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Introduction

Introduction

Today’s class will be a revision of digital logic elements:

• Boolean algebra.

• Gates:

• AND, OR, NOT, XOR, ...

• Combinatorial logic:

• Multiplexers, Decoders, Adders, ...

• Sequential logic:

• Flip-flops, registers, counters, ...
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Introduction

Computer architecture builds on these concepts to develop new ones.

Lets see how to review an entire semestre of concepts in a single class =)
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Boolean Algebra

Boolean Algebra

Boolean algebra makes use of logical variables and operations:

• A variable may take on the value 1 (TRUE) or 0 (FALSE).
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Boolean Algebra

What are some of the logical operations that you know?
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Boolean Algebra

What are some of the logical operations that you know?

• NOT

• AND

• OR

• ...

Lets see how well you remember these operations: volunteers?
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Boolean Algebra

P Q NOT P P AND Q P OR Q P NAND Q P NOR Q P XOR Q P XNOR Q

0 0

0 1

1 0

1 1
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Boolean Algebra

P Q NOT P P AND Q P OR Q P NAND Q P NOR Q P XOR Q P XNOR Q

0 0 1 0 0 1 1 0 1

0 1 1 0 1 1 0 1 0

1 0 0 0 1 1 0 1 0

1 1 0 1 1 0 0 0 1
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Boolean Algebra

What if we have more than two variables? Any ideas?
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Boolean Algebra

What if we have more than two variables? Any ideas?

Figure: Boolean operators extended to more than two inputs (Source: [Stallings, 2015])
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Boolean Algebra

Figure: Basic identities of boolean algebra (Source: [Stallings, 2015])
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Boolean Algebra

Exercises (1/6)

Use the previous table to simplify the following expressions:

1. X + XY

2. XY + XȲ

3. X + X̄Y

4. X(X + Y )
5. (X + Y )(X + Ȳ)
6. X(X̄ + Y )
7. X̄YZ + X̄Y Z̄ + XZ

8. XY + X̄ Z + YZ

9. (A + B)(Ā + C)
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Boolean Algebra

Exercises (2/6)

X + XY = X(1 + Y ) = X

XY + XȲ = X(Y + Ȳ ) = X

X + X̄Y = (X + X̄)(X + Y ) = X + Y
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Boolean Algebra

Exercises (3/6)

X(X + Y ) = X + XY = X(1 + Y ) = X

(X + Y )(X + Ȳ ) = XX + XȲ + XY + Y Ȳ = XX + X(Y + Ȳ) = X(1 + X) = X

X(X̄ + Y ) = XX̄ + XY = XY
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Boolean Algebra

Exercises (4/6)

XY + X̄ Z + YZ = XY + X̄ Z + YZ(X + X̄)

= XY + X̄ Z + XYZ + X̄YZ

= XY + XYZ + X̄ Z + X̄YZ

= XY (1 + Z) + X̄ Z(1 + Y )

= XY + X̄ Z

Luis Tarrataca Chapter 11 - Digital Logic 19 / 122



Boolean Algebra

Exercises (5/6)

(A + B)(Ā + C) = AĀ + AC + ĀB + BC

= AC + ĀB + BC

= AC + ĀB + BC(A + Ā)

= AC + ĀB + ABC + ĀBC

= AC + ABC + ĀB + ĀBC

= AC(1 + B) + ĀB(1 + C)

= AC + ĀB
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Boolean Algebra

Exercises (6/6)

Prove the following Boolean equations using algebraic manipulation:

1 X̄ Ȳ + X̄Y + XY = X̄ + Y

2 ĀB + B̄C̄ + AB + B̄C = 1

3 Y + X̄ Z + XȲ = X + Y + Z

4 X̄ Ȳ + ȲZ + XZ + XY + Y Z̄ = X̄ Ȳ + XZ + Y Z̄
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Gates

Gates

Fundamental building block of all digital logic circuits is the gate.

• Logical functions are implemented by the interconnection of gates.

• Basic gates used are AND, OR, NOT, NAND, NOR, and XOR.
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Gates

Figure: Basic logic gates (Source: [Stallings, 2015])Luis Tarrataca Chapter 11 - Digital Logic 23 / 122



Gates

There are a lot of gates. Do we really need all of these gates? Any ideas?
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Gates

There are a lot of gates. Do we really need all of these gates? Any ideas?

