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Abstract. In this paper we study algorithms for the max-plus produdlohge
matrices. These algorithms use the underlying regulariafehe matrices to be
faster than the general multiplication algorithm, hencérgatime. A non-naive
solution is to iterate the SMAWK algorithm. For specific cas there are more
efficient algorithms. We present a new multiplication aifon (MMT), that is
efficient for general Monge matrices and also for specifies#a. The theoreti-
cal and empirical analysis shows that MMT operates in netimap space and
time. Hence we give further insight into an open problem psggl by Landau.
The resulting algorithms are relevant for bio-informatitamely because Monge
matrices occur in string alignment problems.

1 Introduction and Related Work

In this paper we study algorithms to multiply Monge matriaesre precisely the max-
plus product of anti-Monge matrices, although we still reééethem as Monge. These
matrices have a long history of algorithmic applicationf [f Particular they occur
in string processing problems, asdy tables [2, 3] or as Highest-Scoring Matrices
(HSMs) [4]. Their applications to string processing probg include: Cyclic LCS,
Longest Repeated subsequence, Fully-Incremental LCS45,&tc.

Alves et al. [7] proposed an online algorithm to compute apliait representation
of HSMs inO(nm) time andO(m-+n) working space, whenaandn are the sizes of the
strings being processed. Subsequently Tiskin observedhbaore of these matrices
hasO(n) size [4]. The core provides an alternative way to repredesstd matrices.

Given this representation the natural question is: can wigiphyuHSMs in linear
time? proposed as an open problem by Laid&{ Tiskin made significant contri-
butions by proposin@®(n*®) and O(nlogn) time algorithms [4,9, 10]. The latter al-
gorithm become®(nlog?n/loglogn) when considering th®(logn/ loglogn) access
time, to the underlying representation structure [11].

This paper generalizes Landau’s problem to core-sparsgMoratrices, i.eo(n?)
core size, and presents a core sensitive algorithm, MMTsBore of these problems
Tiskin’s algorithm can be applied, although affected by Aalde factorv. In the con-
ditions of Landau’s problem MMT runs i®(nlog®n) time, including access costs. A

3 The problem was formulated foriBT tables but it is essentially equivalent.



comprehensive comparison is given in section 4. The expmtiah results show, Sec-
tion 4.1, that MMT runs in aroun@(nlog?n) time, i.e., faster than the theoretical
bound. Moreover MMT is a general multiplication algorithtrat can be applied to
general Monge matrices, namely related to alignment proklédence we obtain the
first non-trivial solution for Fully-Incremental Alignmeén

The structure of the paper is the following: Section 2 defim@sic concepts; Sec-
tion 3 describes the MMT algorithm; Section 4 gives a thacaganalysis of the several
algorithms and experimental results of MMT,; Section 5 cadek the paper.

2 Basic Concepts

This section presents basic concepts related to Mongeamatiin this paper logis
log, n. Matrix row and column indexes start at 0. For matkixonsider the expression:

DAL ], = A3 ]) =AM = AGL 1) +AG ) 1)

A matrix A, of sizer x ¢, is Monge* iff AA(i,i’;j,j’) >0, for any indexes,i’, j andj’
such that 0<i <i’ <rand 0< j < j’ < c. Figures 1 and 3 show examples of Monge
matrices. Fig. 1 shows the non-ze&ké\(i,i + 1, ], + 1) values inside rectangles, and
likewise for matrice andC. For exampleAA(3,5;0,2) = (—3) — (—10) — (—20) +
(—3) = 24. The leftmost argument maximum of a given row is denotethgsi.e,
the smallest column index were the maximum of a row occur&idn 1 the leftmost
maximums per row are in bold. For example g4, ] = 1, the respective maximum is
A(4,laxA[4,.]) = 6. A matrix ismonotonewheni < i’ implies laxA[i, | < laxAl[i’, ].
In other words the lax values increase as the row index iseea he Monge property
implies that the matrices are also monotone, this can benadd@é Fig. 1 by noticing
that the bold values move to the right when descending byavs.r

