Chapter 11 - Digital Logic

Luis Tarrataca
luis.tarrataca@gmail.com

CEFET-RJ

Table of Contents I

(1) Introduction
(2) Boolean Algebra
(3) Gates

Universal Gates
NOT Operator
AND Operator
OR Operator
NOR Operator
(4) Combinatorial Circuit

Implementation of Boolean Functions
Algebraic simplification
Karnaugh Maps

Table of Contents II

Multiplexers

Decoders
Adders

Table of Contents I

(5) Sequential Circuits

Flip-flops
SR flip-flops
D flip-flops
J-K flip-flops
J-K flip-flops
J-K flip-flops
Registers
Parallel Registers
Shift Registers

Counters

Table of Contents II

Asynchronous counters

Synchronous counters

Introduction

Today's class will be a revision of digital logic elements:

- Boolean algebra.
- Gates:
- AND, OR, NOT, XOR, ...
- Combinatorial logic:
- Multiplexers, Decoders, Adders, ...
- Sequential logic:
- Flip-flops, registers, counters, ...

Computer architecture builds on these concepts to develop new ones.

Lets see how to review an entire semestre of concepts in a single class =)

Boolean Algebra

Boolean algebra makes use of logical variables and operations:

- A variable may take on the value 1 (TRUE) or 0 (FALSE).

What are some of the logical operations that you know?

What are some of the logical operations that you know?

- NOT
- AND
- OR

Lets see how well you remember these operations: volunteers?

\mathbf{P}	\mathbf{Q}	NOT P	\mathbf{P} AND Q	\mathbf{P} OR Q	\mathbf{P} NAND Q	$\mathbf{P N O R} \mathbf{Q}$	\mathbf{P} XOR Q	\mathbf{P} XNOR Q
0	0							
0	1							
1	0							
1	1							

\mathbf{P}	\mathbf{Q}	NOT P	P AND Q	P OR Q	P NAND Q	P NOR Q	P XOR Q	P XNOR Q
0	0	1	0	0	1	1	0	1
0	1	1	0	1	1	0	1	0
1	0	0	0	1	1	0	1	0
1	1	0	1	1	0	0	0	1

What if we have more than two variables? Any ideas?

What if we have more than two variables? Any ideas?

Operation	Expression	Output $=1$ if
AND	$\mathrm{A} \cdot \mathrm{B} \cdot \ldots$	All of the set $\{\mathrm{A}, \mathrm{B}, \ldots\}$ are 1.
OR	$\mathrm{A}+\mathrm{B}+\ldots$	Any of the set $\{\mathrm{A}, \mathrm{B}, \ldots\}$ are 1.
NAND	$\overline{\mathrm{A} \cdot \mathrm{B} \cdot \ldots}$	Any of the $\operatorname{set}\{\mathrm{A}, \mathrm{B}, \ldots\}$ are 0.
NOR	$\overline{\mathrm{A}+\mathrm{B}+\ldots}$	All of the set $\{\mathrm{A}, \mathrm{B}, \ldots\}$ are 0.
XOR	$\mathrm{A} \oplus \mathrm{B} \oplus \ldots$	The set $\{\mathrm{A}, \mathrm{B}, \ldots\}$ contains an odd number of ones

Figure: Boolean operators extended to more than two inputs (Source: (Stallings, 2015))

Basic Postulates		
$\mathrm{A} \cdot \mathrm{B}=\mathrm{B} \cdot \mathrm{A}$	$\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$	Commutative Laws
$A \cdot(B+C)=(A \cdot B)+(A \cdot C)$	$\mathrm{A}+(\mathrm{B} \cdot \mathrm{C})=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$	Distributive Laws
$1 \cdot \mathrm{~A}=\mathrm{A}$	$0+\mathrm{A}=\mathrm{A}$	Identity Elements
$\mathrm{A} \cdot \overline{\mathrm{A}}=0$	$\mathrm{A}+\overline{\mathrm{A}}=1$	Inverse Elements
Other Identities		
$0 \cdot \mathrm{~A}=0$	$1+\mathrm{A}=1$	
$\mathrm{A} \cdot \mathrm{A}=\mathrm{A}$	$\mathrm{A}+\mathrm{A}=\mathrm{A}$	
$A \cdot(B \cdot C)=(A \cdot B) \cdot C$	$A+(B+C)=(A+B)+C$	Associative Laws
$\overline{\mathrm{A} \cdot \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$	$\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$	DeMorgan's Theorem

Figure: Basic identities of boolean algebra (Source: (Stallings, 2015))

Exercises (1/6)

Use the previous table to simplify the following expressions:

