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Motivation

Motivation

Today we will look at ways to increase processor performance:

• Always a fun topic =)

What are some of the techniques you know of to increase processor

performance?
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Motivation

• Frequency

• ‘‘Easy way’’ out =)

• Inherent vantages and disadvantages. Can you name them?

• Cache

• High speed memory;

• Idea: diminish the number of reads from low latency memory (RAM, HD,

etc);

• Very expensive!

• Pipeline;

• Idea: assembly line for instructions;

• Leads to performance increases;

• But also introduces a host of new considerations (hazards);
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Parallel Processing

Today we will discuss another technique: parallelization

• Original µP design: sequential processing of instructions.

• Parallelism: Execute multiple instructions at the same time. How?

• As always in engineering there are multiple strategies.

• Choice made based on computational requirements.
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Parallel Processing

Parallelism choice is made on computational requirements:

Can you think of some of the dimensions that influence parallel

computation?

Luis Tarrataca Chapter 17 - Parallel Processing 8 / 72



Parallel Processing

Parallelism choice is made on computational requirements:

Can you think of some of the dimensions that influence parallel

computation?

What about these?

• Are we processing a single source of data? Or multiple?

• Do we need to apply the same instruction to the data? Or different ones?
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Parallel Processing Categories of Computer Systems

Categories of Computer Systems (1/4)

• Single instruction, single data (SISD):

• Single processor executes a single instruction stream to operate on data

stored in a single memory.

Figure: SISD (Source: [Stallings, 2015])

Figure: Nomenclature (Source: [Stallings, 2015])
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Parallel Processing Categories of Computer Systems

Categories of Computer Systems (2/4)

• Single instruction, multiple data (SIMD):

• Single machine instruction controls the simultaneous execution of a number

of processing elements on a lockstep basis;

• Each processing element has an associated data memory:

• Instructions are executed on 6= data sets by 6= processors.

Figure: SIMD (Source: [Stallings, 2015])

Figure: Nomenclature (Source: [Stallings, 2015])
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Parallel Processing Categories of Computer Systems

Categories of Computer Systems (3/4)

• Multiple instruction, single data (MISD):

• Sequence of data is transmitted to a set of processors, each of which

executes a different instruction sequence.
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Parallel Processing Categories of Computer Systems

Categories of Computer Systems (4/4)

• Multiple instruction, multiple data (MIMD):

• Set of processors simultaneously execute 6= instruction sequences on 6= data

sets.

Figure: MIMD (Source: [Stallings, 2015])

Figure: Nomenclature (Source: [Stallings, 2015])
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Parallel Processing Taxonomy of parallel computing systems

Taxonomy of parallel computing systems

Figure: Taxonomy of Parallel Processor Architectures (Source: [Stallings, 2015])
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Parallel Processing Taxonomy of parallel computing systems

Today’s class will focus on:

• MIMD parallel processing:

• SMP (building block);

• Clusters (arrangement of building blocks).

• Data centers;

• Supercomputers.

• SIMD parallel processing:

• General-purpose computing on graphics processing units (GPGPU)

• Intel XEON Phi.
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Parallel Processing MIMD parallel processing

Symmetric Multiprocessor Parallelism

SMP has the following characteristics (1/2):

• There are two or more similar processors of comparable capability.

• Processors share

• Main memory;

• I/O facilities and devices;

• Processors are interconnected by:

• Bus or other connection scheme;

• Memory access time is approximately the same for each processor.
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Parallel Processing MIMD parallel processing

Symmetric Multiprocessor Parallelism

SMP has the following characteristics (2/2):

• Processors perform the same functions:

• Hence the term symmetric

• System is controlled by an operating system managing:

• Processors and programs;

• How processes / threads are to be executed in the processors;

• User does not need to worry about anything =)
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Parallel Processing MIMD parallel processing

Processor Organization

Figure: Generic Block Diagram of a Tightly Coupled Multiprocessor (Source: [Stallings, 2015])
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Parallel Processing MIMD parallel processing

• Two or more processors:

• Each processor includes: a control unit, ALU, registers, cache;

• Each processor has access to:

• Shared main memory;

• I/O devices.