The notion of core follows from an alternative charactditmaof Monge matrices.
Let D denote a matrix, of sizg — 1) x (c— 1), with non-negative values, referred to as
density matrix. The rows and columns of these matrices are indexed oveintedfers,
i.e, the first row and the first column are indexed by iistead of 0. Fig. 1 also contains
examples of such matrices. The matrices consist of the sanelosed in rectangles,
the omitted rectangles represent a 0. The respedistgbution matrixd, of sizer x c,
is defined, over the integers, as:

d(i,j) = D(i’, ) forall0<i<rand 0<j<c  (2)

O<i’<i; 0<j'<j
The next Lemma shows an alternative characterization ofgdanatrices.

Lemma 1l ([1]). A matrix A, of sizer x ¢, is Monge iff there is an r x ¢ distribution
matrix d and two vectorsu € R" andt € R® such that

A, j)y=d(i,j)+u(i)+t()) forall0O<i<rand0O<j<c 3)

4 The usual Monge definition BA(i,i’; j, j’) < 0, in which case-A verifies our condition.
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Fig. 1. Three Monge matricesA (top- 2_5 1
left), B (top-right) andC =A ®B (bot- s | 3 -2 -10 -18 -31 -35 48 -62 -76 -90
tom). The row and column indexes are,
4 @00 gl
shown outside. The leftmost maX|mums
per row, are in bold. The non-zero | -2 . @ 8 22 -35 -48 -62 -76|T
45 1
DA(i,i+1;j,j+1) =D(i+05,j+0.5) s | -10 18 31 -35 48 -62
values are inside rectangles. The same ix @ .
formation is shown foB andC. Row 4 of °_ -9 @ . @ 8 22 35 48
C is over a darker background. Matrix , | 22 9 10 -14 27 -40
is divided intoA? andA’ by a vertical line 7s @ @ .

-35  -22 3 -2 -6 -19 -32
and TR(A) = 7.5 is pointed by an arrow. ; ©
The rectangles between rows 3 and 4:of 48 35 22 9 10 2 3 -7 20 -24
illustrate the procedure in Lemma 7. J

The proof of the lemma follows by definirg(i + 0.5, j + 0.5) = AA(i,i+1;j,j+1)

and observing that th&A values are additive. The non-zero entrie®dbrm the core

of A, wered(A) denotes its size. A matrix is considered sparse wd{@) = o(rc).
Notice thatAA(i,i’; ], ") = Ad(i,i’; j, j), therefore computing the expression consists
in summing the core entries insiflei’] x [j, j’], for exampleAA(3,5;0,2) = 12+ 12.

Definition 1. For arbitrary matricesA, B, of sizesr x cand (c=r") x ¢/, the max-plus
product matrix, C = A ® B, isC(i, j) = max<k<c{A(i,K) + B(k, j)}.

Fig. 1 shows a sample max-plus matrix product. To perfornc#heulation we organize
it into a sequence dhtermediate computation matrices, M s, of sizec’ x r’, such that
Mi(j,k) =A(i,k)+B(k,j), for0<i<r,0<j<c,0<k<r =c.Fig. 3 showVy,
M3z, M4 andMs, ignore the tree-like structure on top. Each cell in thedatantains an
entry of the fourtM s. The bottom shows the calculation of tilevalues of cell(4,2).
These matrices are used to compute the valu€s sinceC(i, j) = M;(j,laxMi[j, ]).
For example row 4 of can be obtained froil 4. Observe that the bottom-left values of



Fig. 2. (Left) Alignment DAGs of S =

ba and T = baba and of S = ab with

T. The two DAGs are united, horizon-
tally, into the DAG of SS and T. The
horizontal line indicates the union. A a
highest-scoring path is represented by
outlined arrows. This path corresponds a
LCS(SS,T) = bab, of size 3. (Right) b
Sample weights for Weighted Longest
Common Subsequences.

each cell that are over a darker background correspond td i@\C. TheM; matrices
are Monge, becaudis Monge, therefore there is a non-naive way to comglte

Lemma 2. Let A and B be Monge matrices, of sizest x ¢ and (c = r’) x ¢/, then the
values of C = A ® B can be obtained in O(rr’ max{1,log(c’/r’)}) time.

