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1 CITI / Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

lsr@di.fct.unl.pt
2 INESC-ID, Knowledge Discovery and Bioinformatics Group, R. Alves Redol, 9,

1000-029 Lisbon, Portugal

Abstract. In this paper we study algorithms for the max-plus product ofMonge
matrices. These algorithms use the underlying regularities of the matrices to be
faster than the general multiplication algorithm, hence saving time. A non-naive
solution is to iterate the SMAWK algorithm. For specific classes there are more
efficient algorithms. We present a new multiplication algorithm (MMT), that is
efficient for general Monge matrices and also for specific classes. The theoreti-
cal and empirical analysis shows that MMT operates in near optimal space and
time. Hence we give further insight into an open problem proposed by Landau.
The resulting algorithms are relevant for bio-informatics, namely because Monge
matrices occur in string alignment problems.

1 Introduction and Related Work

In this paper we study algorithms to multiply Monge matrices, more precisely the max-
plus product of anti-Monge matrices, although we still refer to them as Monge. These
matrices have a long history of algorithmic applications [1]. In Particular they occur
in string processing problems, as DIST tables [2, 3] or as Highest-Scoring Matrices
(HSMs) [4]. Their applications to string processing problems, include: Cyclic LCS,
Longest Repeated subsequence, Fully-Incremental LCS [5, 6, 4], etc.

Alves et al. [7] proposed an online algorithm to compute an implicit representation
of HSMs inO(nm) time andO(m+n) working space, wherem andn are the sizes of the
strings being processed. Subsequently Tiskin observed that the core of these matrices
hasO(n) size [4]. The core provides an alternative way to represent these matrices.

Given this representation the natural question is: can we multiply HSMs in linear
time? proposed as an open problem by Landau3 [8]. Tiskin made significant contri-
butions by proposingO(n1.5) andO(n logn) time algorithms [4, 9, 10]. The latter al-
gorithm becomesO(n log2 n/ loglogn) when considering theO(logn/ loglogn) access
time, to the underlying representation structure [11].

This paper generalizes Landau’s problem to core-sparse Monge matrices, i.e.o(n2)
core size, and presents a core sensitive algorithm, MMT. Forsome of these problems
Tiskin’s algorithm can be applied, although affected by a variable factorν. In the con-
ditions of Landau’s problem MMT runs inO(n log3 n) time, including access costs. A

3 The problem was formulated for DIST tables but it is essentially equivalent.



comprehensive comparison is given in section 4. The experimental results show, Sec-
tion 4.1, that MMT runs in aroundO(n log2 n) time, i.e., faster than the theoretical
bound. Moreover MMT is a general multiplication algorithm that can be applied to
general Monge matrices, namely related to alignment problems. Hence we obtain the
first non-trivial solution for Fully-Incremental Alignment.

The structure of the paper is the following: Section 2 definesbasic concepts; Sec-
tion 3 describes the MMT algorithm; Section 4 gives a theoretical analysis of the several
algorithms and experimental results of MMT; Section 5 concludes the paper.

2 Basic Concepts

This section presents basic concepts related to Monge matrices. In this paper logn is
log2 n. Matrix row and column indexes start at 0. For matrixA consider the expression:

∆A(i, i′; j, j′) = A(i′, j′)−A(i′, j)−A(i, j′)+A(i, j) (1)

A matrix A, of sizer× c, is Monge4 iff ∆A(i, i′; j, j′)≥ 0, for any indexesi, i′, j and j′

such that 0≤ i ≤ i′ < r and 0≤ j ≤ j′ < c. Figures 1 and 3 show examples of Monge
matrices. Fig. 1 shows the non-zero∆A(i, i+1; j, j+1) values inside rectangles, and
likewise for matricesB andC. For example∆A(3,5;0,2) = (−3)− (−10)− (−20)+
(−3) = 24. The leftmost argument maximum of a given row is denoted aslax, i.e.,
the smallest column index were the maximum of a row occurs. InFig. 1 the leftmost
maximums per row are in bold. For example laxA[4, ] = 1, the respective maximum is
A(4, laxA[4, ]) = 6. A matrix ismonotonewheni ≤ i′ implies laxA[i, ]≤ laxA[i′, ].
In other words the lax values increase as the row index increases. The Monge property
implies that the matrices are also monotone, this can be observed in Fig. 1 by noticing
that the bold values move to the right when descending by the rows.