• Ever heard of universal gates?
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Gates Universal Gates

Universal Gates

The NAND and NOR gates are also known as universal gates:

• Any Boolean function can be implemented using only them;

• Lets have a look at some examples:

• NOT gate;

• AND gate;

• OR gate;

• NOR gate;
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Gates Universal Gates

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas?
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Gates Universal Gates

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas?

• What happens when we duplicate the same input on a NAND gate?
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Gates Universal Gates

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas?

• What happens when we duplicate the same input on a NAND gate?

P Q P NAND Q

0 0 1

1 1 0
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Gates Universal Gates

Universal Gates :: Obtaining the NOT Operator (2/2)

Figure: NOT operation achieved through a NAND gate (Source: [Stallings, 2015])
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Gates Universal Gates

Universal Gates :: Obtaining the AND Operator (1/2)

How can we use a NAND gate to obtain the AND operator? Any ideas?
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Gates Universal Gates

Universal Gates :: Obtaining the AND Operator (1/2)

How can we use a NAND gate to obtain the AND operator? Any ideas?

Remember the algebraic properties?

AB = AB
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Gates Universal Gates

Universal Gates :: Obtaining the AND Operator (2/2)

Remember the algebraic properties?

AB = AB

Figure: AND operation achieved through a NAND gate (Source: [Stallings, 2015])
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Gates Universal Gates

Universal Gates :: Obtaining the OR Operator (1/2)

How can we use a NAND gate to obtain the OR operator? Any ideas?
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Gates Universal Gates

Universal Gates :: Obtaining the OR Operator (1/2)

How can we use a NAND gate to obtain the OR operator? Any ideas?

Remember the algebraic properties?

A + B = A + B

= Ā.B̄
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Gates Universal Gates

Universal Gates :: Obtaining the OR Operator (2/2)

Remember the algebraic properties?

A + B = A + B

= Ā.B̄

Figure: OR operation achieved through a NAND gate (Source: [Stallings, 2015])
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Gates Universal Gates

Universal Gates :: Obtaining the NOR Operator (1/2)

How can we use a NAND gate to obtain the NOR operator? Any ideas?

• Recall that the NOR operator is also a universal gate;

• Therefore there is a mapping between NAND and NOR;
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Gates Universal Gates

Universal Gates :: Obtaining the NOR Operator (1/2)

How can we use a NAND gate to obtain the NOR operator? Any ideas?

• Recall that the NOR operator is also a universal gate;

• Therefore there is a mapping between NAND and NOR;

A + B = A + B

= Ā.B̄
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Gates Universal Gates

A + B = A + B

= Ā.B̄

Figure: NOR operation achieved through a NAND gate (Source: wikipedia)
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Gates Universal Gates

Now that we have a basic understanding of the logical operations:

• Lets see how we can combine these elements to calculate functions;
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Combinatorial Circuit

Combinatorial Circuit

A set of interconnected gates

• Output at any time is a function only of the input at that time;

• Consists of n binary inputs and m binary outputs

• Can be defined in three ways:

• Truth table;

• Graphical symbols;

• Boolean equations
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Combinatorial Circuit Implementation of Boolean Functions

Example

Consider the following truth table for a boolean function:

Figure: A boolean function of three variables (Source: [Stallings, 2015])
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Combinatorial Circuit Implementation of Boolean Functions

F can be expressed by itemizing the combinations of either:

• Sum of minterms that have value 1;

∑
m(2, 3, 6)

• Product of maxterms that have value 0;

ΠM(0, 1, 4, 5, 7)
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Combinatorial Circuit Implementation of Boolean Functions

F can be expressed by itemizing the combinations of either:

• sum of minterms that have value 1;

∑
m(2, 3, 6) = ĀBC̄ + ĀBC + ABC̄

• product of maxterms that have value 0;

ΠM(0, 1, 4, 5, 7) = (A+B+C)(A+B+C̄)(Ā+B+C)(Ā+B+C̄)(Ā+B̄+C̄)
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Combinatorial Circuit Implementation of Boolean Functions

Lets focus on the minterms:

F = ĀBC̄ + ĀBC + ABC̄

How can we obtain the equivalent logical circuit? Any ideas?
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Combinatorial Circuit Implementation of Boolean Functions

How can we obtain the equivalent logical circuit? Any ideas?