Proof. Since theM; matrices are Monge the SMAWK [12] algorithm obtains all the
row maximums, of eacMj, in O(r'max{1,log(c’/r’)}) time. O

This paper does not explain the SMAWK algorithm, the intexéseader should
consult Aggarwall et al. [12]. A simple recursive algorittimds the maximum of the
middle row and divideM into two smaller sub-problems. Fot of sizec x r’ this
process takes onl@(r’logc’) time. The MMT algorithm uses regularities of tiv
matrices and a variation of this algorithm.

2.1 Highest Score Matrices

String alignment problems are a source of Monge matricesd&vmte byS, S and
T strings of sizem, m' andn respectively; byZ the alphabet of size g; by S[i] the
symbol at position, assuming that positions start at 0; 8 concatenation by S=
§..i—1].9]i..j].§[j + 1..] respectively grefix, asubstring and asuffix; note thaS]i.. ],
with j < i, denotes the empty string; #ubsequencef Sis obtained by deleting zero
or more letters; &ongest Common SubsequenckeCS(S,T) is a largest subsequence
that can be obtained from both strin§andT. Consider the following exampE&= ba,
S =abandT = baba, wherem= ' =2 andn = 4. In this example LC&, T) = ba,
LCS(S,T) =aband LCSSS,T) = bab.

LCS(S T) can be computed as a highest-scoring path in a DAG. The DAGIigla
of horizontal and vertical edges, with score 0, it contailagdnal edges, with score 1,
for every pair of matching characters between the strings.F8g. 2 for an example of
such a DAG, notice that there is a diagonal edge on the tégdener becauss and
T both start byb. A path corresponding to an LCS betwe®g8 andT is highlighted.
Depending on the starting and ending nodes of the path weetanmdine several LCS
values, betwee and a substring of . The highest-score matrix (HSMjst stores
these LCS valuési.e, Hgt(i, j) = LCS(S T|i..j — 1]). This matrix was denominated

5> GeneraHgr (i, j) values correspond to highest scoring paths on an infinite A& [3].



as DsT(S,T) by Apostolico et al. [2], for edit distance problems. In tipiaper we
follow the theory by Tiskin [9, 10] but the results are esgglytequivalent.

In this context the max-plus product, Def. 1, representdabethat a highest-score
path ofHgg 1 can be decomposed into a pathté§r followed by a path oHg 7.
HSMs are Monge [2], core-sparse and uni, 8(Hst) = min{m,n} = o(n?) and the
non-empty core entries are always 1. Therefore they can Htgiiad efficiently.

Theorem 1 ([9]). Given unit-Monge matrices A, B, both of size n x n, the core entries
of C = A ® B can be obtained in O(nlogn) time and O(n) space.

This result has a significantimpact on string problems [d8inely Cyclic LCS, Longest
Repeated Subsequence, Fully-Incremental LCS [5, 6], ¢te.|3tter problem consists
in maintaining a data structure that returns the size of ($B) and supports updates
to LCS(c.ST), LCS(Sc,T), LCS(S,c.T) and LCSS T.c), wherec is a new charac-
ter. Notice that the first update is against the usual dynamugraming direction and
therefore a naive approach requi@gmn) time. Using Theorem 1 witlh = Hc 1 the
update to LC%c.S T) runs inO(nlogn) time, which is competitive against state of the
art solutions [6] 0fO(n) time.

The concept of LCS can be extended to generic alignments,evthe weight of
the edges is an integer that depends on the characterséadvdie resulting HSMs
are generic Monge matrices, not necessarily unit. A simpkecWeighted Longest
Common Subsequences (WLCS), occurs when the weight of tpesetkpends only
on the type of edge, see the right part of Fig. 2.

