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Introduction

Introduction

• Today we will focus on presenting a top-level view of computer function.

• We will be interested in answering the following questions:

What are the main components of computer function?
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Introduction

Introduction

• Today we will focus on presenting a top-level view of computer function.

• We will be interested in answering the following questions:

How are these components organized?
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Introduction

Introduction

• Today we will focus on presenting a top-level view of computer function.

• We will be interested in answering the following questions:

How do these components communicate with each other?
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Introduction

Anyone has any idea how to answer the previous questions?

• What are the main components of computer function?

• How are these components organized?

• How do these components communicate with each other?

Any ideas?
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Introduction

At a top level, a computer consists of:

• Central Processing Unit;

• Memory;

• I/O components.

The components are interconnected in order to execute programs.
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Introduction

This interconnection requires:

• Control signals to:

• Control other components;

• Be controlled by other components;

• Data signals to:

• Exchange information with other components.

• An infrastructure to send / receive all these signals.

Lets have a top down look into some of these components...
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Computer Components

Computer Components

Most computer concepts were developed by this person:

Does anyone know who this person is?

• 1 extra point if you answer in 10 seconds... #NOT

Luis Tarrataca Chapter 3 - Top Level View 10 / 127



Computer Components

Computer Components

Most computer concepts were developed by John von Neumann:

• Hungarian-born scientist;

• Worked on the Manhattan Project;

• Prolific contributor to diverse fields:

• Physics;

• Mathematics;

• Economics;

• Game theory;

• ...

• One of humanity’s greatest minds.
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Computer Components

Von Neumann architecture is based on three concepts:

• Ability to write/read data from memory;

• Ability to execute instruction sequentially;

• Ability to process inputs/outputs;
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Computer Components

Von Neumann architecture is based on three concepts:

• Ability to write/read data from memory;

• Ability to execute instruction sequentially;

• Ability to process inputs/outputs;

But why we need these components? Any ideas?
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Computer Components

Consider the original method for computation based on digital circuits:

• Allow us to calculate binary functions.

• Employs a small set of logical gates:

• AND, OR, NOT, NAND, NOR, XOR, XNOR

• Employ some type of memory:

• Flip-flop SR, JK, D
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Computer Components

Do you see any disadvantage with using digital circuits? Any ideas?
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Computer Components

Do you see any disadvantage with using digital circuits? Any ideas?

• Rigid design:

• Only works for a specific function...

• What if we need to calculate additional functions?

• Requires generating a new circuit...

• producing new truth tables;

• algebraic simplification;

• circuit design.

• Basically a lot of work...
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Computer Components

So what can be done to circumvent this problem? Any ideas?
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Computer Components

Suppose that instead of having such an hardwired circuit we have:

• A module capable of calculating arithmetic/logic functions:

• Logic functions:

• AND, OR, NOT, NAND, NOR, XOR, XNOR

• Arithmetic functions:

• addition, subtraction, multiplication, division, SHL, SHR,...
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Computer Components

• We also need a way to control such a module:

• Control signals indicate which operation to do;

• Data forwarding mechanisms:

• To provide input to the arithmetic / logic functions;

• To store the output of such functions.
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Computer Components

• With such a general-purpose hardware:

• System accepts data and control signals and produces results.

• Programmer merely needs to supply a new set of control signals.

• instead of rewiring the hardware for each new program;
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Computer Components

Regarding the control signals...

How shall the control signals be supplied? Any ideas?
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Computer Components

How shall the control signals be supplied?

• Program is a sequence of steps;

• At each step, an arithmetic/logical operation is performed on data;

• Each instruction thus requires its own set of control signals =)

• Hardware interprets each instruction and generates control signals.
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Computer Components

The Central Processing Unit (CPU) incorporates these two responsibilities:

• An instruction interpreter capable of generating control signals;

• A general-purpose module for arithmetic/logic functions.
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Computer Components

• CPU provides a way to perform arithmetic/logic operations;

Is this capability enough to have a functional computer? Any ideas?
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Computer Components

• CPU provides a way to perform arithmetic/logic operations;

Is this capability enough to have a functional computer? Any ideas?