The notion of core follows from an alternative characterization of Monge matrices.
Let D denote a matrix, of size(r−1)× (c−1), with non-negative values, referred to as
density matrix. The rows and columns of these matrices are indexed over halfintegers,
i.e., the first row and the first column are indexed by 0.5 instead of 0. Fig. 1 also contains
examples of such matrices. The matrices consist of the values enclosed in rectangles,
the omitted rectangles represent a 0. The respectivedistribution matrixd, of sizer×c,
is defined, over the integers, as:

d(i, j) = ∑
0<i′<i; 0< j′< j

D(i′, j′) for all 0≤ i < r and 0≤ j < c (2)

The next Lemma shows an alternative characterization of Monge matrices.

Lemma 1 ([1]). A matrix A, of size r × c, is Monge iff there is an r × c distribution
matrix d and two vectors u ∈ R

r and t ∈ R
c such that

A(i, j) = d(i, j)+ u(i)+ t( j) for all 0≤ i < r and 0≤ j < c (3)

4 The usual Monge definition is∆A(i, i′; j, j′)≤ 0, in which case−A verifies our condition.
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Fig. 1. Three Monge matrices,A (top-
left), B (top-right) andC = A ⊗ B (bot-
tom). The row and column indexes are
shown outside. The leftmost maximums,
per row, are in bold. The non-zero
∆A(i, i+1; j, j+1) = D(i + 0.5, j + 0.5)
values are inside rectangles. The same in-
formation is shown forB andC. Row 4 of
C is over a darker background. MatrixA
is divided intoAℓ andAr by a vertical line
and TR(A) = 7.5 is pointed by an arrow.
The rectangles between rows 3 and 4 ofC
illustrate the procedure in Lemma 7.

The proof of the lemma follows by definingD(i+0.5, j +0.5) = ∆A(i, i+1; j, j+1)
and observing that the∆A values are additive. The non-zero entries ofD form the core
of A, wereδ(A) denotes its size. A matrix is considered sparse whenδ(A) = o(rc).
Notice that∆A(i, i′; j, j′) = ∆d(i, i′; j, j′), therefore computing the expression consists
in summing the core entries inside[i, i′]× [ j, j′], for example∆A(3,5;0,2) = 12+12.

Definition 1. For arbitrary matrices A, B, of sizes r× c and (c = r′)× c′, the max-plus
product matrix, C = A ⊗B, is C(i, j) = max0≤k<c{A(i,k)+B(k, j)}.

Fig. 1 shows a sample max-plus matrix product. To perform thecalculation we organize
it into a sequence ofintermediate computation matrices, M s, of sizec′× r′, such that
M i( j,k) = A(i,k)+B(k, j), for 0≤ i < r, 0≤ j < c′, 0≤ k < r′ = c. Fig. 3 showsM2,
M3, M4 andM5, ignore the tree-like structure on top. Each cell in the table contains an
entry of the fourM s. The bottom shows the calculation of theM values of cell(4,2).
These matrices are used to compute the values ofC, sinceC(i, j) = M i( j, laxM i[ j, ]).
For example row 4 ofC can be obtained fromM4. Observe that the bottom-left values of



Fig. 2. (Left) Alignment DAGs of S =
ba and T = baba and of S′ = ab with
T . The two DAGs are united, horizon-
tally, into the DAG of S.S′ and T . The
horizontal line indicates the union. A
highest-scoring path is represented by
outlined arrows. This path corresponds
LCS(S.S′,T ) = bab, of size 3. (Right)
Sample weights for Weighted Longest
Common Subsequences.
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each cell that are over a darker background correspond to row4 of C. TheM i matrices
are Monge, becauseB is Monge, therefore there is a non-naive way to computeC.

