# Chapter 9 - Number Systems

#### Luis Tarrataca luis.tarrataca@gmail.com

CEFET-RJ

Luis Tarrataca

Chapter 9 - Number Systems

1 / 50

#### Motivation

2 Positional Number Systems

3 Binary System

Luis Tarrataca

Chapter 9 - Number Systems

2 / 50

= •) (()

4 Converting between Decimal and Binary

5 Hexadecimal Notation

6 References

## **Motivation**



#### In everyday life how do you count numbers? Any ideas?



# **Motivation**

Lets start the semester with an easy subject:

In everyday life how do you count numbers? Any ideas?



Decimal system is used to represent numbers:

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;

Consider the number 83:



#### Example

Consider the number 83:

- Number 10 was counted 8 times:
  - $8 \times 10 = 8 \times 10^{1}$
- Number 1 was counted 3 times:
  - $3 = 3 \times 10^{0}$
- Combining these elements:
  - *l.e.*:  $83 = 8 \times 10 + 3 = 8 \times 10^{1} + 3 \times 10^{0}$







#### Exercise

Consider the number 4728:

- Number 1000 was counted X times:
- Number 100 was counted Y times:
- Number 10 was counted Z times:
- Number 1 was counted D times:
- Combining these elements:

#### Exercise

Consider the number 4728:

- Number 1000 was counted 4 times:
  - $4 \times 1000 = 4 \times 10^3$
- Number 100 was counted 7 times:
  - $7 \times 100 = 7 \times 10^2$
- Number 10 was counted 2 times:
  - $2 \times 10 = 2 \times 10^{1}$
- Number 1 was counted 8 times:
  - $8 = 8 \times 10^{\circ}$
- Combining these elements:
  - *l.e.*:  $4728 = 4 \times 10^3 + 7 \times 10^2 + 2 \times 10^1 + 8 \times 10^0$



But what if we have decimal fractions? Any ideas?



But what if we have decimal fractions? Any ideas?

• E.g.: how do we represent the number 0.256 using the decimal system?

#### Example

Consider the number 0.256:

- Number 0.1 was counted 2 times:
  - $2 \times 0.1 = 2 \times 10^{-1}$
- Number 0.01 was counted 5 times:
  - $5 \times 0.01 = 5 \times 10^{-2}$
- Number 0.001 was counted 6 times:
  - $6 \times 10^{-3} = 6 \times 10^{-3}$
- Combining these elements:
  - *l.e.*:  $0.256 = 2 \times 10^{-1} + 5 \times 10^{-2} + 6 \times 10^{-3}$

But wait:

What if we have an integer part and a fractional part? Any ideas?





What if we have an integer part and a fractional part? Any ideas?

E.g.: how do we represent the number 442.256 using the decimal system?







#### Exercise

Consider the number 442.256:

What does this mean using the decimal system? Any ideas?

- Number 100 was counted X times:
- Number 10 was counted Y times:
- Number 1 was counted Z times:

Combining these elements:

I.e.: 442.256 =

- Number 0.1 was counted Q times:
  - •
- Number 0.01 was counted W times:
- Number 0.001 was counted E times:

17 / 50

#### Exercise

Consider the number 442.256:

What does this mean using the decimal system? Any ideas?

- Number 100 was counted 4 times:
  - $4 \times 100 = 4 \times 10^2$
- Number 10 was counted 4 times:
  - $4 \times 10 = 4 \times 10^{1}$
- Number 1 was counted 2 times:
  - $2 \times 1 = 2 \times 10^{\circ}$

- Number 0.01 was counted 5 times:
  - $5 \times 0.01 = 5 \times 10^{-2}$

Number 0.1 was counted 2 times:

•  $2 \times 0.1 = 2 \times 10^{-1}$ 

- Number 0.001 was counted 6 times:
  - $6 \times 0.001 = 6 \times 10^{-3}$

Combining these elements:

• *l.e.*:  $442.256 = 4 \times 10^2 + 4 \times 10^1 + 2 \times 10^0 + 2 \times 10^{-1} + 5 \times 10^{-2} + 6 \times 10^{-3}$ 

Some important observations:

- Decimal system is said to have a base, or radix, of 10;
- In any number:
  - Leftmost digit is referred to as the most significant digit (MSD);
  - Rightmost digit is called the least significant digit (LSD);