1. $X+X Y$
2. $X Y+X \bar{Y}$
3. $X+\bar{X} Y$
4. $X(X+Y)$
5. $(X+Y)(X+\bar{Y})$
6. $X(\bar{X}+Y)$
7. $\bar{X} Y Z+\bar{X} Y \bar{Z}+X Z$
8. $X Y+\bar{X} Z+Y Z$
9. $(A+B)(\bar{A}+C)$

Exercises (2/6)

$$
\begin{gathered}
X+X Y=X(1+Y)=X \\
X Y+X \bar{Y}=X(Y+\bar{Y})=X \\
X+\bar{X} Y=(X+\bar{X})(X+Y)=X+Y
\end{gathered}
$$

Exercises (3/6)

$$
X(X+Y)=X+X Y=X(1+Y)=X
$$

$$
(X+Y)(X+\bar{Y})=X X+X \bar{Y}+X Y+Y \bar{Y}=X X+X(Y+\bar{Y})=X(1+X)=X
$$

$$
X(\bar{X}+Y)=X \bar{X}+X Y=X Y
$$

Exercises (4/6)

$$
\begin{aligned}
X Y+\bar{X} Z+Y Z & =X Y+\bar{X} Z+Y Z(X+\bar{X}) \\
& =X Y+\bar{X} Z+X Y Z+\bar{X} Y Z \\
& =X Y+X Y Z+\bar{X} Z+\bar{X} Y Z \\
& =X Y(1+Z)+\bar{X} Z(1+Y) \\
& =X Y+\bar{X} Z
\end{aligned}
$$

Exercises (5/6)

$$
\begin{aligned}
(A+B)(\bar{A}+C) & =A \bar{A}+A C+\bar{A} B+B C \\
& =A C+\bar{A} B+B C \\
& =A C+\bar{A} B+B C(A+\bar{A}) \\
& =A C+\bar{A} B+A B C+\bar{A} B C \\
& =A C+A B C+\bar{A} B+\bar{A} B C \\
& =A C(1+B)+\bar{A} B(1+C) \\
& =A C+\bar{A} B
\end{aligned}
$$

Exercises (6/6)

Prove the following Boolean equations using algebraic manipulation:
(1) $\bar{X} \bar{Y}+\bar{X} Y+X Y=\bar{X}+Y$
(2) $\bar{A} B+\bar{B} \bar{C}+A B+\bar{B} C=1$
(3) $Y+\bar{X} Z+X \bar{Y}=X+Y+Z$
(4) $\bar{X} \bar{Y}+\bar{Y} Z+X Z+X Y+Y \bar{Z}=\bar{X} \bar{Y}+X Z+Y \bar{Z}$

Gates

Fundamental building block of all digital logic circuits is the gate.

- Logical functions are implemented by the interconnection of gates.
- Basic gates used are AND, OR, NOT, NAND, NOR, and XOR.

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	$\mathrm{A} \square-\mathrm{F}$	$\mathrm{F}=\mathrm{A} \cdot \mathrm{~B}$ or $\mathrm{F}=\mathrm{AB}$	A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR	B	$\mathrm{F}=\mathrm{A}+\mathrm{B}$	A B F 0 0 0 0 1 1 1 0 1 1 1 1
NOT		$\begin{gathered} \mathrm{F}=\overline{\mathrm{A}} \\ \text { or } \\ \mathrm{F}=\mathrm{A}^{\prime} \end{gathered}$	A F 0 1 1 0
NAND	$\mathrm{A} \square 0-\mathrm{F}$	$\mathrm{F}=\overline{\mathrm{AB}}$	A B F 0 0 1 0 1 1 1 0 1 1 1 0
NOR		$\mathrm{F}=\overline{\mathrm{A}+\mathrm{B}}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	$B \longrightarrow$	$\mathrm{F}=\mathrm{A} \oplus \mathrm{B}$	A B F 0 0 0 0 1 1 1 0 1 1 1 0

There are a lot of gates. Do we really need all of these gates? Any ideas?

There are a lot of gates. Do we really need all of these gates? Any ideas?

- Ever heard of universal gates?

Universal Gates

The NAND and NOR gates are also known as universal gates:

- Any Boolean function can be implemented using only them;
- Lets have a look at some examples:
- NOT gate;
- AND gate;
- OR gate;
- NOR gate;

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas?

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas?

- What happens when we duplicate the same input on a NAND gate?

Universal Gates :: Obtaining the NOT Operator (1/2)

How can we use a NAND gate to obtain the NOT operator? Any ideas?

- What happens when we duplicate the same input on a NAND gate?

\mathbf{P}	\mathbf{Q}	P NAND Q
0	0	1
1	1	0

Universal Gates :: Obtaining the NOT Operator (2/2)

Figure: NOT operation achieved through a NAND gate (Source: (Stallings, 2015))

Universal Gates :: Obtaining the AND Operator (1/2)

How can we use a NAND gate to obtain the AND operator? Any ideas?