Lemma 2. Let A and B be Monge matrices, of sizes r× c and (c = r′)× c′, then the
values of C = A ⊗B can be obtained in O(rr′ max{1, log(c′/r′)}) time.

Proof. Since theM i matrices are Monge the SMAWK [12] algorithm obtains all the
row maximums, of eachM i, in O(r′max{1, log(c′/r′)}) time. ⊓⊔

This paper does not explain the SMAWK algorithm, the interested reader should
consult Aggarwall et al. [12]. A simple recursive algorithmfinds the maximum of the
middle row and dividesM into two smaller sub-problems. ForM of sizec′ × r′ this
process takes onlyO(r′ logc′) time. The MMT algorithm uses regularities of theM i

matrices and a variation of this algorithm.

2.1 Highest Score Matrices

String alignment problems are a source of Monge matrices. Wedenote byS, S′ and
T strings of sizem, m′ andn respectively; byΣ the alphabet of size σ; by S[i] the
symbol at positioni, assuming that positions start at 0; byS.S′ concatenation; by S =
S[..i−1].S[i.. j].S[ j+1..] respectively aprefix, asubstring and asuffix; note thatS[i.. j],
with j < i, denotes the empty string; Asubsequenceof S is obtained by deleting zero
or more letters; aLongest Common SubsequenceLCS(S,T ) is a largest subsequence
that can be obtained from both stringsS andT . Consider the following exampleS = ba,
S′ = ab andT = baba, wherem = m′ = 2 andn = 4. In this example LCS(S,T ) = ba,
LCS(S′,T ) = ab and LCS(S.S′,T ) = bab.

LCS(S,T ) can be computed as a highest-scoring path in a DAG. The DAG is agrid
of horizontal and vertical edges, with score 0, it contains diagonal edges, with score 1,
for every pair of matching characters between the strings. See Fig. 2 for an example of
such a DAG, notice that there is a diagonal edge on the top-left corner becauseS and
T both start byb. A path corresponding to an LCS betweenS.S′ andT is highlighted.
Depending on the starting and ending nodes of the path we can determine several LCS
values, betweenS and a substring ofT . The highest-score matrix (HSM)HS,T stores
these LCS values5, i.e., HS,T (i, j) = LCS(S,T [i.. j−1]). This matrix was denominated

5 GeneralHS,T (i, j) values correspond to highest scoring paths on an infinite EADAG [9].



as DIST(S,T ) by Apostolico et al. [2], for edit distance problems. In thispaper we
follow the theory by Tiskin [9, 10] but the results are essentially equivalent.

In this context the max-plus product, Def. 1, represents thefact that a highest-score
path ofHS.S′,T can be decomposed into a path ofHS,T followed by a path ofHS′,T .
HSMs are Monge [2], core-sparse and unit,i.e., δ(HS,T ) = min{m,n}= o(n2) and the
non-empty core entries are always 1. Therefore they can be multiplied efficiently.

Theorem 1 ([9]).Given unit-Monge matrices A, B, both of size n× n, the core entries
of C = A ⊗B can be obtained in O(n logn) time and O(n) space.

This result has a significant impact on string problems [13],namely Cyclic LCS, Longest
Repeated Subsequence, Fully-Incremental LCS [5, 6], etc. The latter problem consists
in maintaining a data structure that returns the size of LCS(S,T ) and supports updates
to LCS(c.S,T ), LCS(S.c,T ), LCS(S,c.T ) and LCS(S,T.c), wherec is a new charac-
ter. Notice that the first update is against the usual dynamicprograming direction and
therefore a naive approach requiresO(mn) time. Using Theorem 1 withA = Hc,T the
update to LCS(c.S,T ) runs inO(n logn) time, which is competitive against state of the
art solutions [6] ofO(n) time.

The concept of LCS can be extended to generic alignments, where the weight of
the edges is an integer that depends on the characters involved. The resulting HSMs
are generic Monge matrices, not necessarily unit. A simple case, Weighted Longest
Common Subsequences (WLCS), occurs when the weight of the edges depends only
on the type of edge, see the right part of Fig. 2.