3 Core Sensitive Multiplication

This section describes the Multiple Maxima Trees (MMT) aithon for the max-plus
product of Monge matrices. The algorithm receives the cofés andB and outputs
the core ofC. We describe the algorithm in two phases. First we propogeuatsre
thatrepresents the individual values o€, i.e., that we can use to access an individual
value ofC; Second we explain how to use those values to determine teeofG.

3.1 RepresentingC=A®B

We divide matrixA, in half, intoA’ andA". The left sub-matriA‘ contains columns 0
to [c/2] — 1. The right sub-matriA" contains columns$c/2] to c— 1. For example in
Fig. 1A’ contains columns,@,2,3 andA" contains columns &, 6. Notice that there
will be an index for which the leftmost maximum changes frafrto A.

Definition 2. The transition point TR(A), of a monotone matrix A, is a half integer
such that laxA[i, ] islaxA‘[i, ] for i < TR(A) and [c/2] +laxA'[i, ] for i > TR(A).
Fig. 1 indicates that R(A) = 7.5 with an arrow. Fig. 3 shows thaiRlM 4) = 6.5.
Definition 3. Themaximatree M T 5, of a Monge matrix A, isa balanced binary tree.
If A isempty M T  is also empty, otherwise the sub-trees that start at the children of

the RooT are M T o and M T ar. The ROOT stores TR(A), the remaining nodes store
the corresponding transition points.



o -7 -3, | -19, -15,| -40, -36,| -62, -48,| -84, -70,| 10692 -128:114,
-2, -10,| -2, -10,| -23,-19,| -35 -31,| -56, -52,| -78, -64, -100,-86,
, 15,411, | -6, -2, | -27,-23,| -49, -35,| 71, 57, -93, -79, -115-101,
-10, -18, | 11, 3, -10, -6, -22, -18,| -43, -39,| -65, -51,| -87, -73,
, 23,-19,| -14,-10, -23,-19,| -36, -22,| -58, -44,| -80, -66,  -102,-88,
-18, -26,| 3, 5, | -6, -2, | -9, -5, -30, -26,| -52, -38,| -74, -60,
, 81,27, -22,-18,| -31, -27,| -32, -18,| -54, -40,| -67, 53| -89, -75,
-26, -34, | -5, -13,| -14, -10,| -5, -1, -26,-22, | -39,-25,| -1, -47,
, 45, -41,| -35-31,| -44, -40,| -45, -31,| -55, -41,| -68, -54, 90, -76,
-40, -48, | -18, -26,| -27, -23,| -18,-14,| -27,-23,| -40,-26,| -62,-48,

-59, -55, -49, -45,| -48, -44,| -49, -35, -59, -45, -60, -46, -82, -68,
-54, -62, -32, -40, -31, -27,] -22,-18,| -31, -27, -32, -18, -54, -40,
-73, -69, -63, -59,| -62, -58,| -62, -48, -72, -58, -73, -59, -83, -69,
-68, -76, -46, -54, -45, -41,] -35,-31,| -44, -40, -45, -31, -55, -41,
-87, -83, -77, -73,| -76, -72,| -76, -62, -76, -62, -77, -63, -87, -73,
-82, -90, -60, -68, -59, -55, -49, -45, -48, -44) -49, -35, -59, -45,
-101,-97, -91, -87,| -90, -86,| -90, -76, -90, -76, -90, -76, -100:86,
-96, -104, -74, -82, -73, -69, -63, -59,/ -62, -58| -62, -48, -72, -58,
-115,-111/ -105,-101, -104,-100, -104,-90, -104;90, -104;90, -104;90,
-110,-118) -88, -96, -87, -83, -77, -73)] -76, -72] -76, -62, -76, -62,

