
UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO
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Abstract

Full-text indexes provide an efficient method to search for any sub-string of a text. How-

ever, these indexes require a large amount of space. Compressed indexes, that explore the

compressibility of the text, have recently been proposed to address this problem. Self-

indexes, that in addition are able to reproduce any sub-string of the text without storing

it explicitly, represent a further step towards saving space.

This thesis studies self-indexes based on the Lempel-Ziv data compression technique.

It starts by analyzing the search algorithm of these indexes, pointing out the causes of a

quadratic dependency on the pattern size. It then proposes a new search procedure that

solves this problem and confirms empirically that this modification has significant practical

results. The thesis also proposes a method to extend the functionality of these indexes, so

that it becomes possible to find a longest common sub-string and to compute approximate

matches. These results are verified empirically, demonstrating that these indexes are very

efficient.

Keywords: information storage, data compression, text indexing, pattern matching,

approximate pattern matching, longest common sub-string
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Introduction

The exact matching problem consists in finding all the occurrences, if any, of a short

sequence of characters (pattern) P in a longer sequence of characters (text) T . The size of

P will be denoted by m and the size of T by u. P and T are generated from alphabet Σ

of size σ.

We agree with Gusfield’s [52] opinion that “ The practical importance of the exact

matching problem should be obvious to anyone who uses a computer”. In fact exact match-

ing is a building block for a considerable amount of applications. Therefore, developments

in exact matching tend to have a wide impact. The applications of this problem are so

numerous that listing them would prove to be a hard task. Due to the central role that this

problem plays, it is also sometimes referred to as “string matching”, “pattern matching”

or “text searching”, among others. Depending on the nature of the application at hand,

we must choose one of the two following approaches to solve the problem.

The sequential approach consists in searching for P directly on the plain representation

of T , i.e. without using any auxiliary data structure. The indexed approach consists in first

building an auxiliary data structure, known as an index, that is used to improve the time

it takes to solve the problem.

The sequential approach should be applied when the text is small enough or too dy-

namic. For example, this is a viable approach for text editors, where the text is very

dynamic and not excessively large. Naive and linear algorithms for this approach can be
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found in undergraduate computer science textbooks [28]. In fact this approach has been

extensively researched and a considerable number of linear time algorithms for it are now

available. For a book on the subject consult Navarro and Raffinot [96].

1.1 Text Indexes

It should be clear that the sequential approach must consult a considerable amount of the

text. If the text is very large, this may require too much time. In this case the indexed

approach can provide a faster alternative to solve the problem. In this kind of approach we

assume that the text is known and preprocessed a priori, i.e., that the index is built before

the pattern is given. Therefore, the time to build the index is not taken into account when

searching for a pattern. Building the index structure is likely to require a considerable

amount of space and time. Hence indexes can only be used when these resources are

available. In order to amortize this cost, a considerable amount of searches should be

performed. The text should also be relatively static, since a change in the text may imply

a costly update to the index.

Indexes play an important role in search engines, such as Google or Yahoo. Inverted

indexes are the standard type of index used in search engines for natural language. However,

inverted indexes assume that there is a logical partition of the text into words. Hence,

inverted indexes are not efficient for all patterns, as they are restricted to word or phrase

queries. This is in fact a significant limitation, as pointed out by Navarro and Makinen [95]:

“First, the keyword “natural language” excludes several very important Human lan-

guages. It refers only to languages where words can be syntactically separated and

follow some statistical laws such as Heaps’ (which governs the number of distinct

words) and Zipf-Mandelbrot (which governs their frequency distribution) [Baeza-

Yates and Ribeiro 1999]. This includes English and several other European lan-

guages, but it excludes, for example, Chinese and Korean, where words are hard to
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separate without understanding the meaning of the text; as well as agglutinating

languages, where particles are glued to form long “words”, yet one wishes to search

for the particles (such as Finnish and German). Second, natural language excludes

many symbol sequences of interest in many applications, such as DNA, gene or pro-

tein sequences in computational biology; MIDI, audio, and other multimedia signals;

source and binary program code; numeric sequences of diverse kinds; etc.”

Despite these limitations, there are several reasons why inverted indexes are used. They

have the merit of being simple to understand, and in fact, they correspond to the notion

of index usually found in books. They are also very efficient in terms of time and space.

In this thesis however we are concerned with full-text indexes, i.e. we make no assumption

on the structure of the text and expect to be able to search for any given pattern. The

main problem with full-text indexes is their space requirements: from 4 to 20 times the

size of the text [67, 79, 81]. Recall that indexes pay off when searching the text is time

consuming because the text is large. The space requirements of full-text indexes severely

compromise their applicability. In fact most full-text indexes are not designed to work in

secondary memory (a notable exception was given by Ferragina et al. [34]). If a full-text

index is forced to use secondary memory, its performance usually deteriorates considerably.

A common argument in favor of using inverted indexes instead of full-text indexes is

precisely the huge space requirements of full-text indexes. Several attempts to reduce the

redundancy present in full-text indexes originated new, more compact, full-text indexes [4,

16, 27, 30, 44, 61, 67, 124]. These indexes provided only a constant-factor reduction of

space and, as such, were important, but not spectacular. In recent years, however, this

situation has changed dramatically. A new kind of full-text index was exposed by a series

of researchers: Kärkkäinen and Ukkonen [58, 59], Grossi and Vitter [51], Sadakane [110,

111], Ferragina and Manzini [35, 36]. These indexes became known as compressed full-text

indexes and obtained their impressive results by combining text compression techniques

with succinct data structures and full-text index theory.
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A text compression technique is a way to encode the text in a format that requires less

space than that of the original raw sequence and that still represents the original text.

Since we are interested in reducing the space requirements of full-text indexes, a simple

idea is to consider using text compression. It quickly becomes obvious this idea is not that

simple. The common use of data compression focus only on reducing the text size. Once

compressed, texts cannot be manipulated in any way. Compressed indexes however are

radically changing this scenario, and with it our perception of data compression.