3 Core Sensitive Multiplication

This section describes the Multiple Maxima Trees (MMT) algorithm for the max-plus
product of Monge matrices. The algorithm receives the coresof A andB and outputs
the core ofC. We describe the algorithm in two phases. First we propose a structure
that represents the individual values ofC, i.e., that we can use to access an individual
value ofC; Second we explain how to use those values to determine the core ofC.

3.1 Representing C= A ⊗B

We divide matrixA, in half, intoAℓ andAr. The left sub-matrixAℓ contains columns 0
to ⌈c/2⌉−1. The right sub-matrixAr contains columns⌈c/2⌉ to c−1. For example in
Fig. 1 Aℓ contains columns 0,1,2,3 andAr contains columns 4,5,6. Notice that there
will be an index for which the leftmost maximum changes fromAℓ to Ar.

Definition 2. The transition point TR(A), of a monotone matrix A, is a half integer
such that laxA[i, ] is laxAℓ[i, ] for i < TR(A) and ⌈c/2⌉+ laxAr[i, ] for i > TR(A).

Fig. 1 indicates that TR(A) = 7.5 with an arrow. Fig. 3 shows that TR(M4) = 6.5.

Definition 3. The maxima tree MT A , of a Monge matrix A, is a balanced binary tree.
If A is empty MT A is also empty, otherwise the sub-trees that start at the children of
the ROOT are MT Aℓ and MT Ar . The ROOT stores TR(A), the remaining nodes store
the corresponding transition points.