F = ĀBC̄ + ĀBC + ABC̄

Figure: Circuit implementation (Source: [Stallings, 2015])
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Combinatorial Circuit Implementation of Boolean Functions

Can we do better than the previous logical circuit? Any ideas?
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Combinatorial Circuit Implementation of Boolean Functions

Can we do better than the previous logical circuit? Any ideas?

• Convenient to obtain the simplified form...
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Combinatorial Circuit Implementation of Boolean Functions

Can we do better than the previous logical circuit? Any ideas?

• Convenient to obtain the simplified form...

How can we obtain the simplified form? Any ideas?
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Combinatorial Circuit Implementation of Boolean Functions

How can we obtain the simplified form? Any ideas?

F = ĀBC̄ + ĀBC + ABC̄
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Combinatorial Circuit Algebraic simplification

How can we obtain the simplified form? Any ideas?

F = ĀBC̄ + ĀBC + ABC̄

= ĀB(C̄ + C) + ABC̄

= ĀB.1 + ABC̄

= B(Ā + AC̄)

= B((Ā + A)(Ā + C̄))

= B(1(Ā + C̄))

= ĀB + BC̄

= B(Ā + C̄)
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Combinatorial Circuit Algebraic simplification

Once we have obtained the simplified form it is easy to obtain the

equivalent circuit... Any ideas?

F = B(Ā + C̄)
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Combinatorial Circuit Algebraic simplification

Once we have obtained the simplified form it is easy to obtain the

equivalent circuit... Any ideas?

F = B(Ā + C̄)

Figure: Simplified Circuit implementation (Source: [Stallings, 2015])
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Combinatorial Circuit Karnaugh Maps

Karnaugh Maps

Algebraic simplification procedure is awkward:

• Lacks specific rules to predict each succeeding step;

• Difficult to determine if the simplest expression has been obtained;

Karnaugh map provides a way for simplifying boolean expressions:

• Up to four variables;

• More than this becomes difficult to use.

• Takes advantage of humans’ pattern-recognition capability.

This section is based on [Mano and Kime, 2002].

Luis Tarrataca Chapter 11 - Digital Logic 54 / 122



Combinatorial Circuit Karnaugh Maps

The map is a diagram made up of squares:

• Each square represents one minterm of the function;

• Visual diagram of all possible ways a function may be expressed;
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Combinatorial Circuit Karnaugh Maps

Lets take a look at a three-variable map.

• Only one bit changes in value from one column to the other;

• Any two adjacent squares differ in only a single variable;

Figure: Three Variable Map (Source: [Mano and Kime, 2002])

• Any two minterms in adjacent squares produce a product of two variables.

• Why?
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Combinatorial Circuit Karnaugh Maps

• Lets see why...

Figure: Three Variable Map (Source: [Mano and Kime, 2002])

• E.g.: m5 + m7 = XȲZ + XYZ

• I.e. m5 + m7 = XȲ Z + XYZ = XZ(Ȳ + Y ) = XZ

• The two squares differ in variable Y , which can be removed.
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Combinatorial Circuit Karnaugh Maps

Karnaugh Map Example 1

Figure:
∑

m(2, 3, 4, 5) = X̄Y + XȲ (Source: [Mano and Kime, 2002])
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Combinatorial Circuit Karnaugh Maps

Karnaugh Map Example 2

Two squares can also be adjacent without touching each other:

Figure:
∑

m(0, 2, 4, 6) = X̄ Z̄ + X Z̄ (Source: [Mano and Kime, 2002])

• The minterms continue to differ by one variable;
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Combinatorial Circuit Karnaugh Maps

Karnaugh Map Example 3

It is also possible to combine 4 squares:

Figure:
∑

m(0, 2, 4, 6) = X̄ Z̄ + X Z̄ = (X̄ + X)Z̄ = Z̄ (Source: [Mano and Kime, 2002])
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Combinatorial Circuit Karnaugh Maps

Karnaugh Map Example 4

It is also possible to have several combinations:

Figure:
∑

m(0, 1, 2, 3, 6, 7) = X̄ + Y (Source: [Mano and Kime, 2002])
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Combinatorial Circuit Karnaugh Maps

The more squares are combined the fewer literals are used:

• One square represents three literals;

• Two squares represents a product term of two literals;

• Four squares represents a product term of one literal;

• Eight squares (entire map) is equal to value 1.
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Combinatorial Circuit Karnaugh Maps

Now that we have a basic understanding of boolean algebra:

• Lets have a look at other types of gates...
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Combinatorial Circuit Multiplexers

Multiplexers

The multiplexer connects multiple inputs to a single output.