The text compression technique cannot be used as black box. In fact compressed indexes

are heavily dependent on the technique that is used. From a high-level point of view, this

idea makes perfect sense. We know that text compression provides a trade-off between the

size necessary to store the text and the time it takes to consult a part of the text. This is

an advantageous trade for full-text indexes, since we can afford that they become slower

in exchange for requiring less space, which in turn makes the overall performance better,

either because they do not need secondary memory or because they need less secondary

memory. This trade off also makes sense from cache to main memory. Of course for this to be

possible, the cost of consulting a part of the text must not be excessive. The naive approach

of decompressing the whole text in order to read a specific character is not acceptable. Most

compressed indexes actually solve this problem in a much more efficient way. Compressed

indexes that are able to reproduce any portion of the original text efficiently are know as

compressed self-indexes.

1.2 Succinct Data Structures

A succinct data structure is a compact representation of a data structure. Trees are a

recurrent data structure in computer science and, in particular, play a central role in full-

text indexing theory. It is therefore natural to consider succinct representations of trees.

Clearly the less space we need to represent a tree, the less space our indexes will require.
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Jacobson [57] was the first to study succinct data structures, such as trees and bitmaps

(strings of 1’s and 0’s). Trees are commonly implemented with pointers which may not

be the most space efficient way to store them. A tree can, for example, be represented

as a string of left and right parentheses. This representation does not support by itself

common operations efficiently, such as moving to a father node or to a child node, but it

does represent the tree. Therefore a tree with n nodes can be represented with 2n bits.

The work presented by Jacobson showed how to simulate tree traversals efficiently using

only o(n) extra bits. Clearly this kind of results is relevant for producing smaller full-

text indexes. The fundamental tools supporting these kinds of data structures are the

Rank and Select operations over bitmaps. The Rank operation counts the number of

1’s up to a given position in the bitmap. The Select operation returns the location of

the i-th 1 in the bitmap. Jacobson showed how to compute Rank in constant time, with

only o(n) extra bits. Later on, Munro [84] and Clark obtained constant-time solutions for

Select, with o(n) extra bits. The set of operations provided by succinct trees has been

successively enlarged and improved by several researchers: Munro et al. [86], Benoit et

al. [14] and Geary et al. [43]. The Rank and Select operations also proved to be useful

for representing permutations [85]. Trees and permutations play a central role in full-text

indexing theory, and therefore this kind of results account for a significant part of the

success of compressed indexes.

1.3 Thesis contribution

The combination of text compression and succinct data structures was so impressive that

a second wave of compressed indexes quickly followed, with contributions from Grossi et

al. [49], Navarro [98] and Mäkinen et al. [76]. The interest on compressed indexes has grown

since then. Several researchers have systematically improved the practical an theoretical

performance of compressed indexes. Their functionality has also been greatly extended.
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For a comprehensive and up to date survey see Navarro and Mäkinen [95]. Ferragina and

Navarro gave an interesting description of the situation [128, Prologue]:

“The new millennium has seen the birth of a new class of full-text indexes which

are structurally similar to Suffix Trees and Suffix Arrays, in that they support the

powerful substring search operation, but are succinct in space, in that it is close

to the empirical entropy of the indexed data. They are therefore called compressed

Suffix Trees and compressed Suffix Arrays, or in general compressed indexes.

. . .

This interest is motivated by the large availability of textual data in electronic form,

by the ever increasing gap in performance among the memory levels of current PCs,

and by the “non negligible” space occupancy of classic data structures like Suffix

Trees and Suffix Arrays which are pervading the BioInformatics and the Text Mining

fields.”

An interesting phenomenon, that motivated this thesis, was occurring in this “rev-

olution”. Essentially, compressed indexes based on the Lempel-Ziv compression algo-

rithm [126, 127] seemed to be less efficient than other alternatives. This seemed bizarre

since the Lempel-Ziv compression method is extremely popular (the gzip application is

based on this type of compression). In fact a file compressed with these methods can be

stored in uHk + o(u log σ) bits [66], where Hk is a lower bound on the compression ratio

of the best practical compressors. Our main contribution is to analyze this situation. We

present a theoretical improvement of compressed indexes based on Lempel-Ziv compression

method, which is significant in practice.

The first and main contribution of this thesis is to propose a compressed self-index based

on the Lempel-Ziv, the inverted-LZ-index (ILZI), that requires O(uHk) + o(u log σ) bits

and whose dependency on m for finding patterns is linear, more precisely the time to report

occurrences is O((m+occ) logu). We present a detailed study of this compressed self-index,
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both from a theoretical point of view and from a practical point of view. From a theoretical

point of view, we present a new insight into the data structures used in Lempel-Ziv based

compressed indexes and point out the main obstacle to linear time indexes based on the

Lempel-Ziv compression. From a practical point of view, we explain the most important

decisions that we took to implement this index in practice, achieving a fast and small index.

The second contribution of this thesis extends the functionality of the index we pre-

sented. In fact some full-text indexes, such as suffix trees, are useful for solving other

problems related to strings. One such problem, that we consider to be fundamental, is the

longest common substring problem: given two strings, a longest common substring is a

largest string that occurs simultaneously in both strings. It is trivial to solve this problem

in linear time using suffix trees. We consider that one string is the pattern P and that the

other is the text T . This extra functionality of suffix trees is heavily used in bioinformatic

applications.

We propose a solution for the longest common substring problem using the ILZI. We

introduce the theoretical tools necessary to solve this problem efficiently. We also explain

how to solve this problem from a more practical point of view.

We also explain how to adapt the ILZI for approximate string matching (ASM). Ap-

proximate string matching is an important subject in computer science, with applications

in text searching, pattern recognition, signal processing and computational biology. The

problem consists in locating all occurrences of a given pattern string in a larger text string,

assuming that the pattern can be distorted by errors. To solve this problem we abstract

away some of the structure of the ILZI and consider it as a variable-length q-samples index.