In conclusion:

| 4               | 7               | 2               | 2                | 5                | 6                |
|-----------------|-----------------|-----------------|------------------|------------------|------------------|
| 100s            | 10s             | 1s              | tenths           | hundredths       | thousandths      |
| 10 <sup>2</sup> | 10 <sup>1</sup> | 10 <sup>9</sup> | 10 <sup>-1</sup> | 10 <sup>-2</sup> | 10 <sup>-3</sup> |
| position 2      | position 1      | position 0      | position -1      | position -2      | position -3      |

Figure: Positional interpretation of decimal number: 472, 256 (Source: (Stallings, 2015))

TYPO:

Position 0 of the table should read 10<sup>0</sup>

In general,  $\hat{E}X$  where:

• 
$$X = \{\cdots d_2 d_1 d_0 \cdot d_{-1} d_{-2} d_{-3} \cdots \}$$

•  $X = \sum_i (d_i \times 10^i)$ 

# Positional Number Systems

Decimal system illustrates a positional number system (1/2):

- Each number is represented by a string of digits;
- Each digit position i has an associated weight r<sup>i</sup>:
  - r is the radix / base of the system;
- General form of a number in such a system with radix r is:

$$(\cdots a_3 a_2 a_1 a_0 . a_{-1} a_{-2} a_{-3} \cdots)_r$$

• Where  $a_i : 0 \le a_i < r$ 

# **Positional Number Systems**

Decimal system illustrates a positional number system (2/2):

Number is defined to have the value:

$$\cdots a_3 r^3 + a_2 r^2 + a_1 r^1 + a_0 r^0 + a_{-1} r^{-1} \cdots$$

The question is:

Do we really need to use the decimal system? Any ideas?

Decimal system:

- Radix 10;
- Digits in the range 0 through 9

What if human beings had 12 fingers?

Luis Tarrataca Chapter 9 - Number Systems

23 / 50

What if human beings had 12 fingers?

- Radix 12;
- Digits in the range 0 through 11;



# Fun fact



# Fun fact

You think 12 fingers is weird?

Have a look at Polydactyly:





### **Binary System**

Binary system only uses two digits:

- Radix / base 2;
- Binary digits 1 and 0 have the same meaning as in decimal notation:

$$0_2 = 0_{10}$$
  
 $1_2 = 1_{10}$ 

- Also a positional number system:
  - Each binary digit in a number has a value;

# Exercise



$$10_{2} = (1 \times 2^{1}) + (0 \times 2^{0}) = 2_{10}$$
  

$$11_{2} = (1 \times 2^{1}) + (1 \times 2^{0}) = 3_{10}$$
  

$$100_{2} = (1 \times 2^{2}) + (0 \times 2^{1}) + (0 \times 2^{0}) = 4_{10}$$

Luis Tarrataca

Chapter 9 - Number Systems

29 / 50

= •) 4 (\*

But what if are trying to represent a binary number with a fractional part? Any ideas?



But what if are trying to represent a binary number with a fractional part? Any ideas?

Binary number 1001.101<sub>2</sub> converts to what decimal number?







# $1001.101 = 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1}1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$ = 9.62510

Luis Tarrataca

Chapter 9 - Number Systems

33 / 50

≣ ୬) ଦ (•

Remember this formula for the decimal system:

- $X = \{\cdots d_2 d_1 d_0 d_{-1} d_{-2} d_{-3} \cdots \}$
- $X = \sum_{i} (d_i \times 10^i)$

What do you think would be the necessary changes for a **binary** system? Any ideas?



Remember this formula for the **decimal** system:

- $X = \{\cdots d_2 d_1 d_0 \cdot d_{-1} d_{-2} d_{-3} \cdots \}$
- $X = \sum_{i} (d_i \times 10^i)$

What do you think would be the necessary changes for a **binary** system? Any ideas?

- Radix / base has value 2;
- I.e.:  $X = \sum_{i} (d_i \times 2^i)$

**Converting between Decimal and Binary** 

#### Converting between Decimal and Binary

How can we convert between decimal and binary numbers? Any ideas?

Luis Tarrataca Cl

Chapter 9 - Number Systems

# Converting between Decimal and Binary

How can we convert between decimal and binary numbers? Any ideas?