• Several other components are needed to yield a functioning computer.
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Computer Components

Data and instructions must be provided to the system:

• Input module:

• contains basic components for accepting data and instructions

• Output module:

• contains the means of reporting results.

Taken together, these are referred to as I/O components.

Are these two components enough for a functional computer? Any

ideas?
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Computer Components

Data operations may require access to more than one element:

• there must be a place to store both instructions and data.

• that module is called main memory

• to distinguish it from external storage or peripheral devices.
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Computer Components

Von Neumman architecture

We have thus the main components of the von Neumann architecture:

• Memory module

• I/O module

• CPU
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Computer Components

Guess what we will be doing next? Any ideas?
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Computer Components

Guess what we will be doing next? Any ideas?

• We will be having a more detailed look at these components...
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Computer Components

Figure: A top level view of the main computer components (Source: [Stallings, 2015])
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Computer Components

CPU has a set of internal registers (1/3):

• Program Counter (PC):

• specifies the memory address of the next instruction to be executed.

• Instruction Register (IR):

• holds the instruction currently being executed or decoded.
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Computer Components

CPU has a set of internal registers (2/3):

• memory address register (MAR):

• specifies memory address to be read/written;

• memory buffer register (MBR):

• contains the data to be written into memory or...

• receives the data read from memory;
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Computer Components

CPU has a set of internal registers (3/3):

• I/O address register (I/OAR):

• specifies a particular I/O device;

• I/O buffer (I/OBR) register:

• used for the exchange of data between an I/O module and the CPU;
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Computer Components

Memory module consists of:

• Set of sequentially numbered addresses;

• Each location contains binary information (word);

• Data;

• Or instructions.
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Computer Components

I/O module responsible for:

• Transfers data from external devices to CPU and memory;

• and vice versa

• Containing internal buffers for temporarily holding data
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Computer Function

Computer Function

Basic function performed by a computer is execution of a program:

• Consisting of a set of instructions stored in memory;

• Processor does the actual work by executing the specified instructions;

This gives us a hint of how to perform instruction processing...
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Computer Function Basic instruction cycle

Basic instruction cycle

In its simplest form, instruction processing consists of two steps:

• Fetch stage:

• processor reads instructions from memory one at a time

• Execution stage:

• processor executes the instruction

Figure: Basic Instruction Cycle (Source: [Stallings, 2015])
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Computer Function Basic instruction cycle

Figure: Basic Instruction Cycle (Source: [Stallings, 2015])

Program execution consists of a loop:

1 Fetch instruction stage;

2 Execute instruction stage;
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Computer Function Basic instruction cycle

At the beginning of each instruction cycle:

• Processor fetches an instruction from memory;

• Program counter holds the address of the instruction to be fetched;

• After each instruction fetch the PC is incremented. Why?

• In order to fetch the memory address of next instruction;
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Computer Function Basic instruction cycle

Example

Consider a computer where each instruction occupies 16-bits in memory.

• Assume that the PC is set to memory location 300;

• Each location address contains a 16-bit word;

• The processor will next fetch the instruction at location 300.

• On succeeding instruction cycles, it will fetch instructions from locations:

1 301;

2 302;

3 and so on.

• This sequence may be altered. Why?

• Conditional jumps (IF’s) to other areas of code.
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Computer Function Basic instruction cycle

The fetched instruction is loaded into a register in the processor

• Known as the instruction register (IR);

• Instruction specifies control signals for the processor;

• Processor interprets the instruction and performs the required action.
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Computer Function Basic instruction cycle

What types of actions are usually performed?

In general, these actions fall into four categories:

• Processor ↔ memory data transfers;

• Processor ↔ I/O peripherals data transfers;

• Data processing: arithmetic or logic operations on data;

• Control: E.g. alter the PC because of conditional jumps (IF’s)
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Computer Function Basic instruction cycle

Seems confusing? Well, maybe it helps if we use an example... =)
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Computer Function Basic instruction cycle

Example ( 1 / 11 )

Consider a processor:

• Containing a single data register, called an accumulator (AC).

• Both instructions and data are 16 bits long;

• Convenient to organize memory using 16-bit words;
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Computer Function Basic instruction cycle

Example ( 2 / 11 )

• Instruction format is the following:

Figure: Instruction Format (Source: [Stallings, 2015])

• Opcode: code of the operation to be executed (+,-,×, ÷,etc...);

• How many bits are reserved for the opcode? Total combinations?

