
Chapter 8 - Virtual Memory

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

Luis Tarrataca Chapter 8 - Virtual Memory 1 / 82

luis.tarrataca@gmail.com


1 Motivation

2 Operating System Functions

3 OS a resource Manager

Scheduling

Process

Process States

Process Control Block

Scheduling Techniques

Luis Tarrataca Chapter 8 - Virtual Memory 2 / 82



4 Memory Management

Memory Swapping

Memory Partitioning

Paging

Virtual Memory

Demand paging

Page Table Structure

Translation Lookaside Buffer

Translation Lookaside Buffer

Luis Tarrataca Chapter 8 - Virtual Memory 3 / 82



5 Where to focus your study

6 References

Luis Tarrataca Chapter 8 - Virtual Memory 4 / 82



Motivation

Motivation

In computer architecture we have a series of components:

• CPU

• Memory

• Bus

• Pipeline

• I/O module
• USB;

• SCSI;

• SATA.

• etc...

These components interact with each other at the hardware level.

Who is responsible for managing these resources? Any ideas?

Luis Tarrataca Chapter 8 - Virtual Memory 5 / 82



Motivation

Who is responsible for managing these resources? Any ideas?

Operating System is a program that:

• Manages the computerÕs resources;

• Schedules the execution of other programs;

• Acts as an interface between applications and the computer hardware;

Luis Tarrataca Chapter 8 - Virtual Memory 6 / 82



Motivation

What are the main functions of an OS?

Luis Tarrataca Chapter 8 - Virtual Memory 7 / 82



Motivation

What are the main functions of an OS?

• An application is expressed in a programming language;

• But it would be difficult to have to worry about all computer components.

• To ease this task, the OS makes available a set of systems programs:

• Frequently used functions that assist in program creation;

• The management of files;

• And the control of I/O devices.

Luis Tarrataca Chapter 8 - Virtual Memory 8 / 82



Operating System Functions

Operating System Functions (1/2)

Operating system:

• Masks the details of the hardware from the programmer;

• Provides the programmer with a convenient interface for using the system;

• Acts as mediator:

• Easier for the programmer/application to use resources.

Luis Tarrataca Chapter 8 - Virtual Memory 9 / 82



Operating System Functions

Operating System Functions (2/2)

OS typically provides services in the following areas:

• Program execution:

• Instructions and data must be loaded into main memory;

• I/O devices and files must be initialized;

• and other resources must be prepared.

Luis Tarrataca Chapter 8 - Virtual Memory 10 / 82



OS a resource Manager

OS as a resource Manager (1/2)

Computer is a set of resources for:

• Moving, storing and processing data;

• And for the control of these functions;

OS is responsible for managing these resources:

• OS is in control of the computerÕs basic functions;

• But this control is exercised in a curious way...

Luis Tarrataca Chapter 8 - Virtual Memory 11 / 82



OS a resource Manager

OS as a resource Manager (1/2)

OS acts as an unusual control mechanism, i.e.:

• OS provides instructions for the processor;

• OS is also a computer program that is executed by the processor;

• Key difference is in the intent of the program:

• OS directs the processor in the use of system resources;

• OS directs the timing of processor execution of other programs;

1 OS must cease executing;

2 OS must allow for other programs to execute;

3 Eventually OS will regain control of the processor;

Luis Tarrataca Chapter 8 - Virtual Memory 12 / 82



OS a resource Manager

Figure: The operating system as a resource manager (Source: [Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 13 / 82



OS a resource Manager

Main memory contains:

• A portion of the OS:

• Kernel: most frequently used functions in the OS;

• But also other OS portions that may be in use;

• User programs and data;

• Main memory is controlled jointly by:

• OS and memory-management hardware in the processor;

Luis Tarrataca Chapter 8 - Virtual Memory 14 / 82



OS a resource Manager

OS is responsible for determining:

• When an I/O device can be used by a program;

• Access to and use of files.