• Processors communicate with each other through:

• Memory: messages and status information.

• Exchanging signals directly.
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Parallel Processing MIMD parallel processing

With all the components involved:

Do you think it would be easy for a programmer to control everything at

assembly level? Any ideas?
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Parallel Processing MIMD parallel processing

With all the components involved:

Do you think it would be easy for a programmer to control everything at

assembly level? Any ideas?

• It would be a nightmare...

How are then the different computational resources best used? Any

ideas?

Luis Tarrataca Chapter 17 - Parallel Processing 21 / 72



Parallel Processing MIMD parallel processing

How are then the different computational resources best used? Any

ideas?

• Combination of operating system support tools:

• Processes;

• Threads.

• Alongside application programming interfaces;

• Integral part of an Operating System course.
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Parallel Processing MIMD parallel processing

Most common organization:

Figure: Symmetric Multiprocessor Organization (Source: [Stallings, 2015])
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Parallel Processing MIMD parallel processing

But how is the bus managed with multiple processors? Any ideas?

Figure: Symmetric Multiprocessor Organization (Source: [Stallings, 2015])
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Parallel Processing MIMD parallel processing

But how is the bus managed with multiple processors? Any ideas?

• Time-sharing:

• When one module is controlling the bus:

• Other modules are locked out;

• If necessary: modules suspend operation until bus access is achieved.
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Parallel Processing MIMD parallel processing

• Bus has the same structure for a single-processor:

• Control, address, and data lines.

• To facilitate DMA transfers the following features are provided:

• Addressing: to distinguish modules on the bus;

• Arbitration: Any I/O module can temporarily function as ‘‘master’’.

• Mechanism arbitrates competing requests for bus control:

• Using some sort of priority scheme.
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Parallel Processing MIMD parallel processing

Now we have a single bus being used by multiple processors. Can you

see any problems with this?
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Parallel Processing MIMD parallel processing

Now we have a single bus being used by multiple processors. Can you

see any problems with this?

• All memory accesses pass through the common bus;

• Bus cycle time limits the speed of the system;

• This results in a performance bottleneck;
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Parallel Processing MIMD parallel processing

But this leads to the following question:

What is the most common way for reducing the number of memory

accesses?
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Parallel Processing MIMD parallel processing

But this leads to the following question:

What is the most common way for reducing the number of memory

accesses?

• Cache ;)

In a multiprocessor architecture:

Can you see any problems with using multiple caches? Any ideas?
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Parallel Processing Cache coherence problem

Cache coherence problem

Each local cache contains an image of a portion of memory:

• if a word is altered in one cache:

• Could conceivably invalidate a word in another cache;

• To prevent this:

• Other processors must be alerted that an update has taken place

• Commonly addressed in hardware rather than by software.
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Parallel Processing Cache coherence problem

Cache Coherence Protocols

Dynamic recognition at run time of potential inconsistency conditions:

• Always cache memory;

• Problem is only dealt with when it actually arises;

• Better performance over a software approach,

Transparent to the programmer and the compiler:

• Reducing the software development burden.

We will look at one such protocol: MESI
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Parallel Processing Cache coherence problem

Not this Mesi though...
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Parallel Processing Cache coherence problem

MESI protocol

Each line of the cache can be in one of four states (1/2):

• Modified:

• Line in the cache has been modified (6= from main memory)

• Line is not present in any other cache.

• Exclusive:

• Line in the cache is the same as that in main memory;

• Line is not present in any other cache.
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Parallel Processing Cache coherence problem

MESI protocol

Each line of the cache can be in one of four states (2/2):

• Shared:

• Line in the cache is the same as that in main memory;

• Line may be present in another cache.

• Invalid:

• Line in the cache does not contain valid data.
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Parallel Processing Cache coherence problem

This time in table form:

Figure: MESI cache line states (Source: [Stallings, 2015])
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Parallel Processing Cache coherence problem

At any time a cache line is in a single state:

• If next event is from the attached processor:

• Transition is dictated by figure below on the left;

• If next event is from the bus:

• Transition is dictated by figure below on the right.