M2(4,2)=A(2,2) + B(2,4)=—24—20=—44; M3(4,2)=A(3,2) + B(2,4)=—20— 20=—40;
M4(4,2)=A(4,2) +B(2,4)= —7—20=—27, Ms(4,2)=A(5,2)+B(2,4)= —3—20=—23;

Fig. 3. (Bottom) Calculation of thé/ values of cell(4,2). (Middle) MatricesM 2, M3, M4, M5

and the respective maxima trees. Each cell in the table shaxafue from the fouM matrices,

M (top-left), M 3 (top-right),M 4 (bottom-left) andVl 5 (bottom-right). The bold values highlight
the leftmost maximum, per row. The maximumshdf, are over a darker background, these val-
ues correspond to row 4 @ in Fig. 1. (Top) the maxima trees of these matrices. The nadds
branches that are exclusive to tre®&7, or M 7T 5 are dashed. Each node contains the transi-
tion point of the respective sub-matrix. The representaisocompact, similar sub-trees are not
repeated. The edges of the trees are labéladdr depending on whether the corresponding
sub-tree is left or right. The computation of lbg[5, ] = 3 is indicated by thicker lines.



Fig. 3 shows the maxima trees figr,, M 3, M4 andMs. At this point the reader should
focus on an individual tree}( 7 5 for examplé&. It is afallacy to assume that FT(A‘Z) <
TR(A) < TR(A"), Fig. 3 shows a counter example, indicatedshyThe maxima tree
can be used to compute lax values.

Lemma 3. Let A beaMonge matrix, of sizer x c, itsmaximatree M T o can be stored
in O(c) space and laxAl[i, -] can be computed in O(logc) time.

Proof. We compute laAli, | recursively as laA‘[i, ] if i < TR(A) and as[c/2] +
laxA'[i,_] otherwise,.e., move to the left or to the right child. The execution time is
bounded by the height of the tree, thati8logc). Since we store only one value per
node, the space occupied by the tree depends on the numhmtexre., O(c). a

Suppose we want to compute lbg[5, |]. We start at the BoT and since 5< 9.5
we move to the left, now since>5 4.5 we move to the right, since:5 2.5 we move to
the right and reach the leaf of column-3axM3[5, _]. Notice that we can also compute
the lax values of a sub-matrix corresponding to an internderof M T a.

Lemma 4. The maxima tree of a Monge matrix A takes O(clogr) time to build.

Proof. The tree can be built bottom-up. Computing(R) for the RooT can be done, in
O(logr) steps, with a binary search Af (i,laxA‘[i, ]) > A" (i,laxA'[i, ]) then TR(A) >
i, otherwiseA’ (i, laxA‘[i, ]) < A"(i,laxA"[i,]) and TR(A) < i. For the remaining in-
ternal nodes the process is similar. This yields an ové@éd(logc)logr) time. An
amortized analysis shows that we are not paylpgc) to obtain the lax values, as in
Lemma 3. Most nodes are close to the leaves. Half of the naales pperation for lax.
One quarter of the nodes pay 2 operations, and so on. Thelldiragsis O(clogr). O
Building all the M Ty, trees take®(rr’logc’) time andO(rr’) space. The resulting
structure provide®(logr’) access time t&(i, j) = Mi(j,laxMi[j,_])). This is ineffi-
cient. TheM; matrices have regularities that considerably reduce thgirirements.

Lemma 5. Given Monge matrices A and B, when AA(i,i’;k k') = 0 we have that
Mi(J,Kk) < Mi(j, k) iff My (j, k) < My (j,K).