Suppose we need to convert N from decimal into binary form (1/3):

- If we divide N by 2 we obtain a quotient  $N_1$  and a remainder  $R_0$ ;
- We then may write:
  - $N = 2 \times N_1 + R_0$
  - $R_0 = 0 \text{ or } 1$

Suppose we need to convert N from decimal into binary form (2/3):

- $N_1$  can also be divided by 2, then:
  - $N_1 = 2 \times N_2 + R_1$
  - $R_1 = 0 \text{ or } 1$

Suppose we need to convert N from decimal into binary form (3/3):

- N<sub>2</sub> can also be divided by 2, then:
  - $N_2 = 2 \times N_3 + R_2$
  - $R_2 = 0 \text{ or } 1$

Continuing this sequence will eventually produce:

• a quotient  $N_{m-1} = 1$ 

• a remainder  $R_{m-2}$  which is 0 or 1;

We are now able to obtain the **binary form**:

# $N = (R_{m-1} \times 2^{m-1}) + (R_{m-2} \times 2^{m-2}) + \dots + (R_2 \times 2^2) + (R_1 \times 2^1) + R_0$

# Example



# Example



#### Exercise

Converting the following decimal numbers into binary:

- 8<sub>10</sub> =?2
- 9<sub>10</sub> =?<sub>2</sub>
- 1024<sub>10</sub> =?<sub>2</sub>
- 1025<sub>10</sub> =?<sub>2</sub>
- 1027<sub>10</sub> =?<sub>2</sub>
- 2049<sub>10</sub> =?<sub>2</sub>
- 4096<sub>10</sub> =?2
- 4106<sub>10</sub> =?<sub>2</sub>

# Hexadecimal Notation

In computation:

- All forms of data is represented in a binary fashion;
- Very cumbersome for human beings =(
- Most computer professionals prefer a more compact notation:
  - Hexadecimal notation FTW! =)
    - Binary digits are grouped into sets of four bits (nibble);
    - Each possible combination of four binary digits is given a symbol;

This is the hexadecimal table:

| 0000 = 0 | 0100 = 4 | 1000 = 8 | 1100 = C |
|----------|----------|----------|----------|
| 0001 = 1 | 0101 = 5 | 1001 = 9 | 1101 = D |
| 0010 = 2 | 0110 = 6 | 1010 = A | 1110 = E |
| 0011 = 3 | 0111 = 7 | 1011 = B | 1111 = F |

Figure: (Source: (Stallings, 2015))

In general:

$$Z = \sum_{i} (h_i \times 16^i)$$

- Radix / base has value 16;
- Each hexadecimal digit  $h_i$  is in the decimal range  $0 \le h_i < 15$ ;

| Decimal (base 10) | Binary (base 2) | Hexadecimal (base 16) |  |
|-------------------|-----------------|-----------------------|--|
| 0                 | 0000            | 0                     |  |
| 1                 | 0001            | 1                     |  |
| 2                 | 0010            | 2                     |  |
| 3                 | 0011            | 3                     |  |
| 4                 | 0100            | 4                     |  |
| 5                 | 0101            | 5                     |  |
| 6                 | 0110            | 6                     |  |
| 7                 | 0111            | 7                     |  |
| 8                 | 1000            | 8                     |  |
| 9                 | 1001            | 9                     |  |
| 10                | 1010            | A                     |  |
| 11                | 1011            | В                     |  |
| 12                | 1100            | С                     |  |
| 13                | 1101            | D                     |  |
| 14                | 1110            | Е                     |  |
| 15                | 1111            | F                     |  |
| 16                | 0001 0000       | 10                    |  |
| 17                | 0001 0001       | 11                    |  |
| 18                | 0001 0010       | 12                    |  |
| 31                | 0001 1111       | 1F                    |  |
| 100               | 0110 0100       | 64                    |  |
| 255               | 1111 1111       | FF                    |  |
| 256               | 0001 0000 0000  | 100                   |  |

#### **Hexadecimal Notation**

Figure: (Source: (Stallings, 2015))

# Example



# Example

$$2C_{16} = (2_{16} \times 16^{1}) + (C_{16} \times 16^{0})$$
$$= (2_{10} \times 16^{1}) + (12_{10} \times 16^{0})$$
$$= 44$$

Luis Tarrataca

Chapter 9 - Number Systems

48 / 50

≣ ♥) ⊄ (\*

This concludes this lession:

Thank you for your time =)

#### **References** I