Figure: Line in cache at initiating processor

(Source: [Stallings, 2015])

Figure: Line in snooping cache (Source:

[Stallings, 2015])
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Parallel Processing Cache coherence problem

Caption for the previous figure:

Figure: (Source: [Stallings, 2015])

Lets see what all of this means ;)
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Parallel Processing Cache coherence problem

What happens when a read miss occurs? Any ideas?
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Parallel Processing Cache coherence problem

What happens when a read miss occurs? Any ideas?

Well it depends...:

• Has any cache a copy of the line in the exclusive state?

• Do any caches have a copy of the line in the shared state?

• Has any cache a copy of the line in the modified state?

• What if no other copies exist?
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Parallel Processing Cache coherence problem

Read miss: occurs in the local cache, the processor:

1 initiates a main memory read of the missing address;

2 inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (1/4):

• Possibility 1: One cache has a clean copy of the line in the exclusive state:
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Parallel Processing Cache coherence problem

Read miss: occurs in the local cache, the processor:
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Parallel Processing Cache coherence problem

Read miss: occurs in the local cache, the processor:

1 initiates a main memory read of the missing address;

2 inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (1/4):

• Possibility 1: One cache has a clean copy of the line in the exclusive state:

1 Cache returns a signal indicating that it shares this line;

2 Responding processor transitions from exclusive state to shared;
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Parallel Processing Cache coherence problem

Read miss: occurs in the local cache, the processor:

1 initiates a main memory read of the missing address;

2 inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (1/4):

• Possibility 1: One cache has a clean copy of the line in the exclusive state:

1 Cache returns a signal indicating that it shares this line;

2 Responding processor transitions from exclusive state to shared;

3 Initiating processor reads line from memory: goes from invalid to shared.
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Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (2/4):

• Possibility 2: ≥ 1 Caches have a clean copy of the line in the shared state:
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Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (2/4):

• Possibility 2: ≥ 1 Caches have a clean copy of the line in the shared state:

1 Each cache signals that it shares the line;
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Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (2/4):

• Possibility 2: ≥ 1 Caches have a clean copy of the line in the shared state:

1 Each cache signals that it shares the line;

2 Initiating processor reads from memory and line goes from invalid to shared.
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Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (3/4):

• Possibility 3: If one other cache has a modified copy of the line:

Luis Tarrataca Chapter 17 - Parallel Processing 43 / 72



Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (3/4):

• Possibility 3: If one other cache has a modified copy of the line:

1 Cache containing modified line blocks memory read from initiating processor;
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Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (3/4):

• Possibility 3: If one other cache has a modified copy of the line:
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Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (3/4):

• Possibility 3: If one other cache has a modified copy of the line:

1 Cache containing modified line blocks memory read from initiating processor;

2 Cache containing modified line provides the line to the requesting cache;

3 Responding cache then changes its line from modified to shared;
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Parallel Processing Cache coherence problem

Read miss occurs in the local cache, the processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (3/4):

• Possibility 3: If one other cache has a modified copy of the line:

1 Cache containing modified line blocks memory read from initiating processor;

2 Cache containing modified line provides the line to the requesting cache;

3 Responding cache then changes its line from modified to shared;

4 Memory controller updates the contents of the line in memory;
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Parallel Processing Cache coherence problem

Read miss occurs in the local cache, processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (4/4):

• Possibility 4: If no other cache has a copy of the line, no signals are returned:

1 Initiating processor reads the line from memory;
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Parallel Processing Cache coherence problem

Read miss occurs in the local cache, processor:

1 Initiates a main memory read of the missing address;

2 Inserts a signal on the bus that:

• Alerts all other processor/cache units to snoop the transaction;

3 A number of possible outcomes may occur (4/4):

• Possibility 4: If no other cache has a copy of the line, no signals are returned:

1 Initiating processor reads the line from memory;

2 Initiating processor transitions the line in its cache from invalid to exclusive.
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Parallel Processing Cache coherence problem

Read hit occurs on a line currently in the local cache:

1 Processor reads the required item;

2 No state change: state remains {modified, shared, or exclusive}.
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Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 1: some other cache may have a modified copy of this line:

1 Alerted processor signals that it has a modified copy of the line;

4 Processor signals read-with-intent-to-modify (RWITM) on bus:

• Reads the line from main memory;

• Modifies the line in the cache;

• Marks the line in the modified state.
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Parallel Processing Cache coherence problem
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Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 1: some other cache may have a modified copy of this line:

1 Alerted processor signals that it has a modified copy of the line;

2 Initiating processor surrenders the bus and waits;

3 Other processor writes the modified line to main memory;

4 Processor signals read-with-intent-to-modify (RWITM) on bus:

• Reads the line from main memory;

• Modifies the line in the cache;

• Marks the line in the modified state.
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Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 1: some other cache may have a modified copy of this line:

1 Alerted processor signals that it has a modified copy of the line;

2 Initiating processor surrenders the bus and waits;

3 Other processor writes the modified line to main memory;

4 Other processor transitions the state of the cache line to invalid.

4 Processor signals read-with-intent-to-modify (RWITM) on bus:

• Reads the line from main memory;

• Modifies the line in the cache;

• Marks the line in the modified state.
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Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 2: No other cache has a modified copy of the requested line:

1 No signal is returned by the other processors;
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Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;
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Parallel Processing Cache coherence problem

Write miss occurs in the local cache:
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Parallel Processing Cache coherence problem
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Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 2: No other cache has a modified copy of the requested line:

1 No signal is returned by the other processors;

2 Initiating processor proceeds to read in the line and modify it;

3 If one or more caches have a clean copy of the line in the shared state:

• Each cache invalidates its copy of the line.

4 If one cache has a clean copy of the line in the exclusive state
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Parallel Processing Cache coherence problem

Write miss occurs in the local cache:

1 Initiating processor attempts to read the line of main memory;

2 Processor signals read-with-intent-to-modify (RWITM) on bus.

3 Possibility 2: No other cache has a modified copy of the requested line:

1 No signal is returned by the other processors;

2 Initiating processor proceeds to read in the line and modify it;

3 If one or more caches have a clean copy of the line in the shared state:

• Each cache invalidates its copy of the line.

4 If one cache has a clean copy of the line in the exclusive state

• That cache invalidates its copy of the line.
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Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 1 - Shared state:

• Before updating, processor must gain exclusive ownership of the line:
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Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 1 - Shared state:

• Before updating, processor must gain exclusive ownership of the line:
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Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 1 - Shared state:

• Before updating, processor must gain exclusive ownership of the line:

• Processor signals its intent on bus;

• Each processor that has a shared copy of the line goes from shared to invalid.

• Initiating processor updates line and then state from shared to modified.
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Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 2 - Exclusive state:

• Processor already has exclusive control of this line:

• Simply performs the update;
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Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 2 - Exclusive state:

• Processor already has exclusive control of this line:

• Simply performs the update;

• Transitions its copy of the line from exclusive to modified.
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Parallel Processing Cache coherence problem

Write hit occurs on a line in the local cache, effect depends on line state:

• Possibility 3 - Modified state:

• Processor has exclusive control of this line and marked as modified:[<+->]

• Simply performs the update;
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Parallel Processing Cache coherence problem

Seems complex?
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Parallel Processing Cache coherence problem

Seems complex?

• Imagine multiple cache levels that can be shared...
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Parallel Processing Cache coherence problem

Seems complex?

• Imagine multiple cache levels that can be shared...
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Parallel Processing Cache coherence problem

Clusters

Group of computers working together as a unified computing resource:

• Each computer in a cluster is typically referred to as a node.

Some benefits:

• Scalability - Possible to add new nodes to the cluster;

• Availability - Failure of one node does not mean loss of service.
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Parallel Processing Cache coherence problem

How is information stored within the cluster? Any ideas?
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Parallel Processing Cache coherence problem

Figure: Shared Disk Cluster Configuration (Source: [Stallings, 2015])
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Parallel Processing Cache coherence problem

A cluster system raises a series of important design issues:

• Failure Management: How are failures managed by a cluster?

