
Chapter 17 - Parallel Processing

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

Luis Tarrataca Chapter 17 - Parallel Processing 1 / 72

luis.tarrataca@gmail.com


Table of Contents I

1 Motivation

2 Parallel Processing

Categories of Computer Systems

Taxonomy of parallel computing systems

MIMD parallel processing

Symmetric Multiprocessor Parallelism

Symmetric Multiprocessor Parallelism

Processor Organization

Cache coherence problem

Cache Coherence Protocols

Clusters

Luis Tarrataca Chapter 17 - Parallel Processing 2 / 72



Table of Contents II

SIMD parallel processing

Vector Computation

Luis Tarrataca Chapter 17 - Parallel Processing 3 / 72



Table of Contents I

3 Where to focus your study

4 References

Luis Tarrataca Chapter 17 - Parallel Processing 4 / 72



Motivation

Motivation

Today we will look at ways to increase processor performance:

• Always a fun topic =)

What are some of the techniques you know of to increase processor

performance?

Luis Tarrataca Chapter 17 - Parallel Processing 5 / 72



Motivation

• Frequency

• ‘‘Easy way’’ out =)

• Inherent vantages and disadvantages. Can you name them?

• Cache

• High speed memory;

• Idea: diminish the number of reads from low latency memory (RAM, HD,

etc);

• Very expensive!

• Pipeline;

• Idea: assembly line for instructions;

• Leads to performance increases;

• But also introduces a host of new considerations (hazards);

Luis Tarrataca Chapter 17 - Parallel Processing 6 / 72



Parallel Processing

Today we will discuss another technique: parallelization

• Original µP design: sequential processing of instructions.

• Parallelism: Execute multiple instructions at the same time. How?

• As always in engineering there are multiple strategies.

• Choice made based on computational requirements.

Luis Tarrataca Chapter 17 - Parallel Processing 7 / 72



Parallel Processing

Parallelism choice is made on computational requirements:

Can you think of some of the dimensions that influence parallel

computation?

Luis Tarrataca Chapter 17 - Parallel Processing 8 / 72



Parallel Processing

Parallelism choice is made on computational requirements:

Can you think of some of the dimensions that influence parallel

computation?

What about these?

• Are we processing a single source of data? Or multiple?

• Do we need to apply the same instruction to the data? Or different ones?

Luis Tarrataca Chapter 17 - Parallel Processing 9 / 72



Parallel Processing Categories of Computer Systems

Categories of Computer Systems (1/4)

• Single instruction, single data (SISD):

• Single processor executes a single instruction stream to operate on data

stored in a single memory.

Figure: SISD (Source: [Stallings, 2015])

Figure: Nomenclature (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 10 / 72



Parallel Processing Categories of Computer Systems

Categories of Computer Systems (2/4)

• Single instruction, multiple data (SIMD):

• Single machine instruction controls the simultaneous execution of a number

of processing elements on a lockstep basis;

• Each processing element has an associated data memory:

• Instructions are executed on 6= data sets by 6= processors.

Figure: SIMD (Source: [Stallings, 2015])

Figure: Nomenclature (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 11 / 72



Parallel Processing Categories of Computer Systems

Categories of Computer Systems (3/4)

• Multiple instruction, single data (MISD):

• Sequence of data is transmitted to a set of processors, each of which

executes a different instruction sequence.

Luis Tarrataca Chapter 17 - Parallel Processing 12 / 72



Parallel Processing Categories of Computer Systems

Categories of Computer Systems (4/4)

• Multiple instruction, multiple data (MIMD):

• Set of processors simultaneously execute 6= instruction sequences on 6= data

sets.

Figure: MIMD (Source: [Stallings, 2015])

Figure: Nomenclature (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 13 / 72



Parallel Processing Taxonomy of parallel computing systems

Taxonomy of parallel computing systems

Figure: Taxonomy of Parallel Processor Architectures (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 14 / 72



Parallel Processing Taxonomy of parallel computing systems

Today’s class will focus on:

• MIMD parallel processing:

• SMP (building block);

• Clusters (arrangement of building blocks).

