6. Heapsort [cormen2001]

- Running time $O(n \log n)$
- Heapsort sorts in place: only a constant number of array elements are stored artside the inpertarray at any time.
- Uses the heap-duta structure to manage information during the execution of the algorithm.
6.1 Heaps
- (Q): What is a heap?

Array object that can be viewed is a nearly complete binary tree

16	1	4	10	8	7	5	3	2	4

(2) (4) (4)

- Each node of the tree corresponds to an element of the array that stores the value in the node
- The tree is completely filled on all levels except possibly the lowest (leaf nodes.)
- An array A that represents a heap is an object with two 2/ attributes:

Cength [A] - number of elements in the array
heap-sizz [A] - number of elements in the heap ctored within array. A. It will be wed later for the Heap Sort algorithm.

- That is, although $A[1 \ldots$ length $[A]]$ may contain valid number, no element past $A[$ hecp-size $[A]]$, where heap-siza $[A] \leqslant($ angth $[A)$ is an element of the heap
- Root of the tree is A [1]
- Given the index $\underset{i}{ }$ of a node then we can compute the following indexes:

Parent (i) \{return $L(C / 2]\}$
Left (i)kreturn $2 i f$
Rightci] \{retirn $2 i+1\}$
Notes.
"Fast" implementations:

$$
\begin{aligned}
& 2 i=i \ll 1 \\
& 2 i+1=(i \ll 1)+1 \\
& i / 2=i>1
\end{aligned}
$$

- There are two hinds of binary heaps:
- max -heap: $A[$ parent $(i)] \geqslant A[i] \Rightarrow \begin{aligned} & \text { interest element } \\ & \text { in the rood }\end{aligned}$
- min-heap: $A[$ parent $(i)] \leqslant A[i] \Rightarrow$ smillast element
- Heapsort algorithm uses max-herps-
- Define the height of a node in a leap to de the number of edges on the longest simple downward path from the node to a leaf.
- Define the height of the heap to be the height of the root.
- Example: (16) 1

$$
\begin{array}{ll}
\text { height }[1]=3 & \text { height }[6]=0 \\
\text { height }[2]=2 & \text { height }[7]=0 \\
\text { height }[3]=1 & \text { height }[8]=0 \\
\text { height }[4]=1 & \text { height }[9]=0 \\
\text { height }[5]=1 & \text { height }[10]=0
\end{array}
$$

(2) (4) (1)

Q: What is the height of heap?
Remember binary tree that is almost complete

a leaf in the last level
/ Depth
0
1
2
3
\vdots
+

$$
\begin{aligned}
& \text { umber of } \begin{array}{l}
\text { nod zs } \\
2=2^{1} \\
4=2^{2} \\
8=2^{3}
\end{array} \text { I }
\end{aligned}
$$

If we have n element
\Rightarrow in total, then: $2^{n}=n \Leftrightarrow$
$\Leftrightarrow h=\log _{2} n$

- The rest of the notes focus on describing:

Max Heapify_ - procedrerunning in O(logn) time that is key to maintain the max heap property

BuildMartleap- - procedure running in linear time that produas a hap from an unordered input array.
Heapsort - procedure running in $O(n \log n)$ time that sorts an array
6. 2 Maintaining the Leap property

- Max Heapify roctins has riaputs the cray A and an index i
- When Max Heapify is called it is assumed that the binary trees rooted at Left(i) and Right (i) are max heaps but that $A[i]$ may be smatter than its children, thees violating the max heap_property
- Max Heapify places $A[i]$ in the correct position so that the subtrez rooted at index i becomes a max heap

Max Heapify $(A, i)\}$

$$
\begin{aligned}
& 1=L_{2} f t(i) \\
& r=\operatorname{Righ}(i)
\end{aligned}
$$

if $l \leq h_{r a p-s i z z}[A]$ and $A[l]>A[i]$
then largast $=l$
else latgest $=i$
if $r \leq$ heap-sizz $[A]$ and $A[r \gg A[$ largest $]$
then largast $=r$
if largast $\neq i$
then $\{$ exchange $A[i] \leftrightarrow A[$ lorgest $]$ 3 index latgest may be violeting the max heupp
\}

 property the we need to recursivoly calle Maxtleapity.

(finiclas)

Question:
What is the sunning time for Mcrtheapify?