By using this approach we present some new insights that are of independent interest. We

compare our approach with other indexed alternatives for ASM, including other algorithms

based on compressed indexes.

The remainder of this thesis is organized in the following way: Chapter 2 introduces

fundamental notions of classical full-text indexes, namely suffix trees, suffix arrays, inverted
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indexes and a brief introduction to approximate string matching. Chapter 3 gives a brief

introduction to compressed indexes, with a special focus on Lempel-Ziv compressed indexes.

The chapter starts by explaining some data compression techniques and succinct data

structures. In chapter 4 we describe our first contribution, a Lempel-Ziv based compressed

index (ILZI), including demonstrations of theoretical properties and experimental results.

In chapter 5 we explain how the ILZI can be used to determine a longest common sub-

string between an indexed text and a given pattern. Chapter 6 considers approximate

string matching over Lempel-Ziv compressed indexes, abstracted as irregular q-samples

indexes. Chapters 5 and 6 also contain experimental results. In chapter 7 we present some

conclusions and future work. Appendix A presents more exhaustive experimental results

related to chapters 4, 5 and 6.



2

Basic Full-Text Indexes

In this chapter we describe the basic concepts related with the most popular full-text

indexes, since they form the underlying theory of compressed indexes. We are interested in

indexes that work for any kind of text, not just English. We are not particularly interested

in variations of these indexes, designed to reduce the space requirements by a constant

factor with no relation to text compression.

2.1 Basic Concepts and Notation

2.1.1 Model of Computation

In this thesis logarithms are assumed to be base 2 unless explicitly stated otherwise.

The model of computation we use is the word RAM [53]. This model considers a machine

with 2O(w) registers, each of which can store w bits. The model is random access, which

means that consulting or updating a register requires O(1) time. Note that we can address

any of the 2O(w) registers.

Moreover, in the word RAM model we assume that we can perform the operations

usually available on modern computers (flow control, comparisons, basic arithmetic opera-

tions, bitwise shift and Boolean operations, etc.) in O(1) time. The main difference between

the word RAM model and weaker RAM models is that these operations are not always

considered constant and therefore may require linear (O(w)) time to compute. This means
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Table 2.1. Main symbols used in this thesis.

Symbol Pages Meaning

T 11 Text string

u 11 Original length of text string in characters, i.e. |T |

P 11 Pattern string

m 11 Length of pattern string in characters, i.e. |P |

Σ 10 Alphabet for P and T

σ 10 Alphabet size, σ = |Σ|

k Number of errors

occ, occ1,

occ>1

11,77 Number of occurrences of the pattern in the text, inside a block and spanning

more than one block respectively

occ′ 51 occurrences determined by an orthogonal range query

H0,Hk 42,45 0-th/k-th order entropy of a text character

i, j 20 counters in the Descend and Suffix Walk algorithm or generic indexes

Zi 48 Lempel-Ziv block

n 48 Number of LZ78 blocks of the text

ǫ 11 either the empty string or a small positive real number

T , T78 73,82 dictionary and Lempel-Ziv suffix tree

d, t 72,73 number of nodes/points in the Lempel-Ziv suffix tree,

t 20 the tree depth in the FOR variant

ST , ST 78 74,83 Lempel-Ziv sparse suffix tree

d′ 76 number of nodes in the Lempel-Ziv sparse suffix tree

T78(T ) 73 T78-maximal parsing

f 73 size of the T78-maximal parsing

R 24 reverse mapping between trees

V 19,85 Descend and Suffix walk variant and block bitmap

that on a weaker model our results hold multiplied by a factor of w, which is O(log u) for

a model with u registers. In general this is not a severe slow down.

2.1.2 Strings

A string S is a finite sequence of symbols taken from a finite alphabet Σ of size σ. The

size of a string S, i.e. the number of symbols in S, is denoted by |S|. By S[i] we denote
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the symbol at position (i mod |S|) of S, where S[0] denotes the first symbol. The empty

string is denoted by ǫ. The concatenation of two strings S, S ′, denoted by S.S ′, is the

string that results from appending S ′ to S.

The set of strings of Σ is denoted by Σ∗. The reverse string SR of a string S is the

string such that SR[i] = S[−i− 1]. A string point S〈i〉 in a string S is the space between

letters S[i− 1] and S[i]. A prefix S[..i− 1], substring S[i..j] and a suffix S[j + 1..] of a

string S are (possibly empty) strings such that S = S[..i− 1].S[i..j].S[j + 1..].

Definition 2.1. The exact matching problem consists in finding all occurrences of a

(shorter) pattern string P in a (longer) text string T , i.e. O = {i | T [i..i+ |P | − 1] = P}.

We denote |P | by m, |T | by u and |O| by occ.

As a running example we shall consider string T = cbdbddcbababa. We have that u = 13,

Σ = {a, b, c, d}, σ = 4, T [0] = c, T [−1] = a and TR = abababcddbdbc. String points

T 〈7〉 and T 〈10〉 are shown in Figure 2.1. The strings cbdbddc = T [..6], bab = T [7..9]

and aba = T [10..] are respectively a prefix, a substring and a suffix of T . Figure 2.1

shows the solution of the exact matching problem for patterns cbdbddc and b. Usually we

1

0123456 789 012

T: cbdbddc.bab.aba cbdbddcbababa

P: cbdbddc b b b b b

Fig. 2.1. Schematic representation of the solution of the exact matching problem for patterns cbdbddc (left) and

b (right) and text cbdbddcbababa.

consider 3 sub problems related to the exact matching problem: counting, which consists

in determining occ; reporting, which consists in enumerating O; outputting, which consists

in determining T [i..i+ ℓ] for every i in O and some fixed ℓ.
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It is usual to assume that T is terminated, i.e. that there is a terminator character $

appended to T . This character does not match any other character in Σ and is lexico-

graphically smaller than all the other characters.

