Relationships

Class Relationships

From all the previous concepts:

What is the main philosophy of O.O.P?

L. Tarrataca Object Oriented Thinking 32 / 74

Class Relationships

Class Relationships

From all the previous concepts:

What is the main philosophy of O.O.P?

• Everything is an object ;)

• Doing so requires the ability to design classes;

L. Tarrataca Object Oriented Thinking 33 / 74

Class Relationships

To design classes, we need to explore relationships among classes:

• Association;

• Aggregation;

• Composition;

• Inheritance.

Lets have a look into these:

• Inheritance relationship will be introduced in the next chapter.

L. Tarrataca Object Oriented Thinking 34 / 74

Class Relationships Association

Association

Association:

• General binary relationship describing an activity between two classes

Lets look at a specific example.

L. Tarrataca Object Oriented Thinking 35 / 74

Class Relationships Association

Example (1/2)

A student may take any number of courses:

• Association between the Student class and the Course class;

A faculty member may teach at most three courses course:

• Association between the Faculty class and the Course class.

A course:

• May have from five to sixty students;

• Is taught by only one faculty member

How can the following relationships be represented through UML?

L. Tarrataca Object Oriented Thinking 36 / 74

Class Relationships Association

Example (2/2)

How can the following relationships be represented through UML?

Figure: Student may take any number of courses. A faculty member may teach at most three courses. A course may have from five to sixty

students, and a course is taught by only one faculty member. (Source: [Liang, 2014])

• Association is illustrated by a solid line between two classes:

• Optional labels describing relationship (e.g.: ‘‘Take’’ and ‘‘Teach’’);

• Optional black triangle indicating direction of the relationship

• Each class of an association may specify a multiplicity:

• Number / interval specifying how many instances exist;

• Character * means an unlimited number of objects,

L. Tarrataca Object Oriented Thinking 37 / 74

Class Relationships Association

Exercise

So the question now is:

How can these associations be implemented in Java? Any ideas?

L. Tarrataca Object Oriented Thinking 38 / 74

Class Relationships Association

Exercise

So the question now is:

How can these associations be implemented in Java? Any ideas?

• Using attributes and methods ;)

public class Student{

private Course[] courseList ;

public void addCourse(Course s){

...

}

}

public class Course {

private Student[] classList ;

private Faculty faculty ;

public void addStudent(Student s) {

... }

public void setFaculty (Faculty

faculty) { ... }

}

public class Faculty {

private Course[] courseList ;

public void addCourse(Course c) {

... }

}

L. Tarrataca Object Oriented Thinking 39 / 74

Class Relationships Aggregation and Composition

Aggregation and Composition

Aggregation:

• Special form of association representing ownership between two objects:

• Owner object / class is called aggregating object / class;

• Subject object / class is called aggregated object / class;

• Models has-a relationships;

L. Tarrataca Object Oriented Thinking 40 / 74

Class Relationships Aggregation and Composition

Aggregation and Composition

Composition:

• If an object is exclusively owned by an aggregating object;

L. Tarrataca Object Oriented Thinking 41 / 74

Class Relationships Aggregation and Composition

Can you thing of any examples illustrating 6=’s between aggregation and

composition?

L. Tarrataca Object Oriented Thinking 42 / 74

Class Relationships Aggregation and Composition

Can you thing of any examples illustrating 6=’s between aggregation and

composition?

• Example: ‘‘student has a name’’:

• Composition between Student and Name;

• Example: ‘‘student has an address’’:

• Aggregation, since address can be shared between multiple students;

L. Tarrataca Object Oriented Thinking 43 / 74

Class Relationships Aggregation and Composition

Example

How can the previous relationships be modelled in UML?

L. Tarrataca Object Oriented Thinking 44 / 74

Class Relationships Aggregation and Composition

Example

How can the previous relationships be modelled in UML?