• At any time, one of the inputs is selected to be passed to the output.

Figure: A 4-to-1 Multiplexer representation

(Source: [Stallings, 2015])

Figure: A 4-to-1 Multiplexer truth table (Source:

[Stallings, 2015])

• Four input lines (D0, D1, D2, and D3);

• Two selection lines (S0 and S1);
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Combinatorial Circuit Multiplexers

How can we implement a multiplexer using the logical gates we know?

Any ideas?
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Combinatorial Circuit Multiplexers

Figure: Multiplexer Implementation (Source: [Stallings, 2015])

Multiplexeres are useful for:

• To control signal and data routing;

• E.g. loading PC from different sources;
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Combinatorial Circuit Decoders

Decoders

Combinational circuit with a number of output lines:

• Only one of which is asserted at any time, dependent on input;

• n inputs, 2n output lines;
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Combinatorial Circuit Decoders

Figure: Decoder with 3 inputs and 23 = 8 outputs (Source: [Stallings, 2015])
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Combinatorial Circuit Adders

Adders

Binary addition differs from Boolean algebra in that the result includes a carry

term.
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Combinatorial Circuit Adders

Figure: Binary addition truth tables (Source: [Stallings, 2015])

The two outputs can be expressed:

• Sum = CinAB + CinAB + CinAB + CinAB

• Cout = CinAB + CinAB + CinAB + CinAB
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Combinatorial Circuit Adders

Figure: 4 bit adder (Source: [Stallings, 2015])
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Combinatorial Circuit Adders

Figure: Implementation of an adder using AND, OR and NOT gates (Source: [Stallings, 2015])
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Sequential Circuits

Sequential Circuits

Combinational circuits implement the essential functions of a computer.

• However, they provide no memory or state information,

In sequential circuits the output depends:

• Not only on the current input...

• But also of the current circuit state;
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Sequential Circuits

Useful examples of sequential circuits:

• Flip-flops;

• Registers;

• Counters.
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Sequential Circuits

Useful examples of sequential circuits:

• Flip-flops;

• Registers;

• Counters.

Guess what we will be seeing today! Any ideas?
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Sequential Circuits Flip-flops

Flip-flops

• Simplest form of the sequential circuit;

• A variety of flip-flops exist, all of which share two properties:

• Can maintain a binary state indefinitely*:

• Until directed by an input signal to switch states;

• The flip-flop can function as a 1-bit memory;

• *As long as powered is deliver to the circuit.

• Has two outputs, these are generally labeled Q and Q.
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Sequential Circuits Flip-flops

Before we go any further into our presentation:

Does anyone have any idea how flip-flops are implemented?
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Sequential Circuits Flip-flops

Before we go any further into our presentation:

Does anyone have any idea how flip-flops are implemented?

Several possibilities:

• Science / Engineering;

• Magic ;)
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Sequential Circuits Flip-flops

SR flip-flops

SR circuit has:

• Two inputs S (Set) and R (Reset);

• Two outputs Q and Q;

• Two NOR gates connected in a feedback arrangement;

Figure: The S-R Latch implemented with NOR Gates (Source: [Stallings, 2015])
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Sequential Circuits Flip-flops

Circuit functions as a 1-bit memory:

• Inputs Set and Reset serve to write the values 1 and 0 to Q;

• Consider the state Q = 0,Q = 1, S = 0, R = 0

Figure: S-R Latch implemented with NOR Gates (Source: [Stallings, 2015])
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Sequential Circuits Flip-flops

Suppose that S changes to the value 1.