• How processor time is split for program execution;

Luis Tarrataca Chapter 8 - Virtual Memory 15 / 82



OS a resource Manager Scheduling

Scheduling

Lets take a look at another dimension of the OS:

• Imagine we want to execute a single program;

• but this program sometimes will have to wait for I/Os;

Figure: Executing a single program (Source: [Stallings, 2015])

Is this an efficient use of the processor?

Luis Tarrataca Chapter 8 - Virtual Memory 16 / 82



OS a resource Manager Scheduling

Most of the time the processor is idle not doing anything.

• Processor executes orders of magnitude faster than I/O...

• Consider the following example:

Figure: System utilisation Example (Source: [Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 17 / 82



OS a resource Manager Scheduling

Instead of idling the system we could be running another program...

Figure: Executing two programs (Source: [Stallings, 2015])

But this second program may eventually also ask for I/Os...

Luis Tarrataca Chapter 8 - Virtual Memory 18 / 82



OS a resource Manager Scheduling

We can even add a third program...

Figure: Executing three programs (Source: [Stallings, 2015])

This way the processor idle times are diminished...

Luis Tarrataca Chapter 8 - Virtual Memory 19 / 82



OS a resource Manager Scheduling

The component responsible for program switching is the scheduler:

• In reality the scheduler switches between processes;

• What is a process?

• Executable code;

• Memory

• variables, data, etc;

• Call stack

• to keep track of active subroutines and/or other events;

• Operating system descriptors of resources

• files, sockets, etc;

• Processor context;

Luis Tarrataca Chapter 8 - Virtual Memory 20 / 82



OS a resource Manager Scheduling

Process States (1/2)

Process state will change over its lifetime:

Figure: Five state process model (Source: [Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 21 / 82



OS a resource Manager Scheduling

Process States (2/2)

Process state will change over its lifetime:

• New: Process is created but not yet ready to execute.

• Ready: Process is ready to execute, awaiting processor availability;

• Running: Process is being executed by the processor;

• Waiting: Process is suspended from execution waiting a system resource;

• Halted: Process has terminated and will be destroyed by the OS.

Luis Tarrataca Chapter 8 - Virtual Memory 22 / 82



OS a resource Manager Scheduling

Process Control Block

OS represents each process by a control block:

• Identifier: Unique process identifier;

• State: Current process state;

• Priority: Process priority level.;

• Program counter: Next instruction;

• Memory pointers: Process starting and

ending memory locations;

• Context data: Processor state registers;

• I/O status: I/O requests and I/O devices;

• Accounting Info: E.g. processor time,

clock time, time limits,...

Figure: Process Control Block (Source:

[Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 23 / 82



OS a resource Manager Scheduling Techniques

Scheduling Techniques

Consider the following scenario:

Figure: Scheduling Example (Source: [Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 24 / 82



OS a resource Manager Scheduling Techniques

Initially process A is running and:

1 The processor is executing instructions from process A;

2 The processor then:

• Ceases to execute A;

• Begins executing OS instructions.

3 This will happen for one of three reasons:

1 Process A issues a service call (e.g., an I/O request) to the OS.

• Execution of A is suspended until this call is satisfied by the OS.

2 Process A causes an interrupt signal:

• When this signal is detected, the processor ceases to execute A;

• OS processes the interrupt signal;

3 An event unrelated to process A causes an interrupt.

• E.g. is the completion of an I/O operation.

Luis Tarrataca Chapter 8 - Virtual Memory 25 / 82



OS a resource Manager Scheduling Techniques

Process A therefore is going to block and control is passed to the OS:

1 The OS saves:

• Current processor context (registers);

• PC;

2 The OS:

1 changes the state of A to blocked;

2 decides which process should be executed next;

3 instructs the processor to restore BÕs context data;

4 proceeds with the execution of B where it left off.

Luis Tarrataca Chapter 8 - Virtual Memory 26 / 82



OS a resource Manager Scheduling Techniques

Interruption examples:

• Memory error:

• process attempts to access unauthorised memory location;

• Instruction error:

• process attempts to execute a privileged instructions;

• Timeout:

• each process is granted the processor for a short period at a time.