2.1.3 Permutations

Permutations are a fundamental tool in computer science. They emerge naturally in the

context of sorting algorithms and consequently in several areas of computer science. For a

detailed explanation the reader should refer to the reference work by Knuth [64].

Definition 2.2. A permutation π is a one to one mapping from a set to itself.

Given a string we can associate to it a permutation, known as suffix array. We explain

this process in Section 2.3. We will therefore start by studying permutations. The concepts

presented will be useful to explain some concepts of strings in a simple and abstract way.

The number of permutations of u elements is u! = 1 × . . . × u. By π[i] we denote the

value that π attributes to element (i mod u). Index i starts at position 0. As an example

consider the following permutation

π =





0 1 2 3 4 5 6 7 8 9 10 11 12 13

10 7 11 8 13 12 9 6 3 5 2 4 1 0



 .

So for example π[3] = 8. A permutation is an invertible function. The inverse of a per-

mutation is also a permutation and will be denoted by π−1. The inverse of the previous

permutation is

π−1 =





0 1 2 3 4 5 6 7 8 9 10 11 12 13

13 12 10 8 11 9 7 1 3 6 0 2 5 4



 .

Orbits and Shift Permutations

We can apply a function iteratively to a given element e, i.e. π0[e] = e and πi+1[e] =

π[πi[e]]. We refer to the set {πi[e] | i ≥ 0} as the orbit of e. Observe that since the
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co-domain of permutations is finite its orbits are finite. This allows us to represent the

orbit of e as (e π1[e] π2[e] . . . πo[e]) where o + 1 is the size of the orbit. Permutations

can therefore be represented as the set of its orbits. This is called cyclic notation. For

simplicity we omit the set brackets in cyclic notation. In our example we have that π =

(0 10 2 11 4 13)(1 7 6 9 5 12)(3 8).

Definition 2.3. A cycle is a permutation that has only one orbit.

Cycles will play an important role in string processing. In fact, there is a general way to

compute a cycle from a permutation. The idea is that given a permutation π we can build

the following cycle: (π[0] π[1] π[2] . . . π[u]).

Definition 2.4. The shift permutation shiftπ of a permutation π is the cycle permu-

tation such that its orbit is the permutation π, i.e. π[i] = shiftiπ[π[0]].

In our example shiftπ = (10 7 11 8 13 12 9 6 3 5 2 4 1 0), and therefore

shiftπ =





0 1 2 3 4 5 6 7 8 9 10 11 12 13

10 0 4 5 1 2 3 11 13 6 7 8 9 12



 .

Observe that by computing the orbit of a shift permutation one can recover the original per-

mutation π, provided we know π[0]. In fact it should be clear that u distinct permutations

share the same shift permutation. Recovering π from its shift permutation plays a central

role in compressed indexes and data compression. The shift permutation of π is given ana-

lytically as shiftπ[i] = π[π−1[i]+1]. This can be verified by iterating the shift permutation,

i.e. shift2π[i] = shiftπ[shiftπ[i]] = π[π−1[π[π−1[i]+1]]+1] = π[π−1[i]+1+1] = π[π−1[i]+2].

In general shiftjπ[i] = π[π−1[i]+j], therefore shiftiπ[π[0]] = π[π−1[π[0]]+i] = π[0+i] = π[i].

Likewise it is easy to see that shift−1
π [i] can be computed by π[π−1[i]−1]. In fact one should

observe that for cycles we have that shiftuπ[i] = i and therefore shiftu−1
π [i] = shift−1

π [i].

Therefore we can conclude that π[π−1[i]−1] = π[π−1[i]+u−1] = shiftu−1
π [i] = shift−1

π [i].
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Runs

Runs allows us to explore the structure of permutations.

Definition 2.5. A run of a permutation shiftπ is a maximal interval [a, b] such that

shiftπ[i+ 1] > shiftπ[i] for all i ∈ [a, b].

As an example we show the runs of shiftπ separated by bars.

shiftπ =





0 1 2 3 4 5 6 7 8 9 10 11 12 13

10 0 4 5 1 2 3 11 13 6 7 8 9 12



 .

Runs end in descents, i.e. a descent is an index i such that shiftπ[i] > shiftπ[i + 1].

Therefore a permutation with k descents has k + 1 runs. In our example shiftπ has 3

descents and 4 runs. We will use the notation
〈

u
k

〉

to denote the number of permutations

of {1, 2, . . . , u} that have exactly k descents. These numbers are usually called Eulerian

numbers. Given a permutation of {1, 2, . . . , u − 1} we can form u new permutations by

inserting u in all possible positions. If the original permutation has k descents then k + 1

of the new permutations have k descents. The remaining ones will have k + 1 descents.

The idea is that by inserting u at the end of a run it remains a run, but inserting it in the

middle splits it into two. Therefore we have the following recurrence:

〈

u

k

〉

= (k + 1)

〈

u− 1

k

〉

+ (u− k)

〈

u− 1

k − 1

〉

, 0 < k < u.

Finally we convention that the empty permutation has no descents, i.e.,

〈

0

0

〉

= 1.

The cases not contemplated by the recurrence or the above convention are assumed to be

0.

The length of the upwards runs in permutations can be used to test the randomness of a

sequence [64]. What happened in the area of compressed indexes was that it became clear

that suffix arrays (definition 2.14) are not random. This can be seen because they have
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very few runs, which are generally long runs. Since suffix arrays are not entirely random

we can explore their regularity to reduce their space requirements.

The reverse permutation of a permutation shiftπ is the permutation that results from

reading shiftπ left to right, i.e. shiftπ[−i−1]. The average number of runs of a permutation

is (u+ 1)/2. In fact the number of descents of a permutation plus the number of descents

of the reverse permutation must add up to (u + 1). Observe that shiftπ has 4 runs but

a random permutation of size 14 should have around 7.5 runs. The probability that a

randomly chosen permutation has 4 runs or less is
∑3

k=0

〈

14
k

〉

/14! ≈ 0, 002328, which is

fairly unlikely.