• Addressing memory,

• How many bits are reserved for the addressing memory? Total combinations?
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Computer Function Basic instruction cycle

Example ( 2 / 11 )

• The instruction format is the following:

Figure: Instruction Format (Source: [Stallings, 2015])

• Opcode: code of the operation to be executed (+,-,×, ÷,etc...);

• 4 bits are reserved, i.e there can be 2
4

different opcodes;

• Addressing memory,

• 12 bits are reserved, i.e. 2
12

memory words can be addressed.
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Computer Function Basic instruction cycle

Example ( 3 / 11 )

Consider that we have the following opcodes:

0001 Load AC from memory

0010 Store AC to memory

0101 Add to AC from memory

Also, each number requires 16 bits and has the following representation:

Figure: Integer Format

• One bit for signal;

• 15-bits for magnitude.
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Computer Function Basic instruction cycle

Example ( 4 / 11 )

Now lets try to execute the following instructions (assume PC=300):

1 Add memory contents at address 940 to the contents at address 941;

2 Store the result in the latter location.

Any ideas of how all the previous concepts will function and interconnect

with each other?
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Computer Function Basic instruction cycle

Example ( 5 / 11 )

Assume PC=300:

Figure: Example of Program Execution (contents

of memory and registers in hexadecimal)

(Source: [Stallings, 2015])

Opcodes:

0001 Load AC from memory

0010 Store AC to memory

0101 Add to AC from memory
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Computer Function Basic instruction cycle

Example ( 6 / 11 )

Assume PC=300:

Figure: Example of Program Execution (contents

of memory and registers in hexadecimal)

(Source: [Stallings, 2015])

Opcodes:

0001 Load AC from memory

0010 Store AC to memory

0101 Add to AC from memory
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Computer Function Basic instruction cycle

Example ( 7 / 11 )

Assume PC=300:

Figure: Example of Program Execution (contents

of memory and registers in hexadecimal)

(Source: [Stallings, 2015])

Opcodes:

0001 Load AC from memory

0010 Store AC to memory

0101 Add to AC from memory
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Computer Function Basic instruction cycle

Example ( 8 / 11 )

Assume PC=300:

Figure: Example of Program Execution (contents

of memory and registers in hexadecimal)

(Source: [Stallings, 2015])

Opcodes:

0001 Load AC from memory

0010 Store AC to memory

0101 Add to AC from memory
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Computer Function Basic instruction cycle

Example ( 9 / 11 )

Assume PC=300:

Figure: Example of Program Execution (contents

of memory and registers in hexadecimal)

(Source: [Stallings, 2015])

Opcodes:

0001 Load AC from memory

0010 Store AC to memory

0101 Add to AC from memory
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Computer Function Basic instruction cycle

Example ( 10 / 11 )

Assume PC=300:

Figure: Example of Program Execution (contents

of memory and registers in hexadecimal)

(Source: [Stallings, 2015])

Opcodes:

0001 Load AC from memory

0010 Store AC to memory

0101 Add to AC from memory

Luis Tarrataca Chapter 3 - Top Level View 55 / 127



Computer Function Basic instruction cycle

Example ( 11 / 11 )

In textual form:

1 The PC contains value 300, the address of the first instruction.

1 This instruction (the value 1940 in hexadecimal) is loaded into the instruction register

IR, and the PC is incremented;

2 The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be loaded.

1 The remaining 12 bits (three hexadecimal digits) specify the address (940) from

which data are to be loaded.

3 The next instruction (5941) is fetched from location 301, and the PC is incremented.

4 The old contents of the AC and the contents of location 941 are added, and the result is

stored in the AC.