Universal Gates :: Obtaining the AND Operator (1/2)

How can we use a NAND gate to obtain the AND operator? Any ideas?

Remember the algebraic properties?

$$
A B=\overline{\overline{A B}}
$$

Universal Gates :: Obtaining the AND Operator (2/2)

Remember the algebraic properties?

$$
A B=\overline{\overline{A B}}
$$

Figure: AND operation achieved through a NAND gate (Source: (Stallings, 2015))

Universal Gates :: Obtaining the OR Operator (1/2)

How can we use a NAND gate to obtain the OR operator? Any ideas?

Universal Gates :: Obtaining the OR Operator (1/2)

How can we use a NAND gate to obtain the OR operator? Any ideas?

Remember the algebraic properties?

$$
\begin{aligned}
A+B & =\overline{\overline{A+B}} \\
& =\overline{\bar{A} \cdot \bar{B}}
\end{aligned}
$$

Universal Gates :: Obtaining the OR Operator (2/2)

Remember the algebraic properties?

$$
\begin{aligned}
A+B & =\overline{\overline{A+B}} \\
& =\overline{\bar{A} \cdot \bar{B}}
\end{aligned}
$$

Figure: OR operation achieved through a NAND gate (Source: (Stallings, 2015))

Universal Gates :: Obtaining the NOR Operator (1/2)

How can we use a NAND gate to obtain the NOR operator? Any ideas?

- Recall that the NOR operator is also a universal gate;
- Therefore there is a mapping between NAND and NOR;

Universal Gates :: Obtaining the NOR Operator (1/2)

How can we use a NAND gate to obtain the NOR operator? Any ideas?

- Recall that the NOR operator is also a universal gate;
- Therefore there is a mapping between NAND and NOR;

$$
\begin{aligned}
\overline{A+B} & =\overline{\overline{\overline{A+B}}} \\
& =\overline{\overline{\bar{A} \cdot \bar{B}}}
\end{aligned}
$$

$$
\begin{aligned}
\overline{A+B} & =\overline{\overline{\overline{A+B}}} \\
& =\overline{\overline{\bar{A}} \cdot \bar{B}}
\end{aligned}
$$

Figure: NOR operation achieved through a NAND gate (Source: wikipedia)

Now that we have a basic understanding of the logical operations:

- Lets see how we can combine these elements to calculate functions;

Combinatorial Circuit

A set of interconnected gates

- Output at any time is a function only of the input at that time;
- Consists of n binary inputs and m binary outputs
- Can be defined in three ways:
- Truth table;
- Graphical symbols;
- Boolean equations

Example

Consider the following truth table for a boolean function:

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	0	0
1	1	1	1

Figure: A boolean function of three variables (Source: (Stallings, 2015))
F can be expressed by itemizing the combinations of either:

- Sum of minterms that have value 1 ;

$$
\sum m(2,3,6)
$$

- Product of maxterms that have value 0 ;
ПМ(0, 1, 4, 5, 7)
F can be expressed by itemizing the combinations of either:
- sum of minterms that have value 1 ;

$$
\sum m(2,3,6)=\bar{A} B \bar{C}+\bar{A} B C+A B \bar{C}
$$

- product of maxterms that have value 0 ;

$$
\Pi M(0,1,4,5,7)=(A+B+C)(A+B+\bar{C})(\bar{A}+B+C)(\bar{A}+B+\bar{C})(\bar{A}+\bar{B}+\bar{C})
$$

Lets focus on the minterms:

$$
F=\bar{A} B \bar{C}+\bar{A} B C+A B \bar{C}
$$

How can we obtain the equivalent logical circuit? Any ideas?

$$
F=\bar{A} B \bar{C}+\bar{A} B C+A B \bar{C}
$$

Figure: Circuit implementation (Source: (Stallings, 2015))

Can we do better than the previous logical circuit? Any ideas?

Can we do better than the previous logical circuit? Any ideas?

- Convenient to obtain the simplified form...

Can we do better than the previous logical circuit? Any ideas?

- Convenient to obtain the simplified form...