Figure: S-R Latch implemented with NOR Gates

(Source: [Stallings, 2015])

Figure: NOR S-R Latch timing Diagram (Source:

[Stallings, 2015])

1 Now the inputs to the lower NOR gate are S = 1, Q = 0.

2 After some time delay ∆t , the output of the lower NOR gate will be Q̄ = 0.
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Sequential Circuits Flip-flops

Figure: S-R Latch implemented with NOR Gates

(Source: [Stallings, 2015])

Figure: NOR S-R Latch timing Diagram (Source:

[Stallings, 2015])

3 The inputs to the upper NOR gate become R = 0,Q = 0.

4 After another gate delay of ∆t , the output Q becomes 1.
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Sequential Circuits Flip-flops

Figure: S-R Latch implemented with NOR Gates

(Source: [Stallings, 2015])

Figure: NOR S-R Latch timing Diagram (Source:

[Stallings, 2015])

5 This is a stable state. The inputs to the lower gate are now S = 1, Q = 1,

which maintain the output Q̄ = 0.

• As long as S = 1 and R = 0, the outputs will remain Q = 1,Q = 0.

• Furthermore, if S returns to 0, the outputs will remain unchanged.
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Sequential Circuits Flip-flops

Figure: S-R Latch implemented with NOR Gates

(Source: [Stallings, 2015])

Figure: NOR S-R Latch timing Diagram (Source:

[Stallings, 2015])

6 The R output performs the opposite function.

• When R goes to 1, it forces Q = 0, Q̄ = 1

• Regardless of the previous state of Q and Q̄.

• Again, a time delay of 2∆t occurs before the final state is established
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Sequential Circuits Flip-flops

Figure: S-R Latch implemented with NOR Gates

(Source: [Stallings, 2015])

Figure: NOR S-R Latch timing Diagram (Source:

[Stallings, 2015])

In essence:

• S = 1 makes Q̄ = 0

• If S = 1 then R = 0 which makes Q = 1

• R = 1 makes Q = 0

• If R = 1 then S = 0 which makes Q̄ = 1
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Sequential Circuits Flip-flops

This behaviour can be described by a characteristic table:

Figure: (Source: [Stallings, 2015])
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Sequential Circuits Flip-flops

This behaviour can be described by a characteristic table:

Figure: (Source: [Stallings, 2015])

But what happens when the inputs are set to S = 1, R = 1? Any ideas?
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Sequential Circuits Flip-flops

This behaviour can be described by a characteristic table:

Figure: (Source: [Stallings, 2015])

Inputs S = 1, R = 1 are not allowed:

• Would produce the inconsistent output Q = Q̄ = 0
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Sequential Circuits Flip-flops

It is also possible to derive a simplified version:

Figure: (Source: [Stallings, 2015])
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Sequential Circuits Flip-flops

Example

Lets look at a particular example:

Response to Series of Inputs

t 0 1 2 3 4 5 6 7 8 9

S 1 0 0 0 0 0 0 0 1 0

R 0 0 0 1 0 0 1 0 0 0

Qn+1
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Sequential Circuits Flip-flops

Example

Lets look at a particular example:

Response to Series of Inputs

t 0 1 2 3 4 5 6 7 8 9

S 1 0 0 0 0 0 0 0 1 0

R 0 0 0 1 0 0 1 0 0 0

Qn+1 1 1 1 0 0 0 0 0 1 1
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Sequential Circuits Flip-flops

Typically events in the digital computer are synchronized to a clock pulse,

• Changes occur only when a clock pulse occurs;

• R and S inputs are passed to the NOR gates only during the clock pulse.

Figure: Clocked SR flip-flops (Source: [Stallings, 2015])
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Sequential Circuits Flip-flops

D flip-flops

Problem with S-R flip-flop, the condition R = 1, S = 1 must be avoided.

How can we be sure that these inputs are not allowed? Any ideas?
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Sequential Circuits Flip-flops

D flip-flops

Problem with S-R flip-flop, the condition R = 1, S = 1 must be avoided.

• One way to do this is to allow just a single input.

Figure: (D flip-flops [Stallings, 2015])

• By using a NOT gate:

• Nonclock inputs are the opposite of each other.
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Sequential Circuits Flip-flops

Figure: D flip-flops [Stallings, 2015]

Clock D Qn+1

0 0 Qn

0 1 Qn

1 0 0

1 1 1

• Flip-flop captures the value of the D-input during the clock cycle;

• Captured value becomes the Q output.