Luis Tarrataca Chapter 8 - Virtual Memory 27 / 82



Memory Management

Memory Management

Now that we have seen processes consider the following:

• Few processes → high processor idle times → not efficient;

• Many processes → little processor idle times → efficient;

• Objective:

Memory needs to be allocated efficiently to pack as many processes

into memory as possible.

Luis Tarrataca Chapter 8 - Virtual Memory 28 / 82



Memory Management

How does the OS handle the memory from each program? Any ideas?

Luis Tarrataca Chapter 8 - Virtual Memory 29 / 82



Memory Management Memory Swapping

Memory Swapping

Consider the following scenario:

• There are multiple processes to execute;

• It is possible to perform process switching;

• Processor is much faster than I/O:

• Even with multiprogramming:

• Processor could be idle most of the time.

Luis Tarrataca Chapter 8 - Virtual Memory 30 / 82



Memory Management Memory Swapping

What can we do to pack into main memory as many processes as

possible? Any ideas?

Luis Tarrataca Chapter 8 - Virtual Memory 31 / 82



Memory Management Memory Swapping

What can we do to pack into main memory as many processes as

possible?

• Increase main memory (RAM);

• Expensive...;

• Any ideas?

Luis Tarrataca Chapter 8 - Virtual Memory 32 / 82



Memory Management Memory Swapping

What can we do to pack into main memory as many processes as

possible?

• Increase main memory (RAM);

• Expensive...;

• Can we use any other type of memory?

Luis Tarrataca Chapter 8 - Virtual Memory 33 / 82



Memory Management Memory Swapping

What can we do to pack into main memory as many processes as

possible?

• Increase main memory (RAM);

• Expensive...;

• Can we use any other type of memory?

• Well, the hard drive is a type of memory ;)

Luis Tarrataca Chapter 8 - Virtual Memory 34 / 82



Memory Management Memory Swapping

Idea: Use the hard drive as memory for processes:

• Eventually: main memory will be full;

• Rather than the processor remain idle the OS:

• Swaps one of the blocked processes back out to disk;

• Selects one of the processes stored in disk to go to main memory;

• Execution then continues with the new process.

• This procedure is called memory swapping.

Luis Tarrataca Chapter 8 - Virtual Memory 35 / 82



Memory Management Memory Swapping

Can you see any potential problem with memory swapping?

Luis Tarrataca Chapter 8 - Virtual Memory 36 / 82



Memory Management Memory Swapping

Can you see any potential problem with memory swapping?

• Well we are trying to minimize processor idle times;

• These usually happen when I/O operations occur;

• Accessing the hard disk is an I/O operation...

• But because disk I/O is generally the fastest I/O on a system:

• swapping will usually enhance performance.

Luis Tarrataca Chapter 8 - Virtual Memory 37 / 82



Memory Management Memory Partitioning

Memory Partitioning (1/2)

How should the OS partition the memory?

• Should every process have the

same amount of memory?

• But what if we need less/more

space?

Figure: Equal size partitions (Source: [Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 38 / 82



Memory Management Memory Partitioning

Memory Partitioning (2/2)

How should the OS partition the memory?

• Or should different processes

have different amounts of

memory?

• When a process is brought into

memory, it is placed in the

smallest available partition that

will hold it.

Figure: Unequal size partitions (Source: [Stallings, 2015])
Luis Tarrataca Chapter 8 - Virtual Memory 39 / 82



Memory Management Memory Partitioning

Can you see any problem with this type of partitioning?

Luis Tarrataca Chapter 8 - Virtual Memory 40 / 82



Memory Management Memory Partitioning

Can you see any problem with this type of partitioning?

• Wasted memory: even with the use of unequal fixed-size partitions;

• In most cases:

• A process will not require as much memory as provided by the partition;

• E.g. a process that requires 3M bytes of memory would be placed in the 4M

partition, wasting 1M that could be used by another process...

Luis Tarrataca Chapter 8 - Virtual Memory 41 / 82



Memory Management Memory Partitioning

Can you think of an alternative method for partitioning memory?