How can we obtain the simplified form? Any ideas?

$$
F=\bar{A} B \bar{C}+\bar{A} B C+A B \bar{C}
$$

How can we obtain the simplified form? Any ideas?

$$
\begin{aligned}
F & =\bar{A} B \bar{C}+\bar{A} B C+A B \bar{C} \\
& =\bar{A} B(\bar{C}+C)+A B \bar{C} \\
& =\bar{A} B \cdot 1+A B \bar{C} \\
& =B(\bar{A}+A \bar{C}) \\
& =B((\bar{A}+A)(\bar{A}+\bar{C})) \\
& =B(1(\bar{A}+\bar{C})) \\
& =\bar{A} B+B \bar{C} \\
& =B(\bar{A}+\bar{C})
\end{aligned}
$$

Once we have obtained the simplified form it is easy to obtain the equivalent circuit... Any ideas?

$$
F=B(\bar{A}+\bar{C})
$$

Once we have obtained the simplified form it is easy to obtain the equivalent circuit... Any ideas?

$$
F=B(\bar{A}+\bar{C})
$$

Figure: Simplified Circuit implementation (Source: (Stallings, 2015))

Karnaugh Maps

Algebraic simplification procedure is awkward:

- Lacks specific rules to predict each succeeding step;
- Difficult to determine if the simplest expression has been obtained;

Karnaugh map provides a way for simplifying boolean expressions:

- Up to four variables;
- More than this becomes difficult to use.
- Takes advantage of humans' pattern-recognition capability.

This section is based on (Mano and Kime, 2002).

The map is a diagram made up of squares:

- Each square represents one minterm of the function;
- Visual diagram of all possible ways a function may be expressed;

Lets take a look at a three-variable map.

- Only one bit changes in value from one column to the other;
- Any two adjacent squares differ in only a single variable;

Figure: Three Variable Map (Source: (Mano and Kime, 2002))

- Any two minterms in adjacent squares produce a product of two variables.
- Why?
- Lets see why...

Figure: Three Variable Map (Source: (Mano and Kime, 2002))

- E.g.: $m_{5}+m_{7}=X \bar{Y} Z+X Y Z$
- I.e. $m_{5}+m_{7}=X \bar{Y} Z+X Y Z=X Z(\bar{Y}+Y)=X Z$
- The two squares differ in variable Y, which can be removed.

Karnaugh Map Example 1

Figure: $\sum m(2,3,4,5)=\bar{X} Y+X \bar{Y}$ (Source: (Mano and Kime, 2002))

Karnaugh Map Example 2

Two squares can also be adjacent without touching each other:

Figure: $\sum m(0,2,4,6)=\bar{X} \bar{Z}+X \bar{Z}$ (Source: (Mano and Kime, 2002))

- The minterms continue to differ by one variable;

Karnaugh Map Example 3

It is also possible to combine 4 squares:

Figure: $\sum m(0,2,4,6)=\bar{X} \bar{Z}+X \bar{Z}=(\bar{X}+X) \bar{Z}=\bar{Z}$ (Source: (Mano and Kime, 2002))

Karnaugh Map Example 4

It is also possible to have several combinations:

Figure: $\sum m(0,1,2,3,6,7)=\bar{X}+Y$ (Source: (Mano and Kime, 2002))

The more squares are combined the fewer literals are used:

- One square represents three literals;
- Two squares represents a product term of two literals;
- Four squares represents a product term of one literal;
- Eight squares (entire map) is equal to value 1.

Now that we have a basic understanding of boolean algebra:

- Lets have a look at other types of gates...

Multiplexers

The multiplexer connects multiple inputs to a single output.

- At any time, one of the inputs is selected to be passed to the output.

S2	S1	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Figure: A 4-to-1 Multiplexer truth table (Source: (Stallings, 2015))

Figure: A 4-to-1 Multiplexer representation
(Source: (Stallings, 2015))

- Four input lines (DO, D1, D2, and D3);
- Two selection lines (SO and S1);

How can we implement a multiplexer using the logical gates we know? Any ideas?

Figure: Multiplexer Implementation (Source: (Stallings, 2015))

Multiplexeres are useful for:

- To control signal and data routing;
- E.g. loading PC from different sources;

Decoders

Combinational circuit with a number of output lines:

- Only one of which is asserted at any time, dependent on input;
- n inputs, 2^{n} output lines;

Figure: Decoder with 3 inputs and $2^{3}=8$ outputs (Source: (Stallings, 2015))

Adders

Binary addition differs from Boolean algebra in that the result includes a carry term.

(a) Single-Bit Addition				(b) Addition with Carry Input				
A	B	Sum	Carry	$\mathrm{C}_{\text {in }}$	A	B	Sum	$\mathrm{C}_{\text {out }}$
0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	1	1	0
1	0	1	0	0	1	0	1	0
1	1	0	1	0	1	1	0	1
				1	0	0	1	0
				1	0	1	0	1
				1	1	0	0	1
				1	1	1	1	1

Figure: Binary addition truth tables (Source: (Stallings, 2015))

The two outputs can be expressed:

- Sum $=\overline{C_{\text {in }} A} B+\overline{C_{i n}} A \bar{B}+C_{\text {in }} \overline{A B}+C_{\text {in }} A B$
- $C_{\text {out }}=\overline{C_{\text {in }}} A B+C_{\text {in }} \bar{A} B+C_{\text {in }} A \bar{B}+C_{\text {in }} A B$

Figure: 4 bit adder (Source: (Stallings, 2015))

Figure: Implementation of an adder using AND, OR and NOT gates (Source: (Stallings, 2015))

Sequential Circuits

Combinational circuits implement the essential functions of a computer.