• A computation can be restarted on a different node;

• Or a computation can be continued on a different node;

• Load Balancing: How is the processing load among available computers?

• Parallelize Computation: How is the computation parallelized?

• Compiler? Purposely programmed? Parametric?
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Parallel Processing Cache coherence problem

Supercomputers are cluster systems:

• High-speed networks and physical proximity allow for better performance.

• Type of system used by the Santos Dumont supercomputer at LNCC.
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Parallel Processing SIMD parallel processing

Vector Computation

Perform arithmetic operations on arrays of floating-point numbers:

• Example: system simulation:

• These can typical be done by a set of equations;

• Basic Linear Algebra Subprograms (BLAS).

Same operation is performed to different data:

• Thus Single Instruction Multiple Data (SIMD).

Luis Tarrataca Chapter 17 - Parallel Processing 59 / 72



Parallel Processing SIMD parallel processing

Lets look at an example: We want to sum the elements of an array.

Ci = Ai + Bi

Figure: Example of Vector Addition (Source: [Stallings, 2015])
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Parallel Processing SIMD parallel processing

General-purpose computer

• iterate through each element of the array.

• Overkill and inefficient! Why?

• CPU can do floating-point operations;

• But can also do a host of other things:

• I/O operations;

• Memory management;

• Cache management;

• We are mostly interested in arithmetic operations:

• Arithmetic Logic Unit (ALU)
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Parallel Processing SIMD parallel processing

Idea: General-purpose parallel computation based on ALUs

• Instead of using processors for parallel computation;

• ALUs are also cheap =)

• Careful memory management:

• Since memory is shared by the different ALUs.
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Parallel Processing SIMD parallel processing

ALU0 ALU1 ALU2 ALU3 ALU4 ALU5 · · · ALUN

Figure: Summing two vectors (Source:

[Sanders and Kandrot, 2011])

• variable tid is the identification of the ALU;
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Parallel Processing SIMD parallel processing

Two main categories:

• Pipelined ALU;

• Parallel ALUs (GPGPUs):

• Pipelined or Not-pipelined.

Figure: Pipelined ALU (Source: [Stallings, 2015]) Figure: Parallel ALU (Source: [Stallings, 2015])
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Parallel Processing SIMD parallel processing

Floating-point operations are complex operations:

• Decompose a floating-point operation into stages;

• Pipeline for floating-point operations =)

Figure: The different stages for the pipeline for floating-point operations (Source: [Stallings, 2015])
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Parallel Processing SIMD parallel processing

Figure: Pipelined ALU (Source: [Stallings, 2015])

Figure: Parallel ALU (Source: [Stallings, 2015])

• C - Compare exponent, S - shift exponent, A - add significands, N - normalize

• Same problems that occur with processor pipelining also occur here.
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Parallel Processing SIMD parallel processing

As a curiosity lets look at the architecture of a GeForce8800:

Figure: GeForce 8800 architecture (Source: NVIDIA )
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Parallel Processing SIMD parallel processing

• 14 Streaming Multiple Processor (SM) each containing:

• Each SM contains 8 Streaming Processor (SP):

• Each SP processor has a fully pipelined

• integer arithmetic logic unit (ALU);

• floating point unit (FPU).

• Total: 224 ALUs.

• This an old card from 2006, recent models contain thousands of ALUs!

• Supercomputers are a combination of processors and GPGPU nodes.
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Parallel Processing SIMD parallel processing

Figure: NVIDIA GPU Architecture(Source: NVIDIA)
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Where to focus your study

Where to focus your study

After this class you should be able to:

• Summarize the types of parallel processor organizations;

• Present an overview of design features of symmetric multiprocessors;

• Understand the issue of cache coherence in a multiple processor system;

• Explain the key features of the MESI protocol.

• Understand the cluster systems and vector systems.
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Where to focus your study

Less important to know how these solutions were implemented:

• details of specific hardware solutions for parallel computation.

Your focus should always be on the building blocks for developing a solution

=)
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