5 The next instruction (2941) is fetched from location 302, and the PC is incremented.

6 The contents of the AC are stored in location 941.
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Computer Function Basic instruction cycle

Some important notes:

• Last example was very simplified;

• But the overall control structure and information flow is present;

• However, there are a lot of details missing;

Lets look into a more detailed instruction cycle...
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Computer Function A more detailed instruction cycle

A more detailed look at the basic instruction cycle:

Figure: A more realistic instruction cycle state diagram (Source: [Stallings, 2015])
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Computer Function A more detailed instruction cycle

The states can be described as follows (1/2):

• Instruction address calculation (IAC):

• Determine address of next instruction to be executed;

• Instruction fetch (IF):

• Read instruction from memory into the processor;

• Instruction operation decoding (IOD):

• Determine type of operation to be performed and operand(s) to be used.
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Computer Function A more detailed instruction cycle

The states can be described as follows (2/2):

• Operand address calculation (OAC):

• Determine the address of the operand.

• Operand fetch (OF):

• Fetch the operand from memory or read it in from I/O.

• Data operation (DO):

• Perform the operation indicated in the instruction.

• Operand store (OS):

• Write the result into memory or to I/O.
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Computer Function A more detailed instruction cycle

Now that we have seen this more detailed instruction cycle...

Do you think it is enough? Should we add other states? Is there something

missing?
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Computer Function A more detailed instruction cycle

Now that we have seen this more detailed instruction cycle...

Do you think it is enough? Should we add other states? Is there something

missing?

• What if an error occurs?

• What if we want to execute something periodically?

• What if we want to read data from an input device (e.g.: keyboard)?

• etc....
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Interrupts

Interrupts

There exists some situations where we may want to interrupt the CPU:

• Program: arithmetic overflow, division by zero, segfault, etc..

• Timer: execute something periodically;

• I/O: exchange communication between I/O devices and the processor;

• Hardware: generated by an hardware failure

• e.g.: power, memory parity error, etc;
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Interrupts

Because of these reasons (and some others):

• Computers provide a mechanism to interrupt the processing;

• Any ideas of the mechanism name?

Luis Tarrataca Chapter 3 - Top Level View 64 / 127



Interrupts

Because of these reasons (and some others):

• Virtually all computers provide a mechanism to interrupt the normal

processing of the processor.

• Any ideas of the mechanism name?

• Interruptions =)
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Interrupts

Can you see any implications for interrupting the processor?
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Interrupts

Can you see any implications for interrupting the processor?

1 An interrupt request signal is sent to the processor.

2 The processor responds by suspending current program execution;

• What does this imply? Any ideas? (See Slide 73)

3 The processor executes a routine capable of dealing with the interrupt;

• A.k.a. interruption handler.

4 After the handler finishes the program returns to the original execution.

• What does this imply? Any ideas? (See Slide 74)
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Interrupts

Figure: Transfer of control via interrupts (Source: [Stallings, 2015])
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Interrupts

So, the question now is how can the processor detect interruptions?

Any ideas?
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Interrupts

Lets quickly remember the basic instruction cycle:

Figure: A more realistic instruction cycle state diagram (Source: [Stallings, 2015])
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Interrupts

Lets quickly remember the basic instruction cycle:

Figure: A more realistic instruction cycle state diagram (Source: [Stallings, 2015])

To accommodate interrupts:

• An interrupt cycle can be added to the end of instruction cycle...
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Interrupts

To add interrupts, an interrupt cycle can be added...

Figure: Instruction Cycle State Diagram, with Interrupts (Source: [Stallings, 2015])

HINT: This is one of the most important slides of the entire semester ;)
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Interrupts

Interruption Processing (1/4)

• Processor checks to see if any interrupts have occurred

• indicated by the presence of an interrupt signal;

• If no interrupts are pending:

1 processor proceeds to the fetch cycle and...

2 fetches the next instruction of the current program.
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Interrupts

Interruption Processing (2/4)

• If an interrupt is pending, the processor does the following (1/3):

1 suspends execution of the program being executed. This entails:

• Saving the PC;

• Saving the contents of the registers;

• This is called saving the context of the program

2 sets the PC to the starting address of an interrupt handler routine;
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Interrupts

Interruption Processing (3/4)

• If an interrupt is pending, the processor does the following (2/3):

3 The instruction cycle is restarted, but this time for the interruption handler;

• fetch the first instruction in the interrupt handler program

• etc...

• Eventually the interruption routine will terminate;
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Interrupts

Interruption Processing (4/4)

• If an interrupt is pending, the processor does the following (3/3):

4 When the interrupt handler routine is completed:

• Processor needs to resume execution of the original program;

• Processor restores contents of the previously saved registers...