Figure: Each student has a name and an address. (Source: [Liang, 2014])

• Each student has one address;

• Each address can be shared by up to 3 students;

• Filled diamond denotes composition;

• Empty diamond denotes aggregation;

L. Tarrataca Object Oriented Thinking 45 / 74

Class Relationships Aggregation and Composition

How can composition / aggregation be represented in Java? Any ideas?

L. Tarrataca Object Oriented Thinking 46 / 74

Class Relationships Aggregation and Composition

How can composition / aggregation be represented in Java? Any ideas?

• Aggregation relationship is represented as an attribute in the aggregating

class.

public class Name {

...

}

Listing 1: Aggregated class

public class Student {

private Name name;

private Address address;

...

}

Listing 2: Aggregating class

public class Address {

...

}

Listing 3: Aggregated class

L. Tarrataca Object Oriented Thinking 47 / 74

Class Relationships Aggregation and Composition

Aggregation may exist between objects of the same class:

• Example: person may have a supervisor.

Figure: A person may have a supervisor. (Source: [Liang, 2014])

L. Tarrataca Object Oriented Thinking 48 / 74

Class Relationships Aggregation and Composition

How can the previous relationship be modelled in Java? Any ideas?

L. Tarrataca Object Oriented Thinking 49 / 74

Class Relationships Aggregation and Composition

How can the previous relationship be modelled in Java? Any ideas?

public class Person {

// The type for the data is the class itself

private Person supervisor ;

...

}

L. Tarrataca Object Oriented Thinking 50 / 74

Class Relationships Aggregation and Composition

What if a person can have multiple supervisors? Any ideas?

L. Tarrataca Object Oriented Thinking 51 / 74

Class Relationships Aggregation and Composition

What if a person can have multiple supervisors? Any ideas?

Figure: A person can have several supervisor. (Source: [Liang, 2014])

public class Person{

...

private Person[] supervisors ;

}

L. Tarrataca Object Oriented Thinking 52 / 74

Case Study: Designing the Course Class

Case Study: Designing the Course Class

Suppose you need to process course information:

• Each course has a name and has students enrolled;

• You should be able to add/drop a student to/from the course;

• Course can be created using constructor Course(String courseName);

• Students can be:

• Added to the course through addStudent(String student);

• Dropped from the course through dropStudent(String student);

• Returned through getStudents();

L. Tarrataca Object Oriented Thinking 53 / 74

Case Study: Designing the Course Class

What is the UML diagram for the previous domain?

What is the respective Java code for the previous domain?

Lets answer these individually =)

L. Tarrataca Object Oriented Thinking 54 / 74

Case Study: Designing the Course Class

What is the UML diagram for the previous domain?

L. Tarrataca Object Oriented Thinking 55 / 74

Case Study: Designing the Course Class

What is the UML diagram for the previous domain?

Figure: The Course class models the courses. (Source: [Liang, 2014])

L. Tarrataca Object Oriented Thinking 56 / 74

Case Study: Designing the Course Class

What is the respective Java code for the previous domain?

L. Tarrataca Object Oriented Thinking 57 / 74

Case Study: Designing the Course Class

public class Course {

private String courseName;

private String [] students = new String [100];

private int numberOfStudents;

public Course(String courseName) {

this .courseName = courseName;

}

public void addStudent(String student){

students [numberOfStudents] = student;

numberOfStudents++;

}

public String [] getStudents(){

return students ;

}

public int getNumberOfStudents(){

return numberOfStudents;

}

public String getCourseName(){

return courseName;

}

public void dropStudent(String student){

...

}

L. Tarrataca Object Oriented Thinking 58 / 74

Case Study: Designing a Class for Stacks

Case Study: Designing a Class for Stacks

Develop a stack that holds data in a LIFO:

Figure: Stack holds data in a last-in, first-out fashion(Source: [Liang, 2014])

L. Tarrataca Object Oriented Thinking 59 / 74

Case Study: Designing a Class for Stacks

What is the UML diagram for the previous domain?

What is the respective Java code for the previous domain?