- However, they provide no memory or state information,

In sequential circuits the output depends:

- Not only on the current input...
- But also of the current circuit state;

Useful examples of sequential circuits:

- Flip-flops;
- Registers;
- Counters.

Useful examples of sequential circuits:

- Flip-flops;
- Registers;
- Counters.

Guess what we will be seeing today! Any ideas?

Flip-flops

- Simplest form of the sequential circuit;
- A variety of flip-flops exist, all of which share two properties:
- Can maintain a binary state indefinitely*:
- Until directed by an input signal to switch states;
- The flip-flop can function as a l-bit memory;
- *As long as powered is deliver to the circuit.
- Has two outputs, these are generally labeled Q and \bar{Q}.

Before we go any further into our presentation:

Does anyone have any idea how flip-flops are implemented?

Before we go any further into our presentation:

Does anyone have any idea how flip-flops are implemented?

Several possibililies:

- Science / Engineering;
- Magic ;)

SR flip-flops

SR circuit has:

- Two inputs S (Set) and R (Reset);
- Two outputs Q and \bar{Q};
- Two NOR gates connected in a feedback arrangement;

Figure: The S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Circuit functions as a 1-bit memory:

- Inputs Set and Reset serve to write the values 1 and 0 to Q;
- Consider the state $Q=0, \bar{Q}=1, S=0, R=0$

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Suppose that S changes to the value 1 .

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Figure: NOR S-R Latch timing Diagram (Source:
(Stallings, 2015))
(1) Now the inputs to the lower NOR gate are $S=1, Q=0$.
(2) After some time delay Δt, the output of the lower NOR gate will be $\bar{Q}=0$.

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))
(3) The inputs to the upper NOR gate become $R=0, \bar{Q}=0$.
(4) After another gate delay of Δt, the output Q becomes 1 .

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Figure: NOR S-R Latch timing Diagram (Source: (Stallings, 2015))
(5) This is a stable state. The inputs to the lower gate are now $S=1, Q=1$, which maintain the output $\bar{Q}=0$.

- As long as $S=1$ and $R=0$, the outputs will remain $Q=1, Q=0$.
- Furthermore, if S returns to 0 , the outputs will remain unchanged.

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Figure: NOR S-R Latch timing Diagram (Source: (Stallings, 2015))
(6 The R output performs the opposite function.

- When R goes to 1 , it forces $Q=0, \bar{Q}=1$
- Regardless of the previous state of Q and \bar{Q}.
- Again, a time delay of $2 \Delta t$ occurs before the final state is established

Figure: S-R Latch implemented with NOR Gates (Source: (Stallings, 2015))

Figure: NOR S-R Latch timing Diagram (Source:
(Stallings, 2015))

In essence:

- $S=1$ makes $\bar{Q}=0$
- If $S=1$ then $R=0$ which makes $Q=1$
- $R=1$ makes $Q=0$
- If $R=1$ then $S=0$ which makes $\bar{Q}=1$

This behaviour can be described by a characteristic table:

(a) Characteristic Table		
Current Inputs	Current State	Next State
SR	Q_{n}	Q_{n+1}
00	0	0
00	1	1
01	0	0
01	1	0
10	0	1
10	1	1
11	0	-
11	1	-

Figure: (Source: (Stallings, 2015))

This behaviour can be described by a characteristic table:

(a) Characteristic Table		
Current Inputs	Current State	Next State
SR	Q_{n}	Q_{n+1}
00	0	0
00	1	1
01	0	0
01	1	0
10	0	1
10	1	1
11	0	-
11	1	-

Figure: (Source: (Stallings, 2015))

[^0]This behaviour can be described by a characteristic table:

(a) Characteristic Table			
Current Inputs	Current State	Next State	
SR	Q_{n}	Q_{n+1}	
00	0	0	
00	1	1	
01	0	0	
01	1	0	
10	0	1	
10	1	1	
11	0	-	
11	1	-	

Figure: (Source: (Stallings, 2015))

Inputs $S=1, R=1$ are not allowed:

- Would produce the inconsistent output $Q=\bar{Q}=0$

It is also possible to derive a simplified version:

(b) Simplified Characteristic Table		
\mathbf{S}	\mathbf{R}	$\mathbf{Q}_{\boldsymbol{n}+1}$
0	0	Q_{n}
0	1	0
1	0	1
1	1	-

Figure: (Source: (Stallings, 2015))

Example

Lets look at a particular example:

Response to Series of Inputs										
t	0	1	2	3	4	5	6	7	8	9
S	1	0	0	0	0	0	0	0	1	0
R	0	0	0	1	0	0	1	0	0	0
$Q_{\text {n+1 }}$										

Example

Lets look at a particular example:

Response to Series of Inputs										
t	0	1	2	3	4	5	6	7	8	9
S	1	0	0	0	0	0	0	0	1	0
R	0	0	0	1	0	0	1	0	0	0
$Q_{\text {n+1 }}$	1	1	1	0	0	0	0	0	1	1

Typically events in the digital computer are synchronized to a clock pulse,

- Changes occur only when a clock pulse occurs;
- R and S inputs are passed to the NOR gates only during the clock pulse.

Figure: Clocked SR flip-flops (Source: (Stallings, 2015))

D flip-flops

Problem with S-R flip-flop, the condition $\mathrm{R}=1, \mathrm{~S}=1$ must be avoided.

How can we be sure that these inputs are not allowed? Any ideas?

D flip-flops

Problem with S-R flip-flop, the condition $\mathrm{R}=1, \mathrm{~S}=1$ must be avoided.

- One way to do this is to allow just a single input.

Figure: (D flip-flops (Stallings, 2015))

- By using a NOT gate:
- Nonclock inputs are the opposite of each other.

Figure: D flip-flops (Stallings, 2015)

Clock	\mathbf{D}	$\mathbf{Q}_{\boldsymbol{n}+\mathbf{1}}$
0	0	$Q_{\boldsymbol{n}}$
0	1	$Q_{\boldsymbol{n}}$
1	0	0
1	1	1

- Flip-flop captures the value of the D-input during the clock cycle;
- Captured value becomes the Q output.
- Other times, the output Q does not change.

J-K flip-flops (1/3)

Has two inputs, with all possible combinations of inputs values being valid:

Figure: J-K flip-flops (Stallings, 2015)

- Note that the first three combinations are the same as for the SR flip-flop;
- With no input asserted ($\mathrm{J}=\mathrm{K}=0$): output is stable;

J-K flip-flops (2/3)

Figure: J-K flip-flops (Stallings, 2015)

\mathbf{J}	\mathbf{K}	$\mathbf{Q}_{\mathbf{n}+\mathbf{1}}$
0	0	$Q_{\boldsymbol{n}}$
0	1	0
1	0	1
1	1	$\overline{Q_{n}}$

- If only the J input is asserted, the output is set to 1 ;
- if only the K in put is asserted, the output is reset to 0 .

J-K flip-flops (3/3)

Figure: J-K flip-flops (Stallings, 2015)

- When both J and K are 1 : output is reversed;
- If $Q_{n}=0$ then $Q_{n+1}=1$
- If $Q_{n}=1$ then $Q_{n+1}=0$

Name	Graphical Symbol	Truth Table		
S-R		S 0 0 1 1	R 0 1 0	$\begin{gathered} \mathrm{Q}_{n+1} \\ \hline \mathrm{Q}_{n} \\ 0 \\ 1 \\ - \end{gathered}$
J-K		0	K 0 1 0 1	$\begin{gathered} \mathrm{Q}_{n+1} \\ \hline \mathrm{Q}_{n} \\ 0 \\ \frac{1}{\mathrm{Q}_{n}} \end{gathered}$
D			D	$\begin{gathered} \mathrm{Q}_{n+1} \\ \hline 0 \\ 1 \end{gathered}$

Figure: Basic flip-flops summary (Stallings, 2015)

Registers

Lets look at another type of sequential circuils: registers:

First, how many of you have heard of registers? Any ideas?

Registers

Lets look at another type of sequential circuils: registers:

- Circuit used within the CPU to store one or more bits of data
- Two basic types of registers are commonly used:
- Parallel registers;
- Shift registers.

Lets have a quick look at each one of these...

Parallel Registers

Consists of a set of 1-bit memories that can be read or written

 simultaneously.

Figure: 8 Bit Parallel Register (Source: (Stallings, 2015))

- Makes use of D flip-flops
- Load control signal controls writing into the register from signal lines, D11 through D18.

Shift Registers (1/2)

A shift register accepts and/or transfers information serially:

Figure: 5 Bit Shift Register (Source: (Stallings, 2015))

- A 5-bit shift register constructed from clocked D flip-flops;
- Data are input only to the leftmost flip-flop;
- With each clock pulse, data are shifted to the right one position;
- and the rightmost bit is transferred out.