• Data centers;

• Supercomputers.

• SIMD parallel processing:

• General-purpose computing on graphics processing units (GPGPU)

• Intel XEON Phi.

Luis Tarrataca Chapter 17 - Parallel Processing 15 / 72



Parallel Processing MIMD parallel processing

Symmetric Multiprocessor Parallelism

SMP has the following characteristics (1/2):

• There are two or more similar processors of comparable capability.

• Processors share

• Main memory;

• I/O facilities and devices;

• Processors are interconnected by:

• Bus or other connection scheme;

• Memory access time is approximately the same for each processor.

Luis Tarrataca Chapter 17 - Parallel Processing 16 / 72



Parallel Processing MIMD parallel processing

Symmetric Multiprocessor Parallelism

SMP has the following characteristics (2/2):

• Processors perform the same functions:

• Hence the term symmetric

• System is controlled by an operating system managing:

• Processors and programs;

• How processes / threads are to be executed in the processors;

• User does not need to worry about anything =)

Luis Tarrataca Chapter 17 - Parallel Processing 17 / 72



Parallel Processing MIMD parallel processing

Processor Organization

Figure: Generic Block Diagram of a Tightly Coupled Multiprocessor (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 18 / 72



Parallel Processing MIMD parallel processing

• Two or more processors:

• Each processor includes: a control unit, ALU, registers, cache;

• Each processor has access to:

• Shared main memory;

• I/O devices.

• Processors communicate with each other through:

• Memory: messages and status information.

• Exchanging signals directly.

Luis Tarrataca Chapter 17 - Parallel Processing 19 / 72



Parallel Processing MIMD parallel processing

With all the components involved:

Do you think it would be easy for a programmer to control everything at

assembly level? Any ideas?

Luis Tarrataca Chapter 17 - Parallel Processing 20 / 72



Parallel Processing MIMD parallel processing

With all the components involved:

Do you think it would be easy for a programmer to control everything at

assembly level? Any ideas?

• It would be a nightmare...

How are then the different computational resources best used? Any

ideas?

Luis Tarrataca Chapter 17 - Parallel Processing 21 / 72



Parallel Processing MIMD parallel processing

How are then the different computational resources best used? Any

ideas?

• Combination of operating system support tools:

• Processes;

• Threads.

• Alongside application programming interfaces;

• Integral part of an Operating System course.

Luis Tarrataca Chapter 17 - Parallel Processing 22 / 72



Parallel Processing MIMD parallel processing

Most common organization:

Figure: Symmetric Multiprocessor Organization (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 23 / 72



Parallel Processing MIMD parallel processing

But how is the bus managed with multiple processors? Any ideas?

Figure: Symmetric Multiprocessor Organization (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 24 / 72



Parallel Processing MIMD parallel processing

But how is the bus managed with multiple processors? Any ideas?

• Time-sharing:

• When one module is controlling the bus:

• Other modules are locked out;

• If necessary: modules suspend operation until bus access is achieved.

Luis Tarrataca Chapter 17 - Parallel Processing 25 / 72



Parallel Processing MIMD parallel processing

• Bus has the same structure for a single-processor:

• Control, address, and data lines.

• To facilitate DMA transfers the following features are provided:

• Addressing: to distinguish modules on the bus;

• Arbitration: Any I/O module can temporarily function as ‘‘master’’.

• Mechanism arbitrates competing requests for bus control:

• Using some sort of priority scheme.

Luis Tarrataca Chapter 17 - Parallel Processing 26 / 72



Parallel Processing MIMD parallel processing

Now we have a single bus being used by multiple processors. Can you

see any problems with this?

Luis Tarrataca Chapter 17 - Parallel Processing 27 / 72



Parallel Processing MIMD parallel processing

Now we have a single bus being used by multiple processors. Can you

see any problems with this?