-0.5-0.5 -0.5 -0.5 -0.5

6.5

4.5 9.5

0.5 9.5

9.5

4.5

2.5

-0.5 -0.5

9.5

4.5 1.5

6.5

9.5

4.59.50.5

MT 5MT 2 MT 3 MT 4

6≤

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

-19, -15,
-2, -10,

-7, -40, -62, -84, -106, -128,

-15, -6, -27, -49, -71, -93, -115,

-23, -14, -23, -36, -58, -80, -102,

-31, -22, -31, -32, -54, -67, -89,

-45, -35, -44, -45, -55, -68, -90,

-59, -49, -48, -49, -59, -60, -82,

-73, -63, -62, -62, -72, -73, -83,

-87, -77, -76, -76, -76, -77, -87,

-101, -91, -90, -90, -90, -90, -100,

-115, -105, -104, -104, -104, -104, -104,

-3, -36, -48, -70, -92, -114,

-11, -2, -23, -35, -57, -79, -101,

-19, -10, -19, -22, -44, -66, -88,

-27, -18, -27, -18, -40, -53, -75,

-41, -31, -40, -31, -41, -54, -76,

-55, -45, -44, -35, -45, -46, -68,

-69, -59, -58, -48, -58, -59, -69,

-83, -73, -72, -62, -62, -63, -73,

-97, -87, -86, -76, -76, -76, -86,

-111, -101, -100, -90, -90, -90, -90,

-2, -23, -35, -56, -78, -100,

-10, 11, -10, -22, -43, -65, -87,

-18, 3, -6, -9, -30, -52, -74,

-26, -5, -14, -5, -26, -39, -61,

-40, -18, -27, -18, -27, -40, -62,

-54, -32, -31, -22, -31, -32, -54,

-68, -46, -45, -35, -44, -45, -55,

-82, -60, -59, -49, -48, -49, -59,

-96, -74, -73, -63, -62, -62, -72,

-110, -88, -87, -77, -76, -76, -76,

-10, -19, -31, -52, -64, -86,

-18, 3, -6, -18, -39, -51, -73,

-26, -5, -2, -5, -26, -38, -60,

-34, -13, -10, -1, -22, -25, -47,

-48, -26, -23, -14, -23, -26, -48,

-62, -40, -27, -18, -27, -18, -40,

-76, -54, -41, -31, -40, -31, -41,

-90, -68, -55, -45, -44, -35, -45,

-104, -82, -69, -59, -58, -48, -58,

-118, -96, -83, -73, -72, -62, -62,

ℓ ℓ ℓ

r
r

rℓ r

ℓ

r

ℓ

r

r rℓ

ℓ

ℓ
ℓ

r
r

ℓ r
r

ℓ

ℓ

ℓ ℓ

ℓ

r r
r

r
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Fig. 3. (Bottom) Calculation of theM values of cell(4,2). (Middle) MatricesM2, M3, M4, M5
and the respective maxima trees. Each cell in the table showsa value from the fourM matrices,
M2 (top-left),M3 (top-right),M4 (bottom-left) andM5 (bottom-right). The bold values highlight
the leftmost maximum, per row. The maximums ofM4 are over a darker background, these val-
ues correspond to row 4 ofC in Fig. 1. (Top) the maxima trees of these matrices. The nodesand
branches that are exclusive to treesMT 2 or MT 5 are dashed. Each node contains the transi-
tion point of the respective sub-matrix. The representation is compact, similar sub-trees are not
repeated. The edges of the trees are labeledℓ and r depending on whether the corresponding
sub-tree is left or right. The computation of laxM3[5, ] = 3 is indicated by thicker lines.



Fig. 3 shows the maxima trees forM2, M3, M4 andM5. At this point the reader should
focus on an individual tree,MT 3 for example6. It is a fallacy to assume that TR(Aℓ)≤
TR(A) ≤ TR(Ar), Fig. 3 shows a counter example, indicated by6≤. The maxima tree
can be used to compute lax values.

Lemma 3. Let A be a Monge matrix, of size r×c, its maxima tree MT A can be stored
in O(c) space and laxA[i, ] can be computed in O(logc) time.

Proof. We compute laxA[i, ] recursively as laxAℓ[i, ] if i < TR(A) and as⌈c/2⌉+
laxAr[i, ] otherwise,i.e., move to the left or to the right child. The execution time is
bounded by the height of the tree, that isO(logc). Since we store only one value per
node, the space occupied by the tree depends on the number of nodes,i.e., O(c). ⊓⊔

Suppose we want to compute laxM3[5, ]. We start at the ROOT and since 5< 9.5
we move to the left, now since 5> 4.5 we move to the right, since 5> 2.5 we move to
the right and reach the leaf of column 3= laxM3[5, ]. Notice that we can also compute
the lax values of a sub-matrix corresponding to an internal node ofMT A .

Lemma 4. The maxima tree of a Monge matrix A takes O(c logr) time to build.

Proof. The tree can be built bottom-up. Computing TR(A) for the ROOT can be done, in
O(logr) steps, with a binary search. IfAℓ(i, laxAℓ[i, ])≥Ar(i, laxAr[i, ]) then TR(A)>
i, otherwiseAℓ(i, laxAℓ[i, ]) < Ar(i, laxAr[i, ]) and TR(A) < i. For the remaining in-
ternal nodes the process is similar. This yields an overallO(c(logc) logr) time. An
amortized analysis shows that we are not payingO(logc) to obtain the lax values, as in
Lemma 3. Most nodes are close to the leaves. Half of the nodes pay 1 operation for lax.
One quarter of the nodes pay 2 operations, and so on. The overall time is O(c logr). ⊓⊔

Building all theMT M i trees takesO(rr′ logc′) time andO(rr′) space. The resulting
structure providesO(logr′) access time toC(i, j) = M i( j, laxM i[ j, ])). This is ineffi-
cient. TheM i matrices have regularities that considerably reduce theirrequirements.

Lemma 5. Given Monge matrices A and B, when ∆A(i, i′;k,k′) = 0 we have that
M i( j,k) ≤ M i( j,k′) iff M i′( j,k) ≤ M i′( j,k′).