A fundamental observation used in compressed indexes is that the runs of the shift

permutations expose regularities in π−1. In fact the runs in shiftπ may be even more

regular.

Definition 2.6. A natural run of a permutation shiftπ is a maximal interval [a, b] such

that shiftπ[i+ 1] − shiftπ[i] = 1 for all i ∈ [a, b].

We show the natural runs of shiftπ that are longer than 1 in square brackets,

shiftπ =





0 1 2 3 4 5 6 7 8 9 10 11 12 13

10 0 [4 5] [1 2 3] 11 13 [6 8 7 9] 12



 .

Mäkinen [75] proposed the Compact Suffix array, a compressed index based on the explo-

ration of natural runs. Suppose we would like to represent π−1 in a compressed form and

that we find a natural run in shiftπ. From the definition we get that for some interval

π[π−1[i] + 1] = i + q which gets rewritten to π−1[i + q] − π−1[i] = 1. Let us look at an

example. The interval [4, 6] is a natural run of shiftπ of the form shiftπ[i] = i−3 therefore

π−1[i− 3] − π−1[i] = 1 for i ∈ [4, 6], i.e.

• π−1[1] − π−1[4] = 12 − 11 = 1,

• π−1[2] − π−1[5] = 10 − 9 = 1,

• π−1[3] − π−1[6] = 8 − 7 = 1,
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This property of π−1 is known as a self-repetition and can be explored to reduce the space

requirements to store π−1. The idea is to avoid storing the values of π−1[4], π−1[5], π−1[6] and

compute their values from the values of π−1[1], π−1[2], π−1[3]. Observe that this conclusion

can just as easily been drawn from shift−1
π since a natural run in shiftπ implies a natural

run in shift−1
π . This can be seen by rewriting the above equation as π[π−1[i+ q] − 1] = i.

π−1 =





0 1 2 3 4 5 6 7 8 9 10 11 12 13

13 [12 10] 8 [11 9 7] 1 3 [6 0 2 5] 4





=





0 1 2 3 4 5 6 7 8 9 10 11 12 13

13 [12 10 8] [11 9] [7 1 3 6] 0 2 5 4



 .

This approach may seem a bit far fetched. In fact there seems to be no clear reason to

expect that this approach should work. Also it may seem that just because we are interested

in permutations with long runs that does not necessarily entail that they should have a

significant amount of natural runs. However, Mäkinen and Navarro [76] showed that this

approach results in a compressed index, the compact suffix array.

2.2 Suffix Trees

We will now present a brief description of suffix trees, since they play a central role in full

text-indexing theory and in the inverted-LZ-index. None of the concepts presented in this

Section is new, but the way to expose them is. For a more detailed explanation, the reader

is referred to one of the several references on the subject, e.g. the book by Gusfield [52].

Suppose we wish to locate all occurrences of pattern P in T . We start by considering

simultaneously all suffixes of T . Then we discard all the suffixes that do not start by P [0]

and from those we discard the ones whose second letter isn’t P [1] and so on until we

determine all the suffixes that start by P or we run out of suffixes. Clearly a naive way

to use this approach would scan T in O(um) time. A better way to do it is to arrange
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all the suffixes of T in a tree so that discarding the suffixes can be performed simply by

descending in the tree.

First we need some concepts about trees. A compact tree is a tree that has no unary

nodes, except, possibly, the Root. A labeled tree is a tree that has a nonempty string

label for every edge. In a deterministic tree, the common prefix of any two different

edges out of a node is ǫ. In a deterministic tree the first letters of every edge are referred

to as branching letters. A point p in a labeled tree is either a node or a string point in

some edge-label. The path-label of a point p in a labeled tree is the concatenation of the

edge-labels from the root down to p. For deterministic trees we refer indifferently to points

and to their path-labels, also denoted by p. The string-depth of a point p in a labeled

tree is |p|, denoted by Sdep(p). Father(v) is the father node of node v. Letter(v, i)

equals v[i], i.e. the i-th letter of the path-label of node v. Descend?(p, c) is true iff it is

possible to descend from point p with c and Descend(p, c) returns the resulting point. By

Dfs(v) we refer to the depth-first time-stamp [28] of a node v in a tree and by Dfs’(p) to

the depth-first time-stamp of a point p in a labeled tree.

Definition 2.7. The generalized suffix tree TS1,...,Sk
of a set of strings {S1, . . . , Sk} is

the deterministic compact labeled tree such that the path-labels of the leaves are the suffixes

of the S1$, . . . , Sk$ strings, where $ is a terminator symbol that does not belong to Σ.

Usually the definition of generalized suffix trees uses different terminators for each string,

but this is not necessary for this work. We will refer to generalized suffix trees just as suffix

trees. Whenever it is convenient, we will omit the terminator symbol. Moreover, by leaves,

we also refer to the internal nodes that are created by the terminator symbol.

The suffix tree of T is shown in Figure 2.2 and the suffix tree T of strings a, b, ba, bd, cba, cbd, d

is shown in Figure 2.3 (top-right). Solving the exact matching problem with a suffix tree

consists in reporting all the leaves below point P . This takes O(m+ occ) time. Suffix trees

can be stored in O(u logu) bits and built in O(u) time, with a number of well known
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algorithms [81, 120, 121]. In this classical context edge-labels are stored as pointers to T .

Therefore storing a suffix tree requires O(u logu) bits. In a good implementation the factor

hidden by the O notation is around 10 [67].

2.2.1 Suffix-links and Descend and Suffix Walks

An element that is responsible for the flexibility of suffix trees is the suffix link. The suffix-

link of a node v of a suffix tree is a pointer to node v[1..], denoted by SuffixLink(v).