• All memory accesses pass through the common bus;

• Bus cycle time limits the speed of the system;

• This results in a performance bottleneck;

Luis Tarrataca Chapter 17 - Parallel Processing 28 / 72



Parallel Processing MIMD parallel processing

But this leads to the following question:

What is the most common way for reducing the number of memory

accesses?

Luis Tarrataca Chapter 17 - Parallel Processing 29 / 72



Parallel Processing MIMD parallel processing

But this leads to the following question:

What is the most common way for reducing the number of memory

accesses?

• Cache ;)

In a multiprocessor architecture:

Can you see any problems with using multiple caches? Any ideas?

Luis Tarrataca Chapter 17 - Parallel Processing 30 / 72



Parallel Processing Cache coherence problem

Cache coherence problem

Each local cache contains an image of a portion of memory:

• if a word is altered in one cache:

• Could conceivably invalidate a word in another cache;

• To prevent this:

• Other processors must be alerted that an update has taken place

• Commonly addressed in hardware rather than by software.

Luis Tarrataca Chapter 17 - Parallel Processing 31 / 72



Parallel Processing Cache coherence problem

Cache Coherence Protocols

Dynamic recognition at run time of potential inconsistency conditions:

• Always cache memory;

• Problem is only dealt with when it actually arises;

• Better performance over a software approach,

Transparent to the programmer and the compiler:

• Reducing the software development burden.

We will look at one such protocol: MESI

Luis Tarrataca Chapter 17 - Parallel Processing 32 / 72



Parallel Processing Cache coherence problem

Not this Mesi though...

Luis Tarrataca Chapter 17 - Parallel Processing 33 / 72



Parallel Processing Cache coherence problem

MESI protocol

Each line of the cache can be in one of four states (1/2):

• Modified:

• Line in the cache has been modified (6= from main memory)

• Line is not present in any other cache.

• Exclusive:

• Line in the cache is the same as that in main memory;

• Line is not present in any other cache.

Luis Tarrataca Chapter 17 - Parallel Processing 34 / 72



Parallel Processing Cache coherence problem

MESI protocol

Each line of the cache can be in one of four states (2/2):

• Shared:

• Line in the cache is the same as that in main memory;

• Line may be present in another cache.

• Invalid:

• Line in the cache does not contain valid data.

Luis Tarrataca Chapter 17 - Parallel Processing 35 / 72



Parallel Processing Cache coherence problem

This time in table form:

Figure: MESI cache line states (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 36 / 72



Parallel Processing Cache coherence problem

At any time a cache line is in a single state:

• If next event is from the attached processor:

• Transition is dictated by figure below on the left;

• If next event is from the bus:

• Transition is dictated by figure below on the right.

Figure: Line in cache at initiating processor

(Source: [Stallings, 2015])

Figure: Line in snooping cache (Source:

[Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 37 / 72



Parallel Processing Cache coherence problem

Caption for the previous figure:

Figure: (Source: [Stallings, 2015])

Lets see what all of this means ;)

Luis Tarrataca Chapter 17 - Parallel Processing 38 / 72



Parallel Processing Cache coherence problem

What happens when a read miss occurs? Any ideas?

Luis Tarrataca Chapter 17 - Parallel Processing 39 / 72



Parallel Processing Cache coherence problem

What happens when a read miss occurs? Any ideas?

Well it depends...:

• Has any cache a copy of the line in the exclusive state?

• Do any caches have a copy of the line in the shared state?

• Has any cache a copy of the line in the modified state?

• What if no other copies exist?