Proof. Notice the prime inM i′ . The following diagram proves the Lemma:

M i( j,k)−M i( j,k′) = A(i,k)−A(i,k′)+B(k, j)−B(k′, j) (4)

= (5)

M i′( j,k)−M i′( j,k′) = A(i′,k)−A(i′,k′)+B(k, j)−B(k′, j) (6)

Eqs 4 and 6 follow from the Def. ofM i. Equation 5 follows from the hypothesis. ⊓⊔
Notice that the∆A(i, i′;k,k′) = 0 hypothesis implies that∆A(i1, i2;k1,k2) = 0 for

anyi≤ i1 ≤ i2 ≤ i′ andk ≤ k1 ≤ k2 ≤ k′. This Lemma exposes the redundant information
among theMT M i trees. Namely if∆A(i, i′;k,k′) = 0 andϑ, ϑ′ are nodes ofMT M i and
MT M i′

whose corresponding rows are the[k,k′] interval then the sub-trees ofϑ andϑ′

are identical. Fig. 3 shows an example of this observation, matricesM2, M3, M4 share
the right sub-tree, since∆A(2,4;4,6) = 0. MoreoverM5 does not share the right sub-
tree withM4, since∆A(4,5;4,6) = 10 6= 0.

6 Note that we simplified the notation.



Lemma 6. Given Monge matrices A and B, of sizes r× c and (c = r′)× c′, there is a
representation of C with O(logr′) access time, that needs O(r′+δ(A) logr′) space and
O(r+(r′+ δ(A)(logr′)2) logc′) time to be built.

Proof. Use Lemma 4 to build the first tree,MT 1, in O(r′ logc′) time. In general use
Lemma 5 to buildMT M i+1 from MT M i . If ∆A(i, i+1;0,c−1) = 0 thenMT M i and
MT M i′

are identical and the computation finishes. Otherwise we build a new ROOT

for MT M i′
and proceed recursively to determine whether the left and right children

of MT M i′
are new or the same as inMT M i . Each core value ofA originates at most

logr′ new nodes. For each new node we recompute, bottom-up, the respective transition
points, inO((logr′) logc′) time each. TheO(r) term comes from thei cycle. ⊓⊔

3.2 Obtaining the Core

Using the representation ofC we can obtain its core. This section explains how.

Lemma 7. Given a Monge matrix C, of size r× c′, its core entries can be determined
by inspecting O(r+ δ(C) logc′) entries of C.

Proof. For everyi we compute∆C(i, i+1;0,c′−1). If the result is 0 we conclude
there is no core entry in[i, i+ 1]× [0,c′ − 1] and abandon the search. Otherwise we
recursively consider∆C(i, i+1;0,⌈c′/2⌉) and∆C(i, i+1;⌈c′/2⌉,c′−1). This proce-
dure needsO(logc′) for each core entry ofC andO(r) to consider every row ofC. ⊓⊔

Fig. 1 shows an illustration of the procedure described in the Lemma, between rows
3 and 4 ofC. We can now combine Lemmas 6 and 7 to obtain our main result.

Theorem 2. Let A and B be Monge matrices, of sizes r×c and (c = r′)×c′, the core of
C = A ⊗B can be computed in O(r logr′+(r′+(δ(C)+ δ(A) logr′) logr′) logc′) time
and O(δ(C)+ r′) working space.

Proof. Lemmas 6 and 7 yield anO(δ(C)+ r′ + δ(A) logr′) working space solution. It
is not necessary to store all the maxima treesMT M i . An iteration of the procedure in
Lemma 7 inspects onlyM i andM i+1. Hence it is enough to store only two trees in each
iteration, which requires at mostO(r′) space, see Lemma 3 and proof of Lemma 6.⊓⊔

Using the equationC= (BT ⊗AT )T the previous result gives an algorithm that runs
in O(c′ logc+(c+(δ(C)+ δ(B) logc) logc) logr) time andO(δ(C)+ c) space.

4 Analysis

This section presents a theoretical and empirical analysisof the several multiplication
algorithms. Up to now the time to access an entry ofA or B has been omitted. Since the
working space can beo(rc), it is not reasonable to assumeO(1) access time. For unit-
Monge matrices this problem was solved [9] using a dominancecounting structure [11],
which works inO((logδ(A))/ log logδ(A)) time andO(δ(A)) space. A similar result
can be obtained with a wavelet tree [14]. Moreover by adding accumulated values by
level it is possible to obtain the values of general Monge matrices, inO(logδ(A)) time
andO(δ(A) logδ(A)) space.