Lets answer these individually =)

L. Tarrataca Object Oriented Thinking 60 / 74

Case Study: Designing a Class for Stacks

What is the UML diagram for the previous domain?

L. Tarrataca Object Oriented Thinking 61 / 74

Case Study: Designing a Class for Stacks

What is the UML diagram for the previous domain?

Figure: StackOfIntegers class encapsulates the stack storage and provides the operations for manipulating

the stack. (Source: [Liang, 2014])

L. Tarrataca Object Oriented Thinking 62 / 74

Case Study: Designing a Class for Stacks

What is the respective Java code for the previous domain?

L. Tarrataca Object Oriented Thinking 63 / 74

Case Study: Designing a Class for Stacks

public class StackOfIntegers{

private int [] elements,

private int size ;

public static final int DEFAULT_CAPACITY = 16;

public StackOfIntegers() {

this (DEFAULT_CAPACITY),

}

public StackOfIntegers(int capacity){

elements = new int[capacity];

}

public void push(int value) {

if (size >= elements.length){

int [] temp = new int[elements.length ∗ 2];

System.arraycopy(elements, 0, temp, 0, elements.length) ;

elements = temp;

}

elemetns[size ++] = value;

}

public int pop(){ return elements[−−size]; }

public int peek(){ return elements[size − 1]; }

public boolean empty(){ return size == 0; }

public int getSize () { return size ; }

}

L. Tarrataca Object Oriented Thinking 64 / 74

The String Class

The String Class

A String object is immutable:

• Contents cannot be changed once string is created;

• Multitude of useful methods:

• charAt(index) returns character at specified index;

• length() returns string size;

• substring method returns a substring;

• indexOf and lastIndexOf methods return first or last index of a character;

L. Tarrataca Object Oriented Thinking 65 / 74

The String Class

The String class has:

• 15 constructors;

• More than 40 methods for manipulating strings.

Are the students supposed to know each and every one of these?

L. Tarrataca Object Oriented Thinking 66 / 74

The String Class

The String class has:

• 15 constructors;

• More than 40 methods for manipulating strings.

Are the students supposed to know each and every one of these?

• Yes!

L. Tarrataca Object Oriented Thinking 67 / 74

The String Class

The String class has:

• 15 constructors;

• More than 40 methods for manipulating strings.

Are the students supposed to know each and every one of these?

• Yes! ;)

How can we find out about the constructors / methods available for

String? Any ideas?

L. Tarrataca Object Oriented Thinking 68 / 74

The String Class

How can we find out about the constructors / methods available for

String? Any ideas?

Through the Java API Documentation:

• Google ‘‘javadoc 8’’ ;)

• Contains detailed documentation for the Java API specification:

• Thousands of classes;

L. Tarrataca Object Oriented Thinking 69 / 74

The String Class

L. Tarrataca Object Oriented Thinking 70 / 74

The String Class

L. Tarrataca Object Oriented Thinking 71 / 74

The String Class

Important notice:

• Java API Specification manuals should always be open:

• When developing code useful to have documentation on-hand =)

• There are a lot of other important Java classes already defined:

• Date

• Time

• StringBuilder, StringBuffer;

• LinkedList, HashMap, TreeMap (RB Tree), etc...

• All with appropriate examples that will help you =)

L. Tarrataca Object Oriented Thinking 72 / 74

Where to focus your study

Where to focus your study

After this class you should be able to:

• Apply class abstraction to develop software;

• Explore 6=’s between procedural and OO paradigm;

• Express relationships between classes;

• Design programs using the object-oriented paradigm

L. Tarrataca Object Oriented Thinking 73 / 74

References

References I

Liang, Y. (2014).

Introduction to Java Programming.

Pearson Education.

L. Tarrataca Object Oriented Thinking 74 / 74

	Introduction
	Class Abstraction and Encapsulation
	Thinking in Objects
	Class Relationships
	Association
	Aggregation and Composition

	Case Study: Designing the Course Class
	Case Study: Designing a Class for Stacks
	The String Class
	Where to focus your study
	References