Proof. Notice the prime irM;:. The following diagram proves the Lemma:

Mi(j,k) = Mi(j,K) = A(i, k) = A(i,K) +B(k, j) = B(K, j) (4)
I (5)
My (J,K) = Mir(j,K) = A(i",k) — A(i",K) + B(k, j) - B(K, ) (6)

Eqgs 4 and 6 follow from the Def. d¥l;. Equation 5 follows from the hypothesis. O
Notice that theAA(i,i’;k, k') = 0 hypothesis implies thaiA(i1,iz; ki, ko) = 0 for
anyi <i; <ip <i’andk < k; <k < K. This Lemma exposes the redundant information

among theM Ty, trees. Namely ifA(i,i’;k, k') = 0 and®, 9’ are nodes of\f T, and

M T\, whose corresponding rows are flkek’] interval then the sub-trees 8fandy’
are identical. Fig. 3 shows an example of this observati@irioesM,, M3, M4 share
the right sub-tree, sinc&A(2,4;4,6) = 0. MoreoverM 5 does not share the right sub-
tree withM 4, sinceAA(4,5;4,6) = 10+ 0.

6 Note that we simplified the notation.



Lemma 6. Given Monge matrices A and B, of sizesr x cand (c=r') x ¢/, thereisa
representation of C with O(logr’) accesstime, that needs O(r’ + d(A) logr’) space and
O(r + (r' + 8(A)(logr’)?)logc’) time to be built.

Proof. Use Lemma 4 to build the first tre@/ 71, in O(r'logc’) time. In general use
Lemma 5 to buildM T, from M Ty,. If AA(i,i+1,0,c—1) =0 thenM Ty, and
M‘IMi, are identical and the computation finishes. Otherwise wkllaunew RbOT
for M Ty, and proceed recursively to determine whether the left agiat children
of M‘Z‘Mi, are new or the same as # 7T y,. Each core value oA originates at most
logr’ new nodes. For each new node we recompute, bottom-up, {ectes transition
points, inO((logr’) logc’) time each. Th&(r) term comes from thiecycle. O

3.2 Obtaining the Core
Using the representation @f we can obtain its core. This section explains how.

Lemma 7. Given a Monge matrix C, of sizer x c/, its core entries can be determined
by inspecting O(r + 6(C) logc’) entries of C.

Proof. For everyi we computeAC(i,i+ 1;0,¢’ — 1). If the result is 0 we conclude
there is no core entry ifi,i + 1] x [0,c — 1] and abandon the search. Otherwise we
recursively consideAC(i,i+ 1;0,[c’/2]) andAC(i,i+ 1;[c'/2],¢ —1). This proce-
dure need®(logc’) for each core entry of andO(r) to consider every row . O

Fig. 1 shows an illustration of the procedure describedénttmma, between rows
3 and 4 ofC. We can now combine Lemmas 6 and 7 to obtain our main result.

Theorem 2. Let A and B be Monge matrices, of sizesr x cand (c=r’) x ¢, the core of
C = A ®B can be computed in O(rlogr’ + (r' 4+ (8(C) + 6(A) logr’) logr’) logc’) time
and O(d(C) +r’) working space.

Proof. Lemmas 6 and 7 yield a@(3(C) +r’ + 8(A)logr’) working space solution. It

is not necessary to store all the maxima tr@é9 ;. An iteration of the procedure in

Lemma 7 inspects onlyl; andM; 1. Hence it is enough to store only two trees in each

iteration, which requires at mo€xr’) space, see Lemma 3 and proof of Lemma 8.
Using the equatio€ = (BT ® AT)T the previous result gives an algorithm that runs

in O(c'logc+ (c+ (8(C) + 8(B)logc) logc) logr) time andO(3(C) + ¢) space.

4 Analysis

This section presents a theoretical and empirical anabfdise several multiplication
algorithms. Up to now the time to access an entrpa@r B has been omitted. Since the
working space can be(rc), it is not reasonable to assur@1) access time. For unit-
Monge matrices this problem was solved [9] using a dominanaeting structure [11],
which works inO((logd(A))/loglogd(A)) time andO(d(A)) space. A similar result
can be obtained with a wavelet tree [14]. Moreover by addocaumulated values by
level it is possible to obtain the values of general Mongerives, inO(logo(A)) time
andO(6(A)logd(A)) space.