- $\Theta(1)$ time to fix -up the relationships among the elements $A[i], A R e f t[i]], A R \operatorname{ight}[i]]$
- But then we call Max Heapify recursively...
- We recursively call Martleapify on one of the children of node i

In the worst-case scenario we have to call Max Heapity all the way from the root to one of the leaf nodes

- This implies O(logn) time

Altermetisely

- For a node of height \underline{h} then O(h) time
6.3-Bilding i heap-

Question:
So, how can we build a heap?
\rightarrow Idea: Why not use the procedure Maxtleapity in a bottom-up manner to convert on array $A[1 \ldots n]$ where $n=$ length $[A]$ into a max -heap

Build Max Heap (A) $\}$

$$
\operatorname{heapsize}(A)=\text { (length }(A)
$$

for $i=$ Lensth[A]/2] to 1 the elements $A[L n / 2]+1 \ldots n)$ Max Heapify (A, $i)$ are all leaves of the tree. Therefore we do not need to patorm Max Heapify on those

- Example:

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 4 & 1 & 3 & 2 & 16 & 5 & 10 & 14 & 8 \\
\hline
\end{array}
$$

Cestion:
What is the execution time for Build Max Heap?

- For every single node we need to call McaHeapify
- There ate $n / 2$ nodes to evaluate, since the elements $A[[n / 2]+1 \cdots n]$ are lents
- Each nodz call Maxtleapify, therefore $O(n \log n)$
- Can we do better than. $O(n \log n)$? Ire. ctighter bound?

Idea:

- Observe that the time for MaxHerpefy to run at a node varies with the height of the node
- The heights of most nodes are small. This happens because we are dealing with a quar-binary tree and this mort of the nodes will be on the bottom levels...
- Question: How annoy nodes exist at height h?

- Generalizing this for when the bottom level is not full. requires a proof by induction which is beyond the scope of this clause...
- Lets try again to determine the complexity
- Time required for Maxtleapity on a node of height $h=O(\underline{h})$
- Total cost of Build Mart heap: [ign) L

$$
\begin{aligned}
& -\sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}} \leq \sum_{h=0}^{\infty} \frac{h}{2^{h}}=\sum_{h=0}^{\infty} h \cdot \frac{1}{2^{h}}=\frac{1 / 2}{(1-1 / 2)^{2}}=2 \\
& \text { A property of the infinite }
\end{aligned}
$$ geometric ser ia

$$
-O\left(n \sum_{h=0}^{n} \frac{h}{2^{h}}\right)=O(\underbrace{n \sum_{n=0}^{\infty} \frac{h}{2^{h}}}_{2})=O(n)
$$

\therefore Build Max Heap runs in linear time
6.4 The Heapsort algorithm

Idea: 1) Build a Max Heap
2) The largest element will be in the root
3) Exchange the first element with the last element
4) Build a Maxtleap again, this time on A[1...lenthtan]?

Heapsort (A) $\}$
Build Max Heap (A)
for $c=\operatorname{length}[A]$ to $2\{$
exchange: $A[1] \leftrightarrow A[i]$
heapsize $[A]=$ heap Size $[A]-1$;
Max Heapify $(A, 1)$
\}
Example:

(2) (14) (16)

Array form:

$$
\begin{aligned}
& -\frac{10|8| 5|4| 7|1| 3|2| 14 \mid 16}{4} \\
& \text { Exchange these } \\
& \begin{array}{l}
\hline 2|8| 5|4| 7 \mid \\
\text { L Mar Heapify the root }
\end{array}
\end{aligned}
$$

(4) (8) (5) (10) (14) (16)
8) Max Element is on
(7) $3^{\text {the }}$ +oot

Anray form:
(4) (2)
(9) (10) (19) (19)

Exchange there $\frac{1}{v}$
$2|7| 3 / 4 / 8 / 5 / 40|19| 16$
I reartleapify the root
Array form:
(2) (3) the toot is on
(8) (9) (10) (14) 16
(4) Max Element is Array form:
\triangle (2) (3) ${ }^{\text {on the toot }}$

$$
\begin{aligned}
& \hline 4|2| 3|7| 3|5| 40|14| 46 \\
& \hline \text { AExchange there } \\
& \begin{array}{l}
3|2| 4|7| 8|5| 1 \&|16| \\
\text { 1 Taxtleapify the root }
\end{array}
\end{aligned}
$$

(2) $\xrightarrow{(3) \text { Taxtheapify }}$ (3) Max element
1 Maxtleapify the root