Figure 2.2 shows the suffix links of nodes ba and baba. We define in an artificial way Suf-

fix Link(Root) as a node that descends to the root by every letter including terminator

symbols. Several suffix tree algorithms use suffix links. One such algorithm is a greedy

traversal of the tree. The traversal is greedy in the sense that the algorithm traverses the

tree trying to maximize the string depth at all times. Suppose we are given pattern P and a

suffix tree T . A greedy traversal of P in T consists in trying to read a string P by starting

from the root and descending as much as possible. When it is impossible to descend any

further, we follow suffix-links until descending becomes possible again.

Definition 2.8. The descend and suffix walk of a string P over a suffix tree T is the

sequence p0 . . . p2m of points of T computed by Algorithm 1.

It is important to notice that Algorithm 1 starts by appending to P a new terminator

character $′ that fails to match with any other character. The following lemma explains

why the point at the beginning of the for cycle corresponds to the largest suffix of P [..i−1]

that is a point in T .

Lemma 2.9 (For Invariant). Before executing line 5 of Algorithm 1, it is always true

that if j′ < j then P [j′..i− 1] is not a point in T .

Proof. First it should be obvious that, except in line 10, point = P [j..i − 1], since the

SuffixLink (resp. Descend) and j++ (resp. i++) instructions are consecutive.
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The lemma is proved by induction on i. The base is trivial. We assume that before line

7 is executed, if j′ < j, then P [j′..i] is not a point in T . Our result follows immediately

from this property by observing that the point and i are updated before reaching line 5

again.

The previous property can be proved by induction on the number of times the while loop

ran on an iteration of the for loop. The base follows from the induction hypotheses of the

lemma, by observing that, since T is suffix closed, if point P [j′..i−1] is not in T , neither is

point P [j′..i]. Finally assume that the while’s guard is true, i.e. NOT Descend?(P [j..i−1],

P [i]). Therefore P [j..i] is not a point in T . Hence if j′ < j + 1 then P [j′..i] is also not a

point in T . �

This lemma shows that the value of the point in line 6 is left maximal, i.e. cannot be

extended to the left. Likewise the points in line 8 are right maximal, since the while’s

guard has just evaluated true. This gives a way to classify the points that were reached by

the descend and suffix walk.

Definition 2.10. The left, right traces of a string P over a suffix tree T are the sub-

sequences of the descend and suffix walk given respectively by lines 6 and 8 of Algorithm 1.

By father right[i] (resp. father left[i]), we refer to the lowest ancestor of trace right[i]

(resp. trace left[i]) that is a node of T and by child right[i] (resp. child left[i]), to the

highest descendant of trace right[i] (resp. trace left[i]) that is a node of T . Table 2.3 (top)

shows the descend and suffix walk of cbdbddc in T .

Finally we will briefly explain why Algorithm 1 runs in O(m) time. First it should be

clear that Algorithm 1 does terminate.

Theorem 2.11. Expression V (i) = 3m− i− 2j − t is a variant of the for loop, where t is

the tree depth of the point. Therefore Algorithm 1 terminates.
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Proof. Suppose that V (i) ≤ 0. Since t ≤ i− j, then 3m− 2i− j ≤ 3m− i− 2j − t. Since

j ≤ i, then 3m− 3i ≤ 3m− 2i− j. Therefore 3m− 3i ≤ 0, hence m ≤ i and the for cycle

terminates.

Except for instruction 10, it should be evident that ∆V = V (i+1)−V (i) < 0 for any i,

since j is non-decreasing and i is strictly increasing for each iteration of the for loop. The

problem with the Suffix Link operation is that it may cause t to decrease. However t can

decrease at most by 1. The factor 2 associated with j compensates this effect. Therefore

in every iteration of the while cycle ∆V < 0. �

Algorithm 1 Descend and Suffix Walk
1: procedure Descend and Suffix(P )

2: P ← P.$′

3: j ← 0

4: point ← Root

5: for i← 0, i < |P | do

6: trace-left[i] ← point

7: while NOT Descend?(point, P [i]) do

8: trace-right[j] ← point

9: j++

10: point ← Suffix Link(point)

11: end while

12: point ← Descend(point, P [i])

13: end for

14: end procedure
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i 0 1 2 3 4 5 6 7

P[i] c b d b d d c $’

trace left[i] ǫ c cb cbd b bd d c

DFS’(father left[i]) 0 0 6 8 2 4 9 0

DFS’(trace left[i]) 0 5 6 8 2 4 9 5

DFS’(child left[i]) 0 6 6 8 2 4 9 6

trace right[i] cbd bd d bd d d c ǫ

DFS’(father right[i]) 8 4 9 4 9 9 0 0

DFS’(trace right[i]) 8 4 9 4 9 9 5 0

I(trace right[i]) [8,8] [4,4] [9,9] [4,4] [9,9] [9,9] [5,8] [0,9]

DFS’(child right[i]) 8 4 9 4 9 9 6 0

Table 2.3. Descend and suffix walk of cbdbddc in T

For now we assume that the operations Descend and Descend? are computed in con-

stant time and later give a more realistic analysis. The problem of analyzing the time of

Algorithm 1 is that operation SuffixLink is computed for points, not just nodes, and

therefore doesn’t necessarily run in constant time.

Lemma 2.12 (Skip/count trick). The Suffix Link function runs in O(∆t+ 2) time,

where ∆t is the variation of tree depth.

Proof. Computing the Suffix Link for the nodes of T can be done in O(1) by storing

the suffix-links in T . For a point, the idea is to first use the suffix link of its father node

and then descend until the string depth is equal to the string depth of the original point

less 1. In order to descend, it is not necessary to read the whole edge labels. The reason

is that P [j + 1..i− 1] must be a point in T since P [j..i− 1] is. Therefore we only need to

check the branching letters of the nodes we find along the way. Hence we conclude that

this procedure can be computed in O(∆t+ 2) time. �
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Fig. 2.2. (top) Suffix tree for T . Some suffix links are shown (dashed arrows). (bottom) Suffix array of T .