• ...Continuing the execution of the previously saved PC;

• This is called restoring the context of the program
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Interrupts

Can you see any problem with the interruption scheme?
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Interrupts

Can you see any problem with the interruption scheme?

There is some overhead involved in this process:

• Extra instructions must be executed:

• to determine the nature of the interrupt;

• decide the appropriate action.

• However:

• Not enough to offset the performance of waiting on, e.g., I/O operations.
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Interrupts

We now have a basic understanding of the interruption mechanism...

But what if multiple interruptions being generated at the same time?

Example:

• A key is pressed;

• A segfault is generated;
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Multiple Interrupts

Multiple Interrupts

Suppose that multiple interrupts can occur, e.g.: a program may be

• receiving data from a communications line:

• an interruption is generated every time a unit of data arrives.

• printing:

• an interruption is generated every time a print operation is completed;

How should the system deal with such cases? Any ideas?
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Multiple Interrupts

Multiple Interrupts

Suppose that multiple interrupts can occur, e.g.: a program may be

• receiving data from a communications line:

• an interruption is generated every time a unit of data arrives.

• printing:

• an interruption is generated every time a print operation is completed;

How should the system deal with such cases? Any ideas?

• The are two possibilities...
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Multiple Interrupts

What can we do to solve this issue? Any ideas?
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Multiple Interrupts

1st Possibility

Disable interrupts while an interrupt is being processed:

• The processor will ignore interrupt request signals;

• Emphasis on the ‘‘ignore’’, interrupt signals can still be generated.

• After the interrupt handler routine completes:

• Interrupts are enabled;

• the processor checks to see if any interrupts have occurred.
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Multiple Interrupts

Can you see any problem with this approach of disabling interrupts while

processing an interruption?
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Multiple Interrupts

Can you see any problem with this approach of disabling interrupts while

processing an interruption?

• Some interruptions may be more important than others.

• Some important examples...

• Nuclear reactor;

• Plane steering;

• Ventilator system.
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Multiple Interrupts

2nd Possibility

Allow each interruption to have a priority:

• Higher priority interruptions can interrupt lower-priority interruptions.

• This strategy is referred to as nested interrupt processing.
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Multiple Interrupts

Example (1/3)

Consider a system with three I/O devices:

Device Interruption Priority

Printer 2

Disk 4

Comm. line 5
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Multiple Interrupts

Example (2/3)

Program begins at t = 0 and at t = 10, a printer interrupt occurs:

1 context is saved;

2 execution goes to the printer interrupt service routine (ISR);

3 While this routine is executing (t = 15), a communications interrupt occurs:

1 Higher priority than the printer;

2 Printer ISR is interrupted, context is saved;

3 Execution goes to the communication ISR;

1 While this routine is executing, a disk interrupt occurs (t = 20);

2 Because this interrupt is of lower priority, it is simply held;

3 and the communications ISR runs to completion.
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Multiple Interrupts

Example (3/3)

4 When the communications ISR completes (t = 25):

1 printer ISR state is restored;

2 However, there is a pending higher-priority interruption (disk);

1 Processor transfers control to the disk ISR;

2 disk ISR completes at t = 35;

3 printer ISR is resumed;

4 printer ISR terminates at t = 40;

5 control returns to the original program.
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Multiple Interrupts

Now that we have seen the interruptions scheme lets transition to a different

topic =)

Luis Tarrataca Chapter 3 - Top Level View 90 / 127



Bus Interconnection

Interconnection Issues

A computer consists of a set basic types of components:

These modules need to communicate with each other in order to :

• exchange data;

• exchange control signals;

• ...
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Bus Interconnection

Any idea how this communication can be performed?
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Bus Interconnection

Any idea how this communication can be performed?

• Through a bus...

Luis Tarrataca Chapter 3 - Top Level View 93 / 127



Bus Interconnection

Any idea how this communication can be performed?

• Through a bus...

Ok, so what is a ‘‘bus’’? Any ideas?
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Bus Interconnection

Bus Interconnection

A bus is a communication pathway connecting two or more devices:

• shared transmission medium;

• connected devices can pickup the reception of all other devices.