δ = Θ(nε) MMT, Theorem 2 SMAWK , Lemma 2 Theorem 1
ε = 2 〈O(n2),O(n2 logn)〉 〈O(n2),O(n2)〉 —
2< ε ≤ 1 〈O(nε logn),O(nε log3n)〉 〈O(nε logn),O(n2 logn)〉 —

unit-Monge,ε = 1 〈O(n),O(n log3n)〉 〈O(n),O( n2 logn
log logn )〉 〈O(n),O( n log2 n

log logn )〉

1< ε ≤ 0 〈O(n),O(n log2n)〉 〈O(n),O(n2 logn)〉 —

Table 1.Comparison between max-plus multiplication algorithms, accounting for access time to
A andB, O(1) for ε = 2, O(logn/ log logn) for unit-Monge andO(logn) otherwise. Forε ≥ 1 and
ε 6= 2 the performance of MMT is unaltered even if access time isO(1). The〈s(n), t(n)〉 notation
meanss(n) space andt(n) time requirements.

To simplify the analysis let us assume thatO(r) = O(c) = O(r′) = O(c′) = O(n)
and thatO(δ(A)) = O(δ(B)) = O(δ(C)) = O(δ). The algorithm of Theorem 1 needs to
access entries at each step. Hence the access value becomes afactor of the overall time.
The MMT algorithm always computes a lax value before accessing an entry,i.e., the
accesses of the algorithm are always of the formC(i, j) = M i( j, laxM i[ j, ]). Except in
the amortized analysis of Lemma 4 the lax operation isΩ(logn), see Lemma 3. There-
fore the access time does not become a time factor in MMT. Thisclaim is confirmed
experimentally, in Section 4.1.

Table 1 shows a comparison of the different algorithms according to core size,δ =
Θ(nε). The analysis considers the best space and time requirements that includes the
access time toA andB. Forε = 2 the access time isO(1), in this case Lemmas 6 and 7
have amortized performance, hence theo(n2 log3 n) time. Lemma 6 becomes an iterated
Lemma 4. Lemma 7 loses aO(logn) factor. Forε < 1 the access time isO(logn), the
dominating time is that of buildingMT 1, Lemma 4. Because of the amortized analysis
we need to count the access time, hence theΩ(n logn) time.

Table 1 shows that the MMT algorithm is not always the most efficient, in particular
SMAWK is faster by anO(logn) factor forδ = Θ(n2). This factor quickly disappears
for ε < 2, not only because SMAWK is not sensitive to the core size, but also be-
cause access times are no longerO(1). For the remaining core-sizes MMT is faster than
SMAWK . For the particular case of unit-Monge matrices, withδ =Θ(n), the algorithm
of Theorem 1 is faster than MMT by aO(logn loglogn) factor. However the experimen-
tal results show that in practice MMT is faster than what is predicted by theory.

Using MMT we obtain the first non-trivial solution for the Fully-Incremental Align-
ment problem, which consists in updating a generic alignment score from ALIGN(S,T )
to ALIGN(c.S,T ), ALIGN(S,c.T ), ALIGN(S.c,T ) or ALIGN(S,T.c), where ALIGN is
the respective score. The resulting procedure takesO((n + δ) log3(n + δ)) time and
O(n+ δ logδ) space, whereδ is the core size of the intervening matrices.

4.1 Experimental Results

We implemented MMT and tested it on an Intel Core2 Duo @1.33GHz, with 1.9 GiB
of RAM running Xubuntu 9.10, with Linux Kernel 2.6.31. The code was compiled
with gcc 4.4.1 -O9. The prototype consists only of the multiplication and not of the
representation ofA andB, which are stored in memory and hence haveO(1) access
time. To test the performance we multiplied HSM matrices, obtained from the LCS, as
defined in Section 1. We also tested HSMs that resulted from generic alignments with



the PAM weight matrix [15] and HSMs from Weighted Longest Common Subsequences
(WLCS), using the weights in Fig. 2. The algorithm of Theorem1 can be extended to
support WLCSs, but the space and time are affected by a factorν, in this scenario
ν = 14. On the other hand for PAM this technique does not apply,i.e., the algorithm
from Theorem 1 cannot be adapted for this problem. If it were possible it would have
ν = 26. The underlying stringsS,S′,T were random Bernoulli proteins,i.e., σ = 23,
that differed in a letter with 10% probability. The sizes were m = m′ = 4i andn = 8i
for i between 1 and 128. The results are shown in Fig. 4. To make the plots readable we
show only 20% of the points. Thex axis is indexed by a variableN = max{n+ δ}. For
precision we repeated each query during 10 seconds.