Observe that −∆V counts all the operations executed in an iteration of the for loop,

including the time to compute Suffix Link. Therefore Algorithm 1 runs in O(V (0)) =

O(m) time.

The algorithm presented by McCreight and Ukkonen to build a suffix tree consists in

computing the descend and suffix walk of T on an evolving suffix tree. The suffix tree

begins with the Root and Suffix Link(Root) nodes. The algorithm is a descend and

suffix walk, where before line 9 is executed we add a new leaf to the tree. The new leaf
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Fig. 2.3. (right) Suffix tree for strings {a, b, ba, bd, cba, cbd, d}. Suffix link from cb to b shown by a dashed arrow.

Nodes show their Dfs value in T . (left) Reverse tree of the suffix tree on the right. Nodes show their Dfs value in

T R. The R mapping is shown and R(3) is indicated by a bold arrow.

is linked to an internal node, possibly new, located in the current point position and edge

labeled by T [i..]. Since it is a descend and suffix walk, this algorithm takes O(u) time.

2.2.2 The Suffix tree/Suffix-link Duality and Backward Searching

Weiner presented the first algorithm for building suffix trees [121]. Interestingly enough

this algorithm was based on backward search, a concept that was recently introduced by

Ferragina and Manzini [35] in compressed indexes.

The idea of backward search consists in using the suffix tree backwards. To determine

the point P in T we start by descending by P [−1], instead of P [1]. For example suppose

we wish to locate pattern cbd in T of Figure 2.3. We start by descending by d = P [−1]. We

now have a serious problem, since it is not clear how to move to point bd. In this particular

case since d corresponds to a node, the one with Dfs value 8, we can use another data

structure to solve this problem.

Definition 2.13. The reverse tree T R of a suffix tree T is the minimal labeled tree that,

for every node v of T , contains a node vR, where vR denotes the reverse string of v.

The tree T R is shown in Figure 2.3 (top-left). Observe for example that, since cbd is a

node of T , there is a node cbdR = dbc in T R. We define a canonical mapping R that, for
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every node v in T , maps Dfs(v) to Dfs(vR) (see Figure 2.3). We will use R(v) to denote

R(Dfs(v)). Note that since the nodes of T form a suffix closed set, the nodes of T R form

a prefix closed set.

It is now very easy to solve our problem by descending in T R. We map the node d to

T R, by R, and obtain a node with DfsT R value 6′. If we descend by b and then by c we

reach a node with a DfsT R value of 8′. This node can be mapped back to T with R−1 to

the node cbd with the Dfs value 7. This way we are able to search for P backwards in T .

Of course this may look like cheating since we are building another data structure to be

able to do this search. The interesting fact is that we are not. In fact the structure of T R

is already present in T in the form of suffix-links. Observe for example that the suffix-link

from cb to b can be computed by: mapping cb to T R (node 5′); moving up to the father

of that node (node 4′); mapping back to T (node 2). This means that the structure of T R

is actually stored in the suffix-links. This information however only moves upwards in T R.

Weiner stored the suffix-links reversed, i.e. as pointers from v[1..] to v for every node v of

T . Note that we also need to store letter v[0].

The T R tree is, by itself, not enough to do backward search for every point p of T ,

specially when p is not a node. Consider for example how to move from point bab to point

abab in the suffix tree of Figure 2.2. The best way is to move up to node ba, then follow

a Weiner-link to node aba and finally descend to point abab. The reader might get the

impression that it is enough to follow the Weiner-link from the father node of the point,

this however is not the case. Consider for example how to move from point bab to point

cbab. In this case we must move up to node b, from that node we follow a Weiner-link

to node cb and then descend to point cbab. Note that the time of reading a pattern P

backwards on T amortizes to O(m) and that the time to move from one point to the next

is equal to the variation in tree depth of the points when using the skip/count trick to

move in the tree.
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In order to be able to use the skip/count trick coherently we need to store some more

information. Note for example that with the previous procedure it might seem that it is

possible to move from point bdd to point cbdd while, in fact, we would end up in point cbdb.

In fact it is not enough to store T R. We need information about the suffix tree of TR. In

particular for the nodes v we traverse upwards, we need to know if there is a point p such

that p[1..] = v, even if p is not a node. Only if there is such a point p for which p[0] is the

letter we are prepending is this procedure valid. Weiner stored this information as bits in

the nodes of T .

We show the duality between the suffix trie (suffix tree not in compact form) of

T = aaabbb and TR in Figure 2.4 This duality between suffix trees was first explored

by Weiner [121], that presented the first algorithm for building suffix trees. It was later

pointed out by Gusfield [52]. Recently it was explored by Stoye [115] and Maaß [72]. Fer-

ragina and Manzini [35] found an efficient process to do backward search over suffix arrays

that exploits the compressibility of T .

2.3 Suffix Arrays

Suffix arrays resulted from an attempt to reduce the space requirements of index struc-

tures [46, 79]. Like suffix trees, suffix arrays give valuable insight into the structure of

strings.

Definition 2.14. The suffix array SA of a text T is the permutation that gives the

lexicographical ordering of the suffixes of T , i.e. T [SA[i−1]..] < T [SA[i]..] for all 0 < i < u.

Therefore SA[i] responds to the question: “which suffix is in the i-th position in the lex-

icographical ordering ?”. Suffix arrays can be obtained from suffix trees by traversing its

leaves in lexicographical order (see Figure 2.2). In practice, however, it is better to build

them directly. Several algorithms have been proposed to build suffix arrays, from the orig-

inal O(u logu) time [79] to the newest O(u) time algorithms [17, 63, 65]. Storing a suffix
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Fig. 2.4. Suffix trie for string aaabbb (left) and string bbbaaa(right). Overlap of both suffix tries (top)

array requires u(log u+ log σ) bits, since we must also store T . Figure 2.2 shows the suffix

array of T .