• Other times, the output Q does not change.
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Sequential Circuits Flip-flops

J-K flip-flops (1/3)

Has two inputs, with all possible combinations of inputs values being valid:

Figure: J-K flip-flops [Stallings, 2015]

J K Qn+1

0 0 Qn

0 1 0

1 0 1

1 1 Qn

• Note that the first three combinations are the same as for the SR flip-flop;

• With no input asserted (J=K=0): output is stable;
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Sequential Circuits Flip-flops

J-K flip-flops (2/3)

Figure: J-K flip-flops [Stallings, 2015]

J K Qn+1

0 0 Qn

0 1 0

1 0 1

1 1 Qn

• If only the J input is asserted, the output is set to 1;

• if only the K in put is asserted, the output is reset to 0.
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Sequential Circuits Flip-flops

J-K flip-flops (3/3)

Figure: J-K flip-flops [Stallings, 2015]

J K Qn+1

0 0 Qn

0 1 0

1 0 1

1 1 Qn

• When both J and K are 1: output is reversed;

• If Qn = 0 then Qn+1 = 1

• If Qn = 1 then Qn+1 = 0
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Sequential Circuits Flip-flops

In summary:

Figure: Basic flip-flops summary [Stallings, 2015]
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Sequential Circuits Registers

Registers

Lets look at another type of sequential circuits: registers:

First, how many of you have heard of registers? Any ideas?
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Sequential Circuits Registers

Registers

Lets look at another type of sequential circuits: registers:

• Circuit used within the CPU to store one or more bits of data

• Two basic types of registers are commonly used:

• Parallel registers;

• Shift registers.

Lets have a quick look at each one of these...
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Sequential Circuits Registers

Parallel Registers

Consists of a set of 1-bit memories that can be read or written

simultaneously.

Figure: 8 Bit Parallel Register (Source: [Stallings, 2015])

• Makes use of D flip-flops

• Load control signal controls writing into the register from signal lines, D11 through D18.
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Sequential Circuits Registers

Shift Registers (1/2)

A shift register accepts and/or transfers information serially:

Figure: 5 Bit Shift Register (Source: [Stallings, 2015])

• A 5-bit shift register constructed from clocked D flip-flops;

• Data are input only to the leftmost flip-flop;

• With each clock pulse, data are shifted to the right one position;

• and the rightmost bit is transferred out.

Luis Tarrataca Chapter 11 - Digital Logic 103 / 122



Sequential Circuits Registers

Shift Registers (2/2)

A shift register accepts and/or transfers information serially:

Figure: 5 Bit Shift Register (Source: [Stallings, 2015])

• Shift registers can be used to interface to serial I/O devices.

• In addition, they can be used within the ALU to perform logical shift and rotate functions.
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Sequential Circuits Counters

Counters

Lets look at another type of sequential circuits: counters:

First, how many of you have heard of counters? Any ideas?
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Sequential Circuits Counters

Counters

Register whose value is incremented by 1;

• Register made up of n flip-flops can count up to 2n − 1.

• After value 2n − 1 the next increment sets the counter value to 0.

• An example of a counter in the CPU is the program counter;
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Sequential Circuits Counters

Counters can be designated as asynchronous or synchronous:

• Asynchronous counter:

• Slow since output of one flip-flop triggers a change in next flip-flop.

• Synchronous counter:

• All of the flip-flops change state at the same time.

• The kind used in CPUs.

Lets have a look at each one of these...
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Sequential Circuits Counters

Asynchronous counters (1/3)

Figure: 4-Bit Counter (Source: [Stallings, 2015])

• Output of the leftmost flip-flop (Q0) is the least significant bit;

• All output Qi bits are initialized to zero;

• Extensible to an arbitrary number of bits by cascading more flip-flops;

• Counter is incremented with each clock pulse;
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Sequential Circuits Counters

Asynchronous counters (2/3)

Figure: 4-Bit Counter (Source: [Stallings, 2015])

• J and K inputs to each flip-flop are held at a constant 1 (High).