The plots on the left show the running time, in seconds, of theMMT algorithm
and of anO(νn log(νn)) time algorithm, denominated as Simulated. Theν factor is
calculated from Tiskin’s reduction procedure [10]. The simulated prototype is a divide
and conquer algorithm that allocates an array of sizeO(νn) and increases every cell
from 0 to log(νn). At each step all the cells in the array are increased by 1, thearray
is then divided in half and each part is processed recursively. The recursion processes
both sub-arrays, but in random order.

We compute a minimum squares (MSQ) estimates forc and d in O(cN logd N).
Since the behavior is asymptotic the first points may distortthe values. To diminish this
effect we computed several MSQ estimates, successively discarding the first points. We
pessimistically chose the largest estimate.

The results show that for LCS and WLCS theδ values are similar ton, but not for
PAM, notice the dispersion of the simulated points. UsingO(1) access time MMT is
slower than the simulated algorithm for LCS and WLCS but, generally, faster for PAM.
Contrary to what is predicted in Table 1,d is much smaller than 3, for a decent fitting
of the model,i.e., R2 > 0.95, the time bound is always lower thanO(Nlog2N).

The graphics on the right show the number of operations for different sub-routines.
The respective MSQs appear in the same line in the label. We estimate the ratio between
node accesses and leaf accesses (Nodes/Leafs), which is always very close toO(logN).
This value is important because it is against this time that the accesses toA andB add.
If this ratio was 1 we would need to add aO(logn) factor to the final complexity. Since
the ratio is close toO(logN) the accesses add only a constant term. The BinSteps line
counts the average number of steps that is necessary in a binary search that computes a
transition point. This value iso(log1 N) because the MMT prototype uses inverse binary
search. Instead of dividing an interval, it starts from a point and moves in powers of 2.
Hence it usually runs on a small interval. TotalOps/N measures the total number of
operations that the algorithm used, divided byN. Thed estimate of this value is usually
larger than thed value obtained in the time graphs, on the left. This may be related to
cache effects. For LCS and WLCS the bound was at mostO(log2.1 N), for PAM the
value was higher, but the model fitting was extremely low.

5 Conclusions

In this paper we studied algorithms for the max-plus productof Monge matrices. We
analyzed the existing algorithms considering the core size, Table 1. The analysis showed
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Fig. 4. Experimental testing of the MMT algorithm. Thex-axis of the represents variableN =
max{n+δ}. They-axis of the graphs on the left measures the time in seconds. They-axis of the
graphs on the right measures the number of operations.

that the existing algorithms are either sub-optimal or apply only to specific classes of
matrices. Alternatively we proposed a core sensitive algorithm, MMT. This algorithm
is faster than the iteratedSMAWK algorithm, except when the core isO(n2). For unit-



Monge matrices the algorithm of Theorem 1 is theoretically faster than MMT, by an
O(logn loglogn) factor, which does not really hold in practice,i.e., in practice MMT
is faster than the theoretical bound. The algorithm of Theorem 1 can also be applied to
matrices that result from Weighted LCSs, by using aν time and space factor.

The MMT algorithm is simple and flexible, its main tools are binary trees and bi-
nary searches. Moreover it can uniformly hand all sorts of Monge matrices, namely it
can multiply HSMs that result from PAM alignments, whereas the algorithm of The-
orem 1 cannot. This flexibility accounted for the first, as faras we know, non-trivial
algorithm for the Fully-Incremental Alignment problem, a string processing problem
that is relevant for bio-informatics. We expect MMT to have broad applications, since a
myriad [9, 16] of string processing and optimization problems [1] use Monge matrices.

Acknowledgments: We thank anonymous reviewers for several insightful remarks.
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