Luis Tarrataca Chapter 17 - Parallel Processing 40 / 72



Parallel Processing Cache coherence problem

Read miss: occurs in the local cache, the processor:

1 initiates a main memory read of the missing address;

2 inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (1/4):

• Possibility 1: One cache has a clean copy of the line in the exclusive state:

Luis Tarrataca Chapter 17 - Parallel Processing 41 / 72



Parallel Processing Cache coherence problem

Read miss: occurs in the local cache, the processor:

1 initiates a main memory read of the missing address;

2 inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (1/4):

• Possibility 1: One cache has a clean copy of the line in the exclusive state:

1 Cache returns a signal indicating that it shares this line;

Luis Tarrataca Chapter 17 - Parallel Processing 41 / 72



Parallel Processing Cache coherence problem

Read miss: occurs in the local cache, the processor:

1 initiates a main memory read of the missing address;

2 inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (1/4):

• Possibility 1: One cache has a clean copy of the line in the exclusive state:

1 Cache returns a signal indicating that it shares this line;

2 Responding processor transitions from exclusive state to shared;

Luis Tarrataca Chapter 17 - Parallel Processing 41 / 72



Parallel Processing Cache coherence problem

Read miss: occurs in the local cache, the processor:

1 initiates a main memory read of the missing address;

2 inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (1/4):

• Possibility 1: One cache has a clean copy of the line in the exclusive state:

1 Cache returns a signal indicating that it shares this line;

2 Responding processor transitions from exclusive state to shared;

3 Initiating processor reads line from memory: goes from invalid to shared.

Luis Tarrataca Chapter 17 - Parallel Processing 41 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (2/4):

• Possibility 2: ≥ 1 Caches have a clean copy of the line in the shared state:

Luis Tarrataca Chapter 17 - Parallel Processing 42 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (2/4):

• Possibility 2: ≥ 1 Caches have a clean copy of the line in the shared state:

1 Each cache signals that it shares the line;

Luis Tarrataca Chapter 17 - Parallel Processing 42 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (2/4):

• Possibility 2: ≥ 1 Caches have a clean copy of the line in the shared state:

1 Each cache signals that it shares the line;

2 Initiating processor reads from memory and line goes from invalid to shared.

Luis Tarrataca Chapter 17 - Parallel Processing 42 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (3/4):

• Possibility 3: If one other cache has a modified copy of the line:

Luis Tarrataca Chapter 17 - Parallel Processing 43 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (3/4):

• Possibility 3: If one other cache has a modified copy of the line:

1 Cache containing modified line blocks memory read from initiating processor;

Luis Tarrataca Chapter 17 - Parallel Processing 43 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (3/4):

• Possibility 3: If one other cache has a modified copy of the line:

1 Cache containing modified line blocks memory read from initiating processor;

2 Cache containing modified line provides the line to the requesting cache;

Luis Tarrataca Chapter 17 - Parallel Processing 43 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (3/4):

• Possibility 3: If one other cache has a modified copy of the line:

1 Cache containing modified line blocks memory read from initiating processor;

2 Cache containing modified line provides the line to the requesting cache;

3 Responding cache then changes its line from modified to shared;

Luis Tarrataca Chapter 17 - Parallel Processing 43 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (3/4):

• Possibility 3: If one other cache has a modified copy of the line:

1 Cache containing modified line blocks memory read from initiating processor;

2 Cache containing modified line provides the line to the requesting cache;

3 Responding cache then changes its line from modified to shared;

4 Memory controller updates the contents of the line in memory;

Luis Tarrataca Chapter 17 - Parallel Processing 43 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (4/4):

• Possibility 4: If no other cache has a copy of the line, no signals are returned:

1 Initiating processor reads the line from memory;

Luis Tarrataca Chapter 17 - Parallel Processing 44 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (4/4):

• Possibility 4: If no other cache has a copy of the line, no signals are returned:

1 Initiating processor reads the line from memory;

2 Initiating processor transitions the line in its cache from invalid to exclusive.

Luis Tarrataca Chapter 17 - Parallel Processing 44 / 72



Parallel Processing Cache coherence problem

Read hit occurs on a line currently in the local cache:

1 Processor reads the required item;

2 No state change: state remains {modified, shared, or exclusive}.

Luis Tarrataca Chapter 17 - Parallel Processing 45 / 72



Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 1: some other cache may have a modified copy of this line:

1 Alerted processor signals that it has a modified copy of the line;

4 Processor signals read-with-intent-to-modify (RWITM) on bus:

• Reads the line from main memory;

• Modifies the line in the cache;

• Marks the line in the modified state.