• If several devices transmit during the same time period:

• their signals will overlap and become garbled:

• thus, only one device at a time can successfully transmit.
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Bus Interconnection

A bus consists of multiple communication lines:

• Each line transmits binary signals.

• A sequence of binary digits can be transmitted:

• using a single line over time (i.e. sequentially);

• several lines can be used (i.e. in parallel ).

A bus connecting major computer components is called a system bus.
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Bus Interconnection

Now that we know the basic function of the bus...

What type of information does the bus carry? Any ideas?
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Bus Interconnection Bus Structure

Bus Structure

Bus lines can be classified into three functional groups:

• data:

• for moving data among system modules

• address

• for specifying the source or destination of the data:

• control

• for transmiting command information among the modules.

Lets have a quick look into each one of these...
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Bus Interconnection Bus Structure

Figure: Bus Interconnection Scheme (Source: [Stallings, 2015])
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Bus Interconnection Bus Structure

Data Lines

The data bus may consist of 32, 64, 128, or even more separate lines:

• a.k.a. width of the data bus;

Each line can carry only 1 bit at a time:

• the number of lines determines how many bits can be transferred at a time.

Data bus width is key to system performance, e.g.:

• if the data bus is 32 bits wide and each instruction is 64 bits long;

• Each instruction requires two memory acesses.
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Bus Interconnection Bus Structure

Address Lines

Used to designate the source or destination of the data on the data bus:

• The width of the address bus determines the maximum system memory;

• The address lines are generally also used to address I/O addresses;

• Higher-order bits are used to select a particular module on the bus;

• Lower-order bits select a memory location or I/O port within the module.
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Bus Interconnection Bus Structure

Control Lines

Command signals specify operations to be performed, e.g.:

• Memory write: write bus data to a memory address;

• Memory read: read memory at memory address;

• I/O write: write bus data to an I/O address;

• I/O read: read data from an I/O address;

• Bus request: a module needs to gain control of the bus;

• Bus grant: a requesting module has been granted bus control;

• Many more control signals...
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Bus Interconnection Bus Structure

Ok, now that we know a little bit more about bus function:

Can you see any potential problem with bus usage?
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Bus Interconnection Bus Structure

Ok, now that we know a little bit more about bus function:

Can you see any potential problem with bus usage?

What happens if a great number of devices are connected to the bus?
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Bus Interconnection Bus Structure

Ok, now that we know a little bit more about bus function:

Can you see any potential problem with bus usage?

What happens if a great number of devices are connected to the bus?

• If a great number of devices are connected bus performance will suffer.
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Bus Interconnection Multiple-Bus Hierarchies

Multiple-Bus Hierarchies

Main variables of bus performance (1/2):

• Bus length: the more devices attached to the bus, the greater the bus

length and hence the greater the propagation delay.

• Delay determines time required for devices to coordinate bus use;

• When bus control is passed frequently between device:

• propagation delay can noticeably affect performance.

Luis Tarrataca Chapter 3 - Top Level View 107 / 127



Bus Interconnection Multiple-Bus Hierarchies

Main variables of bus performance (2/2):

• Bus capacity: bus has a certain data rate capacity:

• aggregate data transfer bottleneck;

• possible solutions:

• increase data rate;

• use wider bus;
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Bus Interconnection Multiple-Bus Hierarchies

So, what is the overall solution to this problem? Any ideas?
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Bus Interconnection Multiple-Bus Hierarchies

Idea: Use several buses to distribute communication effort;

• This implies that there needs to be a bus hierarchy, e.g.:

Figure: Traditional Bus Architecture (Source: [Stallings, 2015])
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Bus Interconnection Multiple-Bus Hierarchies

• Local bus connecting:

• processor;

• cache memory;

• one or more local

devices.

• System bus:

• where the main memory

module is attached;

• that also connects to the

cache;

Note: in contemporary systems, the

cache is in the same chip as the pro-

cessor.