Luis Tarrataca Chapter 8 - Virtual Memory 42 / 82



Memory Management Memory Partitioning

Can you think of an alternative method for partitioning memory?

• What about variable-size partitions:

• When a process is brought into memory:

• Allocate exactly as much memory as it requires and no more.

Luis Tarrataca Chapter 8 - Virtual Memory 43 / 82



Memory Management Memory Partitioning

• What about variable-size partitions:

• When a process is brought into memory:

• Allocate exactly as much memory as it requires and no more.

Figure: Variable-size partitions (Source: [Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 44 / 82



Memory Management Memory Partitioning

Can you see any problems with this type of partitioning scheme?

Luis Tarrataca Chapter 8 - Virtual Memory 45 / 82



Memory Management Memory Partitioning

Can you see any problems with this type of partitioning scheme?

• This method starts out well:

• However, eventually the memory will be full of holes.;

• This happens because the processes either:

• Terminate;

• are removed from main to secondary memory (HD, SSD, etc..).

• From time to time:

• OS compacts the processes in memory;

• This results in all the free memory being placed together in one block;

• This is a time-consuming procedure, wasteful of processor time.

Luis Tarrataca Chapter 8 - Virtual Memory 46 / 82



Memory Management Memory Partitioning

Figure: The effects of dynamic partitioning (Source: [Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 47 / 82



Memory Management Memory Partitioning

Overall conclusion:

• Fixed-size and variable-size partitions are inefficient in the use of memory.

Can we do any better than these types of partitioning schemes?

Luis Tarrataca Chapter 8 - Virtual Memory 48 / 82



Memory Management Memory Partitioning

Overall conclusion:

• Fixed-size and variable-size partitions are inefficient in the use of memory.

Can we do any better than these types of partitioning schemes?

• Yes, we can through a mechanism called paging

Luis Tarrataca Chapter 8 - Virtual Memory 49 / 82



Memory Management Paging

Paging

Consider an alternative partitioning scheme:

• Allow memory to be partitioned into equal fixed-size small chunks:

• known as page frames

• Each process is also divided into small fixed-size chunks of some size:

• known as pages

• Each page can be assigned to a page frame, then:

• At most, wasted space for a process will be a fraction of the last page.

Luis Tarrataca Chapter 8 - Virtual Memory 50 / 82



Memory Management Paging

Example

Figure: Allocation of free frames (Source: [Stallings, 2015])Luis Tarrataca Chapter 8 - Virtual Memory 51 / 82



Memory Management Paging

At a given point in time:

• some of the frames in memory are in use and some are free;

• the list of free frames is maintained by the OS;

• process A, stored on disk, consists of four pages.

• When it comes time to load this process the OS:

• finds four free frames;

• loads the four pages of the process A into the four frames.

Luis Tarrataca Chapter 8 - Virtual Memory 52 / 82



Memory Management Paging

Do the frames need to be contiguous (1/2)?

• No they do not. We can use the concept of logical address.

• OS maintains a page table for each process:

• Showing the frame location for each page of the process;

• Within the process each logical address consists of:

• a page number and a relative address within the page;

• Logical- to-physical address translation is done by processor.

Luis Tarrataca Chapter 8 - Virtual Memory 53 / 82



Memory Management Paging

Do the frames need to be contiguous (2/2)?

• Processor must know how to access the process’s page table:

• Input is a logical address:

• (page number, relative address)

• Output is a physical address obtained through the process page table:

• (frame number, relative address)

Luis Tarrataca Chapter 8 - Virtual Memory 54 / 82



Memory Management Paging

Figure: Logical and physical addresses (Source: [Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 55 / 82



Memory Management Paging

Can you see any other improvement that can be done to memory

management?

Luis Tarrataca Chapter 8 - Virtual Memory 56 / 82



Memory Management Paging

Can you see any other improvement that can be done to memory

management?

• With the previous scheme:

• OS always loads all the memory of a process;

Luis Tarrataca Chapter 8 - Virtual Memory 57 / 82



Memory Management Paging

Can you see any other improvement that can be done to memory

management?