Luis Tarrataca Chapter 17 - Parallel Processing 46 / 72



Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 1: some other cache may have a modified copy of this line:

1 Alerted processor signals that it has a modified copy of the line;

2 Initiating processor surrenders the bus and waits;

4 Processor signals read-with-intent-to-modify (RWITM) on bus:

• Reads the line from main memory;

• Modifies the line in the cache;

• Marks the line in the modified state.

Luis Tarrataca Chapter 17 - Parallel Processing 46 / 72



Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 1: some other cache may have a modified copy of this line:

1 Alerted processor signals that it has a modified copy of the line;

2 Initiating processor surrenders the bus and waits;

3 Other processor writes the modified line to main memory;

4 Processor signals read-with-intent-to-modify (RWITM) on bus:

• Reads the line from main memory;

• Modifies the line in the cache;

• Marks the line in the modified state.

Luis Tarrataca Chapter 17 - Parallel Processing 46 / 72



Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 1: some other cache may have a modified copy of this line:

1 Alerted processor signals that it has a modified copy of the line;

2 Initiating processor surrenders the bus and waits;

3 Other processor writes the modified line to main memory;

4 Other processor transitions the state of the cache line to invalid.

4 Processor signals read-with-intent-to-modify (RWITM) on bus:

• Reads the line from main memory;

• Modifies the line in the cache;

• Marks the line in the modified state.

Luis Tarrataca Chapter 17 - Parallel Processing 46 / 72



Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 2: No other cache has a modified copy of the requested line:

1 No signal is returned by the other processors;

Luis Tarrataca Chapter 17 - Parallel Processing 47 / 72



Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 2: No other cache has a modified copy of the requested line:

1 No signal is returned by the other processors;

2 Initiating processor proceeds to read in the line and modify it;

Luis Tarrataca Chapter 17 - Parallel Processing 47 / 72



Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 2: No other cache has a modified copy of the requested line:

1 No signal is returned by the other processors;

2 Initiating processor proceeds to read in the line and modify it;

3 If one or more caches have a clean copy of the line in the shared state:

Luis Tarrataca Chapter 17 - Parallel Processing 47 / 72



Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 2: No other cache has a modified copy of the requested line:

1 No signal is returned by the other processors;

2 Initiating processor proceeds to read in the line and modify it;

3 If one or more caches have a clean copy of the line in the shared state:

• Each cache invalidates its copy of the line.

Luis Tarrataca Chapter 17 - Parallel Processing 47 / 72



Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 2: No other cache has a modified copy of the requested line:

1 No signal is returned by the other processors;

2 Initiating processor proceeds to read in the line and modify it;

3 If one or more caches have a clean copy of the line in the shared state:

• Each cache invalidates its copy of the line.

4 If one cache has a clean copy of the line in the exclusive state

Luis Tarrataca Chapter 17 - Parallel Processing 47 / 72



Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 2: No other cache has a modified copy of the requested line:

1 No signal is returned by the other processors;

2 Initiating processor proceeds to read in the line and modify it;

3 If one or more caches have a clean copy of the line in the shared state:

• Each cache invalidates its copy of the line.

4 If one cache has a clean copy of the line in the exclusive state

• That cache invalidates its copy of the line.

Luis Tarrataca Chapter 17 - Parallel Processing 47 / 72



Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 1 - Shared state:

• Before updating, processor must gain exclusive ownership of the line:

Luis Tarrataca Chapter 17 - Parallel Processing 48 / 72



Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 1 - Shared state:

• Before updating, processor must gain exclusive ownership of the line:

• Processor signals its intent on bus;

Luis Tarrataca Chapter 17 - Parallel Processing 48 / 72



Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 1 - Shared state:

• Before updating, processor must gain exclusive ownership of the line:

• Processor signals its intent on bus;

• Each processor that has a shared copy of the line goes from shared to invalid.