Figure: Traditional Bus Architecture (Source: [Stallings, 2015])
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Bus Interconnection Elements of bus design

Elements of bus design

Parameters that can be used to classify and differentiate buses e.g.:

Figure: Elements of bus design (Source: [Stallings, 2015])

Lets have a look at some of these...
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Bus Interconnection Elements of bus design

Bus Type

Bus lines can be separated into two generic types:

• dedicated: line is used for a single purpose:

• e.g.: the use of separate dedicated address and data lines

• multiplexed: line is used for multiple purposes:

• e.g.: address and data information may be transmitted over the same lines

• Idea: use an Address Valid control line:

• Activate Address Valid line;

• Place the address on the bus lines;

• Transfer the data after.
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Bus Interconnection Elements of bus design

Can you see any advantages / disadvantages with multiplexing?
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Bus Interconnection Elements of bus design

Multiplexing advantage:

• use of fewer lines, which saves space and, usually, cost.

Multiplexing disadvantage:

• more complex circuitry is needed within each module;

• potential reduction in performance:

• certain events that share the same lines cannot take place in parallel.
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Bus Interconnection Elements of bus design

Timing

Refers to the way in which events are coordinated on the bus:

• synchronous timing: occurrence of events is determined by a clock.

• bus includes a clock line, connected to a system clock;

• A single 1-0 transmission is referred to as a clock cycle;

• Devices on the bus can read the clock line;

• all events start at the beginning of a clock cycle:
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Bus Interconnection Elements of bus design

Synchronous Example (1/3)

Figure: Timing of Synchronous Bus Operations (Source: [Stallings, 2015])
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Bus Interconnection Elements of bus design

Synchronous Example (2/3)

1 Processor sets various status lines;

2 Processor places a memory address on the address lines;

3 Once the address lines have stabilized, the processor issues an address enable signal;
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Bus Interconnection Elements of bus design

Synchronous Example (3/3)

4 The example then depicts two operations:

• read cycle:

• Processor issues a read command (start of the second cycle);

• Memory module recognizes address and, after a delay of one cycle, places

the data on the data lines;

• Processor reads the data from the data lines and drops the read signal;

• write cycle:

• Processor puts the data on the data lines (start of the second cycle);

• Processor issues a write command after the data lines have stabilized;

• Memory module copies the information from the data lines (third clock cycle).
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Bus Interconnection Elements of bus design

Asynchronous Example (1/5)

Asynchronous timing: occurrence of one bus event follows and depends on

the occurrence of a previous event.

E.g.: read operation using an asynchronous bus:

Figure: System bus read cycle (Source: [Stallings, 2015])
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Bus Interconnection Elements of bus design

Asynchronous Example (2/5)

1 Processor places address and status signals on bus;

2 After pausing for these signals to stabilize, it issues a read command;

• indicating the presence of valid address and control signals.

3 Memory performs the following tasks:

1 decodes the address

2 places the data on the data line;

4 Once the data lines have stabilized:

1 memory module asserts the acknowledged line to signal the processor that

the data are available.
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Bus Interconnection Elements of bus design

Asynchronous Example (3/5)

5 Once the processor has read the data from the data lines, it deasserts the

read signal;

6 This causes the memory module to drop the data and acknowledge lines.

7 Once the acknowledge line is dropped, the processor removes the

address information.
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Bus Interconnection Elements of bus design

Asynchronous Example (4/5)

E.g.: write operation using an asynchronous bus:

Figure: System bus write cycle (Source: [Stallings, 2015])
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Bus Interconnection Elements of bus design

Asynchronous Example (5/5)

1 Processor places data, status and address signals on the bus;

2 Memory module responds to the write command by copying the data

from the data lines;

3 Memory module then asserts the acknowledge line.

4 Processor then drops the write signal;

5 Memory module drops the acknowledge signal;
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Bus Interconnection Elements of bus design

Now that we have a basic understanding of each timing mechanism:

What are the main advantages / disadvantages of synchronous / asyn-

chronous timing?
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Bus Interconnection Elements of bus design

Advantages of synchronous timing:

• simpler to implement and test;

Disadvantages of synchronous timing:

• less flexible than asynchronous timing;

• All devices are tied to a fixed clock rate:

• System cannot take advantage of advances in device performance;

• i.e. when a task finished before the next clock cycle.

• With asynchronous timing:

• a mixture of slow and fast devices can share a bus.
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