0= 0(n%) |MMT, Theorem 2 SMAWK , Lemma 2 Theorem 1

e=2 (O(?),O(logn)) __ (O(?),0(?)) -
2<e<1 (O(rélogn),O(ntlog®n)) (O(nElogn),O(n?logn)) —
unit-Monge, = 1 |(O(n),O(nlogn)) (0(n), o( ,g;'fggg’;» <0(n),0(,gg’|gzg‘;])>
1<e<0 (O(n),O(nlog?n)) (O(n),0(n?logn)) —

Table 1. Comparison between max-plus multiplication algorithntgcainting for access time to
A andB, O(1) for e = 2, O(logn/loglogn) for unit-Monge andD(logn) otherwise. Foe > 1 and

€ # 2 the performance of MMT is unaltered even if access tim@(. The (s(n),t(n)) notation
meanss(n) space and(n) time requirements.

To simplify the analysis let us assume ti@r) = O(c) = O(r’') = O(c') = O(n)
and thatO(5(A)) = O(d(B)) = O(d(C)) = O(3). The algorithm of Theorem 1 needs to
access entries at each step. Hence the access value bedawtes af the overall time.
The MMT algorithm always computes a lax value before acogsan entryj.e., the
accesses of the algorithm are always of the f@fh j) = Mi(j,laxM;[j,-]). Exceptin
the amortized analysis of Lemma 4 the lax operatid({®gn), see Lemma 3. There-
fore the access time does not become a time factor in MMT. @laisn is confirmed
experimentally, in Section 4.1.

Table 1 shows a comparison of the different algorithms atiogrto core sized =
O(n®). The analysis considers the best space and time requirsrnextincludes the
access time té andB. Fore = 2 the access time i3(1), in this case Lemmas 6 and 7
have amortized performance, hencedt#log®n) time. Lemma 6 becomes an iterated
Lemma 4. Lemma 7 loses@(logn) factor. Fore < 1 the access time ®(logn), the
dominating time is that of building/‘T 1, Lemma 4. Because of the amortized analysis
we need to count the access time, hencelXfr@ogn) time.

Table 1 shows that the MMT algorithm is not always the mostieffit, in particular
SMAWK is faster by arO(logn) factor ford = @(n?). This factor quickly disappears
for € < 2, not only because SMAWK is not sensitive to the core sizé,dsp be-
cause access times are no lon@ét). For the remaining core-sizes MMT is faster than
SMAWK . For the particular case of unit-Monge matrices, Witk ©(n), the algorithm
of Theorem 1 is faster than MMT by@(lognloglogn) factor. However the experimen-
tal results show that in practice MMT is faster than what sdicted by theory.

Using MMT we obtain the first non-trivial solution for the Fydincremental Align-
ment problem, which consists in updating a generic aligrirseore from AIGN(S T)
to ALIGN(C.ST), ALIGN(S,c.T), ALIGN(S.c,T) or ALIGN(S T.c), where ALIGN is
the respective score. The resulting procedure takgs + 8)log®(n+3)) time and
O(n+ b8logd) space, wheré is the core size of the intervening matrices.

4.1 Experimental Results

We implemented MMT and tested it on an Intel Core2 Duo.88GHz, with 19 GiB
of RAM running Xubuntu 910, with Linux Kernel 26.31. The code was compiled
with gcc 4.4.1 - . The prototype consists only of the multiplication and niothe
representation oA andB, which are stored in memory and hence h&(d) access
time. To test the performance we multiplied HSM matricesamied from the LCS, as
defined in Section 1. We also tested HSMs that resulted framergealignments with



the PAM weight matrix [15] and HSMs from Weighted Longest Goaom Subsequences
(WLCS), using the weights in Fig. 2. The algorithm of Theorkman be extended to
support WLCSs, but the space and time are affected by a fagtor this scenario
v = 14. On the other hand for PAM this technique does not apmy,the algorithm
from Theorem 1 cannot be adapted for this problem. If it werssfble it would have
v = 26. The underlying stringS, S, T were random Bernoulli proteingg., o = 23,
that differed in a letter with 10% probability. The sizes @er=m = 4i andn = 8i
fori between 1 and 128. The results are shown in Fig. 4. To makddterpadable we
show only 20% of the points. Theaxis is indexed by a variable = max{n+ 6}. For
precision we repeated each query during 10 seconds.