Luis Tarrataca Chapter 17 - Parallel Processing 48 / 72



Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 1 - Shared state:

• Before updating, processor must gain exclusive ownership of the line:

• Processor signals its intent on bus;

• Each processor that has a shared copy of the line goes from shared to invalid.

• Initiating processor updates line and then state from shared to modified.

Luis Tarrataca Chapter 17 - Parallel Processing 48 / 72



Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 2 - Exclusive state:

• Processor already has exclusive control of this line:

• Simply performs the update;

Luis Tarrataca Chapter 17 - Parallel Processing 49 / 72



Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 2 - Exclusive state:

• Processor already has exclusive control of this line:

• Simply performs the update;

• Transitions its copy of the line from exclusive to modified.

Luis Tarrataca Chapter 17 - Parallel Processing 49 / 72



Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 3 - Modified state:

• Processor has exclusive control of this line and marked as modified:[<+->]

• Simply performs the update;

Luis Tarrataca Chapter 17 - Parallel Processing 50 / 72



Parallel Processing Cache coherence problem

Seems complex?

Luis Tarrataca Chapter 17 - Parallel Processing 51 / 72



Parallel Processing Cache coherence problem

Seems complex?

• Imagine multiple cache levels that can be shared...

Luis Tarrataca Chapter 17 - Parallel Processing 52 / 72



Parallel Processing Cache coherence problem

Seems complex?

• Imagine multiple cache levels that can be shared...

Luis Tarrataca Chapter 17 - Parallel Processing 53 / 72



Parallel Processing Cache coherence problem

Clusters

Group of computers working together as a unified computing resource:

• Each computer in a cluster is typically referred to as a node.

Some benefits:

• Scalability - Possible to add new nodes to the cluster;

• Availability - Failure of one node does not mean loss of service.

Luis Tarrataca Chapter 17 - Parallel Processing 54 / 72



Parallel Processing Cache coherence problem

How is information stored within the cluster? Any ideas?

Luis Tarrataca Chapter 17 - Parallel Processing 55 / 72



Parallel Processing Cache coherence problem

Figure: Shared Disk Cluster Configuration (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 56 / 72



Parallel Processing Cache coherence problem

A cluster system raises a series of important design issues:

• Failure Management: How are failures managed by a cluster?

• A computation can be restarted on a different node;

• Or a computation can be continued on a different node;

• Load Balancing: How is the processing load among available computers?

• Parallelize Computation: How is the computation parallelized?

• Compiler? Purposely programmed? Parametric?

Luis Tarrataca Chapter 17 - Parallel Processing 57 / 72



Parallel Processing Cache coherence problem

Supercomputers are cluster systems:

• High-speed networks and physical proximity allow for better performance.

• Type of system used by the Santos Dumont supercomputer at LNCC.

Luis Tarrataca Chapter 17 - Parallel Processing 58 / 72



Parallel Processing SIMD parallel processing

Vector Computation

Perform arithmetic operations on arrays of floating-point numbers:

• Example: system simulation:

• These can typical be done by a set of equations;

• Basic Linear Algebra Subprograms (BLAS).

Same operation is performed to different data:

• Thus Single Instruction Multiple Data (SIMD).

Luis Tarrataca Chapter 17 - Parallel Processing 59 / 72



Parallel Processing SIMD parallel processing

Lets look at an example: We want to sum the elements of an array.

Ci = Ai + Bi

Figure: Example of Vector Addition (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 60 / 72



Parallel Processing SIMD parallel processing

General-purpose computer

• iterate through each element of the array.

• Overkill and inefficient! Why?