Shift Registers (2/2)

A shift register accepts and/or transfers information serially:

Figure: 5 Bit Shift Register (Source: (Stallings, 2015))

- Shift registers can be used to interface to serial I/O devices.
- In addition, they can be used within the ALU to perform logical shift and rotate functions.

Counters

Lets look at another type of sequential circuits: counters:

First, how many of you have heard of counters? Any ideas?

Counters

Register whose value is incremented by 1;

- Register made up of n flip-flops can count up to $2^{n}-1$.
- After value $2^{n}-1$ the next increment sets the counter value to 0 .
- An example of a counter in the CPU is the program counter;

Counters can be designated as asynchronous or synchronous:

- Asynchronous counter:
- Slow since output of one flip-flop triggers a change in next flip-flop.
- Synchronous counter:
- All of the flip-flops change state at the same time.
- The kind used in CPUs.

Lets have a look at each one of these...

Asynchronous counters (1/3)

(a) Sequential circuit

Figure: 4-Bit Counter (Source: (Stallings, 2015))

- Output of the leftmost flip-flop $\left(Q_{0}\right)$ is the least significant bit;
- All output Q_{i} bits are initialized to zero;
- Extensible to an arbitrary number of bits by cascading more flip-flops;
- Counter is incremented with each clock pulse;

Asynchronous counters (2/3)

(a) Sequential circuit

Figure: 4-Bit Counter (Source: (Stallings, 2015))

- J and K inputs to each flip-flop are held at a constant 1 (High).
- l.e. when there is a clock pulse, the output at Q will be inverted;
- Change in state occurs with the falling edge of the clock pulse
- A.k.a. edge--riggered flip-flop
- Timing is very important for the correct functioning of the counter.

Asynchronous counters (3/3)

(b) Timing diagram

Figure: 4-Bit Counter (Source: (Stallings, 2015))

- State of each individual bit is initially set to zero
- If one looks at patterns of output for this counter, it can be seen that it cycles through 0000, 0001, . ., 1110, 1111,0000
- Note the transitional delay from each flip-flops

Synchronous counters (1/11)

Asynchronous counters have a disadvantageous built-in delay:

- Proportional to the length of the counter.

CPUs make use of synchronous counters:

- All of the flip-flops of the counter change at the same time.

Lets take a look at how to build a 3-bit synchronous counter.

Synchronous counters (2/11)

For a 3-bit counter, three flip-flops will be needed:

- Lets us use J-K flip-flops.
- Label the uncomplemented output of the three flip-flops A, B, C respectively, with C representing the least significant bit.
- It is helpful to recast the characteristic table for the J-K flip-flop:

\mathbf{J}	\mathbf{K}	Q_{n+1}
0	0	Q_{n}
0	1	0
1	0	$\frac{1}{\mathrm{Q}_{n}}$
1	1	

Figure: Original

$\boldsymbol{Q}_{\mathbf{n}}$	\mathbf{J}	\mathbf{K}	$\boldsymbol{Q}_{\mathbf{n}+\mathbf{1}}$
0			0
0			1
1			0
1			1

Synchronous counters (3/11)

For a 3-bit counter, three flip-flops will be needed:

- Lets us use J-K flip-flops.
- Label the uncomplemented output of the three flip-flops A, B, C respectively, with C representing the least significant bit.
- It is helpful to recast the characteristic table for the J-K flip-flop:

\mathbf{J}	\mathbf{K}	Q_{n+1}
0	0	Q_{n}
0	1	0
1	0	$\frac{1}{\mathrm{Q}_{n}}$
1	1	

Figure: Original

$\mathbf{Q}_{\mathbf{n}}$	\mathbf{J}	\mathbf{K}	$\mathbf{Q}_{\mathbf{n}+\mathbf{1}}$
0	0	d	0
0	1	d	1
1	d	1	0
1	d	0	1

Synchronous counters (4/11)

- It is helpful to recast the characteristic table for the J-K flip-flop:

J	K	Q_{n+1}
0	0	Q_{n}
0	1	0
1	0	$\frac{1}{\mathrm{Q}_{n}}$
1	1	

Figure: Original

\mathbf{Q}_{n}	\mathbf{J}	\mathbf{K}	\mathbf{Q}_{n+1}
0	0	d	0
0	1	d	1
1	d	1	0
1	d	0	1

Figure: Recas \dagger

- If $Q_{n}=0$ and we want to transition to $Q_{n+1}=0$
- Then $J=0$ and $K=\{0,1\}$
- If $Q_{n}=0$ and we want to transition to $Q_{n+1}=1$
- Then $J=1$ and $K=\{0,1\}$

Synchronous counters (5/11)