• With the previous scheme:

• OS always loads all the memory of a process;

Do we really need to always load an entire program?

Luis Tarrataca Chapter 8 - Virtual Memory 58 / 82



Memory Management Paging

Do we really need to always load an entire program?

• Space-Time locality principle...

Luis Tarrataca Chapter 8 - Virtual Memory 59 / 82



Memory Management Paging

Do we really need to always load an entire program?

• Space-Time locality principle...

• Idea:

• What if we only load those pages that are required at a single moment?

• This is the concept of virtual memory

Luis Tarrataca Chapter 8 - Virtual Memory 60 / 82



Memory Management Virtual Memory

Virtual Memory

Each process page is brought in only when it is needed (1/2):

1 Procedure is known as demand paging;

2 Locality principle:

• Same values, or related storage locations, are frequently accessed.

• Why then would we need to load every page? Wasteful...

Luis Tarrataca Chapter 8 - Virtual Memory 61 / 82



Memory Management Virtual Memory

Each process page is brought in only when it is needed (2/2):

3 We can make better use of memory by loading in just a few pages

4 If the program attempts to access a page not in main memory:

• a page fault is triggered: OS brings in the desired page;

• These pages reside in secondary memory;

5 Virtual Memory refers to this much larger memory usable by the program.

Luis Tarrataca Chapter 8 - Virtual Memory 62 / 82



Memory Management Virtual Memory

Can you see any implication of using virtual memory? Any ideas?

Luis Tarrataca Chapter 8 - Virtual Memory 63 / 82



Memory Management Virtual Memory

Can you see any implication of using virtual memory? Any ideas?

At any one time, only a few pages of a process are in memory:

• Therefore more processes can be maintained in memory.

• Time is saved because:

• Unused pages are not swapped in and out of memory;

• Less RAM/HD acesses;

• Consequence:

• Possible for a process to be larger than all of main memory.

Luis Tarrataca Chapter 8 - Virtual Memory 64 / 82



Memory Management Virtual Memory

OS must be clever about how it manages this scheme: (1/2)

• When it brings one page in, it must throw another page out;

• this is known as page replacement.

Luis Tarrataca Chapter 8 - Virtual Memory 65 / 82



Memory Management Virtual Memory

OS must be clever about how it manages this scheme: (2/2)

• OS might throw out a page just before it is about to be used:

• OS will just have to get that page again almost immediately;

• Too much of this leads to a condition known as thrashing:

• Processor spends most of its time swapping pages...

• ...rather than executing instructions

• extremely slowwww computerrrr...

Luis Tarrataca Chapter 8 - Virtual Memory 66 / 82



Memory Management Virtual Memory

Do you have any idea how to solve this problem? Any ideas?

Luis Tarrataca Chapter 8 - Virtual Memory 67 / 82



Memory Management Virtual Memory

Do you have any idea how to solve this problem? Any ideas?

• OS needs to guess which pages are least likely to be used:

• E.g. based on recent history.

• We have seen some when we studied cache systems:

• FIFO;

• LFU;

• LRU;

Luis Tarrataca Chapter 8 - Virtual Memory 68 / 82



Memory Management Virtual Memory

Example (1/2)

VAX architecture:

• Each process can have 231 bytes of virtual memory;

• Each process has pages of size 29 bytes

• Therefore we need to index 231

29 = 222 pages per process...

• Amount of memory devoted to page tables would be very high;

• How can we solve this problem?

Luis Tarrataca Chapter 8 - Virtual Memory 69 / 82



Memory Management Virtual Memory

Example (2/2)

VAX architecture:

• Each process can have 231 bytes of virtual memory;

• Each process has pages of size 29 bytes

• Therefore we need to index 231

29 = 222 pages...

• Amount of memory devoted to page tables is very high;

• How can we solve this problem?

• We use virtual memory for processes;

• We can also use virtual memory for process page tables;

• This way we only load entries on a on-demand basis.

Luis Tarrataca Chapter 8 - Virtual Memory 70 / 82



Memory Management Translation Lookaside Buffer

Translation Lookaside Buffer

Every virtual memory reference can cause two physical memory

accesses:

• One to fetch the appropriate page table entry;

• And one to fetch the desired data.