• CPU can do floating-point operations;

• But can also do a host of other things:

• I/O operations;

• Memory management;

• Cache management;

• We are mostly interested in arithmetic operations:

• Arithmetic Logic Unit (ALU)

Luis Tarrataca Chapter 17 - Parallel Processing 61 / 72



Parallel Processing SIMD parallel processing

Idea: General-purpose parallel computation based on ALUs

• Instead of using processors for parallel computation;

• ALUs are also cheap =)

• Careful memory management:

• Since memory is shared by the different ALUs.

Luis Tarrataca Chapter 17 - Parallel Processing 62 / 72



Parallel Processing SIMD parallel processing

ALU0 ALU1 ALU2 ALU3 ALU4 ALU5 · · · ALUN

Figure: Summing two vectors (Source:

[Sanders and Kandrot, 2011])

• variable tid is the identification of the ALU;

Luis Tarrataca Chapter 17 - Parallel Processing 63 / 72



Parallel Processing SIMD parallel processing

Two main categories:

• Pipelined ALU;

• Parallel ALUs (GPGPUs):

• Pipelined or Not-pipelined.

Figure: Pipelined ALU (Source: [Stallings, 2015]) Figure: Parallel ALU (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 64 / 72



Parallel Processing SIMD parallel processing

Floating-point operations are complex operations:

• Decompose a floating-point operation into stages;

• Pipeline for floating-point operations =)

Figure: The different stages for the pipeline for floating-point operations (Source: [Stallings, 2015])

Luis Tarrataca Chapter 17 - Parallel Processing 65 / 72



Parallel Processing SIMD parallel processing

Figure: Pipelined ALU (Source: [Stallings, 2015])

Figure: Parallel ALU (Source: [Stallings, 2015])

• C - Compare exponent, S - shift exponent, A - add significands, N - normalize

• Same problems that occur with processor pipelining also occur here.

Luis Tarrataca Chapter 17 - Parallel Processing 66 / 72



Parallel Processing SIMD parallel processing

As a curiosity lets look at the architecture of a GeForce8800:

Figure: GeForce 8800 architecture (Source: NVIDIA )

Luis Tarrataca Chapter 17 - Parallel Processing 67 / 72



Parallel Processing SIMD parallel processing

• 14 Streaming Multiple Processor (SM) each containing:

• Each SM contains 8 Streaming Processor (SP):

• Each SP processor has a fully pipelined

• integer arithmetic logic unit (ALU);

• floating point unit (FPU).

• Total: 224 ALUs.

• This an old card from 2006, recent models contain thousands of ALUs!

• Supercomputers are a combination of processors and GPGPU nodes.

Luis Tarrataca Chapter 17 - Parallel Processing 68 / 72



Parallel Processing SIMD parallel processing

Figure: NVIDIA GPU Architecture(Source: NVIDIA)
Luis Tarrataca Chapter 17 - Parallel Processing 69 / 72



Where to focus your study

Where to focus your study

After this class you should be able to:

• Summarize the types of parallel processor organizations;

• Present an overview of design features of symmetric multiprocessors;

• Understand the issue of cache coherence in a multiple processor system;

• Explain the key features of the MESI protocol.

• Understand the cluster systems and vector systems.

Luis Tarrataca Chapter 17 - Parallel Processing 70 / 72



Where to focus your study

Less important to know how these solutions were implemented:

• details of specific hardware solutions for parallel computation.

Your focus should always be on the building blocks for developing a solution

=)

Luis Tarrataca Chapter 17 - Parallel Processing 71 / 72



References

References I

Sanders, J. and Kandrot, E. (2011).

Cuda by Example: An Introduction to General-purpose GPU Programming.

Addison Wesley Professional.

Stallings, W. (2015).

Computer Organization and Architecture: Designing for Performance.

Pearson Education, 10th edition edition.

Luis Tarrataca Chapter 17 - Parallel Processing 72 / 72


	Motivation
	Parallel Processing
	Categories of Computer Systems
	Taxonomy of parallel computing systems
	MIMD parallel processing
	Cache coherence problem
	SIMD parallel processing

	Where to focus your study
	References