- It is helpful to recast the characteristic table for the J-K flip-flop:

J	K	Q_{n+1}
0	0	Q_{n}
0	1	0
1	0	$\frac{1}{\mathrm{Q}_{n}}$
1	1	

Figure: Original

\mathbf{Q}_{n}	\mathbf{J}	\mathbf{K}	\mathbf{Q}_{n+1}
0	0	d	0
0	1	d	1
1	d	1	0
1	d	0	1

Figure: Recast

- If $Q_{n}=1$ and we want to transition to $Q_{n+1}=0$
- Then $K=1$ and $J=\{0,1\}$
- If $Q_{n}=1$ and we want to transition to $Q_{n+1}=1$
- Then $K=0$ and $J=\{0,1\}$

Synchronous counters (6/11)

\mathbf{Q}_{n}	\mathbf{J}	\mathbf{K}	$\mathbf{Q}_{\boldsymbol{n}+\mathbf{1}}$
0	0	d	0
0	1	d	1
1	d	1	0
1	d	0	1

Figure: Synchronous Counter Truth Table (Source: (Stallings, 2015))

- Consider transition from " 000 " to " 001 "
- Value of A needs to remain O;

Value of B needs to remain 0 ;
Value of C needs to go from 0 to 1 ;

- Excitation table shows that to:
- Maintain an output of 0 : inputs must be $\{J=0, K=d\}$;
- To effect a transition from 0 to 1 : inputs must be $\{J=1, K=d\}$;

Synchronous counters (7/11)

- With this in mind we can construct a truth table that relates the J-K inputs and outputs

\mathbf{C}	\mathbf{B}	\mathbf{A}	$\mathbf{J}_{\mathbf{c}}$	$\mathbf{K}_{\mathbf{c}}$	$\mathbf{J}_{\mathbf{b}}$	$\mathbf{K}_{\mathbf{b}}$	$\mathbf{J}_{\mathbf{a}}$	$\mathbf{K}_{\mathbf{a}}$
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

$\mathbf{Q}_{\mathbf{n}}$	\mathbf{J}	\mathbf{K}	$\boldsymbol{Q}_{\mathbf{n}+\mathbf{1}}$
0	0	d	0
0	1	d	1
1	d	1	0
1	d	0	1

Synchronous counters (8/11)

- With this in mind we can construct a truth table that relates the J-K inputs and outputs

\mathbf{C}	\mathbf{B}	\mathbf{A}	$\mathbf{J}_{\mathbf{c}}$	$\mathbf{K}_{\mathbf{c}}$	$\mathbf{J}_{\mathbf{b}}$	$\mathbf{K}_{\mathbf{b}}$	$\mathbf{J}_{\mathbf{a}}$	$\mathbf{K}_{\mathbf{a}}$
0	0	0	0	d	0	d	1	d
0	0	1	0	d	1	d	d	1
0	1	0	0	d	d	0	1	d
0	1	1	1	d	d	1	d	1
1	0	0	d	0	0	d	1	d
1	0	1	d	0	1	d	d	1
1	1	0	d	0	d	0	1	d
1	1	1	d	1	d	1	d	1

$\mathbf{Q}_{\mathbf{n}}$	\mathbf{J}	\mathbf{K}	$\boldsymbol{Q}_{\mathbf{n}+\mathbf{1}}$
0	0	d	0
0	1	d	1
1	d	1	0
1	d	0	1

Synchronous counters (9/11)

We can develop Boolean expressions for these six functions:

(b) Karnaugh maps

$$
\mathrm{Jc}=\mathrm{BA}
$$

$$
\mathrm{Kc}=\mathrm{BA}
$$

	00	01	11	10
0	d	d	d	d
C_{1}			1	

 $\mathrm{Kb}=\mathrm{A}$

	BA			
	00	01	11	10
0	d	d	1	
${ }^{\text {C }}$	d	d	1.	

Figure: Synchronous Counter Karnaugh Maps (Source: (Stallings, 2015))

Synchronous counters (10/11)

For example, the Karnaugh map for the variable Jc:

- The J input to the flip-flop that produces the C output;
- yields the expression Jc = BA.

When all six expressions are derived,

- straightforward to design the circuit.

Synchronous counters (11/11)

Circuit example:

Figure: Synchronous Counter Design (Source: (Stallings, 2015))

References I

曷
Mano, M. and Kime, C. R. (2002).
Logic and Computer Design Fundamentals: 2nd Edition.

Prentice Hall, Englewood Cliffs, NJ, USA.
Stallings, W. (2015).
Computer Organization and Architecture: Designing for Performance.
Pearson Education, 10th edition edition.

[^0]: But what happens when the inputs are set to $S=1, R=1$? Any ideas?