The plots on the left show the running time, in seconds, ofMMT algorithm
and of anO(vnlog(vn)) time algorithm, denominated as Simulated. Théactor is
calculated from Tiskin’s reduction procedure [10]. The siated prototype is a divide
and conquer algorithm that allocates an array of €zen) and increases every cell
from O to logvn). At each step all the cells in the array are increased by lattay
is then divided in half and each part is processed recuysiVéle recursion processes
both sub-arrays, but in random order.

We compute a minimum squares (MSQ) estimatescfandd in O(cNIogd N).
Since the behavior is asymptotic the first points may dishartvalues. To diminish this
effect we computed several MSQ estimates, successivelgrdisg the first points. We
pessimistically chose the largest estimate.

The results show that for LCS and WLCS thealues are similar to, but not for
PAM, notice the dispersion of the simulated points. Usi(g) access time MMT is
slower than the simulated algorithm for LCS and WLCS but ayalty, faster for PAM.
Contrary to what is predicted in Tabled js much smaller than 3, for a decent fitting
of the modelj.e., R? > 0.95, the time bound is always lower th@iNIog®N).

The graphics on the right show the number of operations féeréint sub-routines.
The respective MSQs appear in the same line in the label. Wiveate the ratio between
node accesses and leaf accesses (Nodes/Leafs), whictaissalery close t@®(logN).
This value is important because it is against this time thaticcesses th andB add.

If this ratio was 1 we would need to addXlogn) factor to the final complexity. Since
the ratio is close t®(logN) the accesses add only a constant term. The BinSteps line
counts the average number of steps that is necessary inrg basrch that computes a
transition point. This value is(log* N) because the MMT prototype uses inverse binary
search. Instead of dividing an interval, it starts from anpaind moves in powers of 2.
Hence it usually runs on a small interval. TotalOps/N measuhe total number of
operations that the algorithm used, dividedNbyThed estimate of this value is usually
larger than thel value obtained in the time graphs, on the left. This may betedlto
cache effects. For LCS and WLCS the bound was at r@gkig?!N), for PAM the
value was higher, but the model fitting was extremely low.

5 Conclusions

In this paper we studied algorithms for the max-plus prodididfionge matrices. We
analyzed the existing algorithms considering the core 3elele 1. The analysis showed
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Fig. 4. Experimental testing of the MMT algorithm. Theaxis of the represents variable=
max{n+ d&}. They-axis of the graphs on the left measures the time in secormsy-axis of the
graphs on the right measures the number of operations.

that the existing algorithms are either sub-optimal or pplly to specific classes of
matrices. Alternatively we proposed a core sensitive d@lgor, MMT. This algorithm
is faster than the iterate8MAWK algorithm, except when the core@n?). For unit-



Monge matrices the algorithm of Theorem 1 is theoreticalstér than MMT, by an
O(lognloglogn) factor, which does not really hold in practides,, in practice MMT
is faster than the theoretical bound. The algorithm of Taeot can also be applied to
matrices that result from Weighted LCSs, by usingtame and space factor.

The MMT algorithm is simple and flexible, its main tools aredniy trees and bi-
nary searches. Moreover it can uniformly hand all sorts ohlyematrices, namely it
can multiply HSMs that result from PAM alignments, whereae algorithm of The-
orem 1 cannot. This flexibility accounted for the first, asdarwe know, non-trivial
algorithm for the Fully-Incremental Alignment problem, tairsg processing problem
that is relevant for bio-informatics. We expect MMT to havedd applications, since a
myriad [9, 16] of string processing and optimization prab$g1] use Monge matrices.

Acknowledgments: We thank anonymous reviewers for several insightful remark
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