• I.e. when there is a clock pulse, the output at Q will be inverted;

• Change in state occurs with the falling edge of the clock pulse

• A.k.a. edge-triggered flip-flop

• Timing is very important for the correct functioning of the counter.
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Sequential Circuits Counters

Asynchronous counters (3/3)

Figure: 4-Bit Counter (Source: [Stallings, 2015])

• State of each individual bit is initially set to zero

• If one looks at patterns of output for this counter, it can be seen that it

cycles through 0000, 0001, . . ., 1110, 1111, 0000

• Note the transitional delay from each flip-flops
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Sequential Circuits Counters

Synchronous counters (1/11)

Asynchronous counters have a disadvantageous built-in delay:

• Proportional to the length of the counter.

CPUs make use of synchronous counters:

• All of the flip-flops of the counter change at the same time.

Lets take a look at how to build a 3-bit synchronous counter.
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Sequential Circuits Counters

Synchronous counters (2/11)

For a 3-bit counter, three flip-flops will be needed:

• Lets us use J-K flip-flops.

• Label the uncomplemented output of the three flip-flops A, B, C

respectively, with C representing the least significant bit.

• It is helpful to recast the characteristic table for the J-K flip-flop:

Figure: Original

Qn J K Qn+1

0 0

0 1

1 0

1 1
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Sequential Circuits Counters

Synchronous counters (3/11)

For a 3-bit counter, three flip-flops will be needed:

• Lets us use J-K flip-flops.

• Label the uncomplemented output of the three flip-flops A, B, C

respectively, with C representing the least significant bit.

• It is helpful to recast the characteristic table for the J-K flip-flop:

Figure: Original

Qn J K Qn+1

0 0 d 0

0 1 d 1

1 d 1 0

1 d 0 1
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Sequential Circuits Counters

Synchronous counters (4/11)

• It is helpful to recast the characteristic table for the J-K flip-flop:

Figure: Original
Figure: Recast

• If Qn = 0 and we want to transition to Qn+1 = 0

• Then J = 0 and K = {0, 1}

• If Qn = 0 and we want to transition to Qn+1 = 1

• Then J = 1 and K = {0, 1}
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Sequential Circuits Counters

Synchronous counters (5/11)

• It is helpful to recast the characteristic table for the J-K flip-flop:

Figure: Original
Figure: Recast

• If Qn = 1 and we want to transition to Qn+1 = 0

• Then K = 1 and J = {0, 1}

• If Qn = 1 and we want to transition to Qn+1 = 1

• Then K = 0 and J = {0, 1}
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Sequential Circuits Counters

Synchronous counters (6/11)

Figure: Synchronous Counter Truth Table (Source: [Stallings, 2015])

• Consider transition from ‘‘000’’ to ‘‘001’’

• Value of A needs to remain 0;

Value of B needs to remain 0;

Value of C needs to go from 0 to 1;

• Excitation table shows that to:

• Maintain an output of 0: inputs must be {J = 0, K = d};

• To effect a transition from 0 to 1: inputs must be {J = 1, K = d};
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Sequential Circuits Counters

Synchronous counters (7/11)

• With this in mind we can construct a truth table that relates the J-K inputs

and outputs

C B A Jc Kc Jb Kb Ja Ka

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Qn J K Qn+1

0 0 d 0

0 1 d 1

1 d 1 0

1 d 0 1
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Sequential Circuits Counters

Synchronous counters (8/11)

• With this in mind we can construct a truth table that relates the J-K inputs

and outputs

C B A Jc Kc Jb Kb Ja Ka

0 0 0 0 d 0 d 1 d

0 0 1 0 d 1 d d 1

0 1 0 0 d d 0 1 d

0 1 1 1 d d 1 d 1

1 0 0 d 0 0 d 1 d

1 0 1 d 0 1 d d 1

1 1 0 d 0 d 0 1 d

1 1 1 d 1 d 1 d 1

Qn J K Qn+1

0 0 d 0

0 1 d 1

1 d 1 0

1 d 0 1
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Sequential Circuits Counters

Synchronous counters (9/11)

We can develop Boolean expressions for these six functions:

Figure: Synchronous Counter Karnaugh Maps (Source: [Stallings, 2015])
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Sequential Circuits Counters

Synchronous counters (10/11)

For example, the Karnaugh map for the variable Jc:

• The J input to the flip-flop that produces the C output;

• yields the expression Jc = BA.

When all six expressions are derived,

• straightforward to design the circuit.
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Sequential Circuits Counters

Synchronous counters (11/11)

Circuit example:

Figure: Synchronous Counter Design (Source: [Stallings, 2015])
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