Can you see any problem with this?

Luis Tarrataca Chapter 8 - Virtual Memory 71 / 82



Memory Management Translation Lookaside Buffer

Translation Lookaside Buffer

Every virtual memory reference can cause two physical memory

accesses:

• one to fetch the appropriate page table entry;

• and one to fetch the desired data.

Can you see any problem with this?

• We are doubling the number of memory accesses;

• Therefore we are also doubling the memory access time...

Luis Tarrataca Chapter 8 - Virtual Memory 72 / 82



Memory Management Translation Lookaside Buffer

What do we always do when we need to reduce memory accesses?

Luis Tarrataca Chapter 8 - Virtual Memory 73 / 82



Memory Management Translation Lookaside Buffer

What do we always do when we need to reduce memory accesses?

• Use cache for page table entries ;)

• Translation lookaside buffer (TLB)

• Functions in the same way as a memory cache;

• Contains those page table entries that have been most recently used.

• Physical piece of hardware

Luis Tarrataca Chapter 8 - Virtual Memory 74 / 82



Memory Management Translation Lookaside Buffer

Figure: Operation of paging and translation look aside buffer (Source: [Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 75 / 82



Memory Management Translation Lookaside Buffer

A virtual address will have the form (page number, offset).

1 Memory consults TLB to see if the matching page table entry is present:

• If it is: physical address is generated;

• If not: entry is accessed from a page table.

2 Once the real address is generated:

• Cache is consulted to see if the block containing that word is present:

• Do not confuse this cache with the TLB, different ‘‘caches’’;

• If the word is present, it is returned to the processor;

• If not, the word is retrieved from main memory.

Luis Tarrataca Chapter 8 - Virtual Memory 76 / 82



Memory Management Translation Lookaside Buffer

Virtual memory must interact with system cache (1/2):

1 TLB is checked to see if page table entry is present:

• If yes: physical address is generated;

• If not: entry is accessed from a page table;

2 Once physical address is generated:

• Cache is checked to see if the block containing that word is present:

• If yes: word is return to processor;

• If not: word is fetched from main memory;

Luis Tarrataca Chapter 8 - Virtual Memory 77 / 82



Memory Management Translation Lookaside Buffer

Virtual memory must interact with system cache (2/2):

Figure: Translation lookaside buffer and cache operation (Source: [Stallings, 2015])

Luis Tarrataca Chapter 8 - Virtual Memory 78 / 82



Memory Management Translation Lookaside Buffer

Notice the complexity of a single memory reference:

• Virtual address needs to be translated to physical address:

• This involves reference to a page table which may be:

• in the TLB, in main memory, or on disk.

• Once the physical address of the word is obtained:

• word may be in cache, in main memory, or on disk

Luis Tarrataca Chapter 8 - Virtual Memory 79 / 82



Where to focus your study

Where to focus your study

After this class you should be able to:

• Summarize, at a top level, the key functions of OS;

• Explain the concept of scheduling;

• Understand the reason for memory partitioning ;

• Explain the various techniques for memory partitioning;

• Define virtual memory;

• Assess the relative advantages of paging.

Luis Tarrataca Chapter 8 - Virtual Memory 80 / 82



Where to focus your study

Less important to know how these solutions were implemented:

• details of specific memory management units;

Your focus should always be on the building blocks for developing a solution

=)

Luis Tarrataca Chapter 8 - Virtual Memory 81 / 82



References

References I

Stallings, W. (2015).

Computer Organization and Architecture: Designing for Performance.

Pearson Education, 10th edition edition.

Luis Tarrataca Chapter 8 - Virtual Memory 82 / 82


	Motivation
	Operating System Functions
	OS a resource Manager
	Scheduling
	Scheduling Techniques

	Memory Management
	Memory Swapping
	Memory Partitioning
	Paging
	Virtual Memory
	Translation Lookaside Buffer
	Translation Lookaside Buffer

	Where to focus your study
	References