To every point p, we associate the range of leaves that are descendants of p. For example

string ba is associated with the interval [4, 6] that corresponds to suffixes {11, 9, 7}. The

exact matching problem can be solved using suffix arrays by computing the range associated

to P . Using binary searches, this can be achieved in O(m log u + occ) time. This can be

further improved to O(m+ log u+ occ) by storing information about the longest common

prefix for consecutive suffixes [2, 79]. Observe that, after computing the range associated
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to P , we can compute occ in constant time, i.e. count the number of occurrences. These

values are obtained from the edges of the range, in our example it would be computed as

6−4+1 = 3. This property of suffix arrays led to a division of the exact matching problem

in two versions. The first, referred to as counting, consists in computing occ; the second,

referred to as reporting, consists in reporting the locations of each occurrence of P in T .

2.3.1 Suffix-Links over Suffix Arrays

Since suffix arrays are permutations their inverse are also permutations. The inverse of

the suffix array SA is the rank array, i.e. RA = SA−1. Therefore RA[i] responds to the

question: “what is the ranking of suffix i in the lexicographical order ?”. The rank array

for the suffix array of Figure 2.2 is the following :

RA =





0 1 2 3 4 5 6 7 8 9 10 11 12 13

10 7 11 8 13 12 9 6 3 5 2 4 1 0



 .

The rank array indicates where in the suffix array is stored a given suffix. For example

consider suffix aba of T . Since aba = T [10..] and RA[10] = 2 we should have that aba =

T [SA[2]..], i.e. SA[2] = 10. Observe that RA of T is the same permutation that was

presented in Subsection 2.1.3 as π.

We introduce the ψ function. The ψ function is a permutation that plays the role of

suffix-links in suffix arrays. In the context of compressed indexes it is also used to explore

the regularities of SA [51, 110]. Our exposition of the ψ function is motivated by the work

of Crochemore et al. [29].

Definition 2.15. The ψ function of a text T is the shift permutation of the rank array of

T . The inverse of the ψ function is called the Last-to-First mapping.

Figure 2.5 shows the ψ function and the LF mapping of T . According to Subsection 2.1.3 ψ

can be computed by the expression RA[RA−1[i]+1] = SA−1[SA[i]+1] = RA[SA[i]+1]. The

last expression gives the intuition behind the ψ function. The expression reads “where in the
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Fig. 2.5. (top) Suffix tree for T . Some suffix links are shown (dashed arrows). (bottom) Suffix array of T , its

Burrows-Wheeler transform, the ψ and LF permutations.

suffix array is the suffix SA[i]+1 ?”, i.e. the suffix after SA[i]. The expression in the middle

shows this statement in another way since T [SA[ψ[i]]..] = T [SA[SA−1[SA[i] + 1]]..] =

T [SA[i] + 1..]. For example aba = T [10..] = T [SA[2]..] and T [SA[ψ[2]]..] = T [SA[4]..] =

T [11..] = ba. Obviously the LF-mapping does exactly the inverse of the ψ function, i.e. it

indicates where is the previous suffix.
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The LF-mapping can be used to perform backward search in a way similar to using

Weiner-links (see Subsection 2.2.2). The LF-mapping itself is much like the reverse tree of

a suffix tree. In order to be able to perform backward searching we need to extend it to the

ELF-mapping, that for a given leaf with index i, corresponding to suffix T [SA[i]..], and a

letter ℓ returns another leaf with index ELF [i, ℓ], corresponding to suffix T [SA[ELF [i, ℓ]]..],

such that any prefix of ℓ.T [SA[i]..] that is a node of the suffix tree of T is also a prefix

of T [SA[ELF [i, ℓ]]..]. This definition however is ambiguous, since there can be different

values that satisfy this property. For our purposes any value that satisfies the previous

property is acceptable. In Subsection 3.1.2 we give a closed formula for ELF.

For example consider i = 8, note that SA[8] = 3 and that T [SA[8]..] = bddcbababa$,

suppose we consider ℓ = c. There is no string c.bddcbababa$ in T , the largest prefix of this

string that is a substring of T is cbd. Therefore the only node we need to worry about

is node cb because of node b. In this case both leaves at indexes 9 and 10 satisfy the

property we want, in particular we choose 10. Therefore since SA[10] = 0 we have that

ELF [8, c] = 0.

Observe that the ELF-mapping does extend the LF-mapping. In fact ELF [i, T [SA[i]−

1]] = RA[SA[i]− 1] = LF [i]. The last equality is essentially the definition of LF mapping.

The first equality is the observation that if we consider the suffix T [SA[i]..] and prepend to

it the letter T [SA[i]−1], we end up with suffix T [SA[i]−1..] which is a leaf and therefore a

node of the suffix tree of T . In this case there is no ambiguity for ELF which must respect

the first equality.

In order to perform backward searching effectively on suffix arrays we need to compute

the ELF mapping efficiently. However, before we can do that, we need further insight into

suffix arrays.
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2.3.2 Self-Indexing and Counting Suffix Arrays

This subsection is based on the work of Sadakane [110] and of Schürmann and Stoye [114]

and aims to explain some properties of suffix arrays.

Consider the application that assigns to every string T the permutation SA. A curious

fact about this application is that it is not injective, i.e. distinct strings may have the

same suffix array. Studying this phenomena is important since it will allow us to construct

self-indexes. A self-index is an index from which we can recover the original string. If two

distinct strings can share the same suffix array then suffix arrays are not by themselves

self-indexes. This means that in order to determine which string ST originated a given

suffix array SA we need to store more information. The important question is: how much

more information ?

As a simple example, observe that strings aaaa and dcba share the same suffix array.

Understanding the relation between the strings that share the same suffix array will allow

us to add information to suffix arrays in order to turn them into self indexes. One obvious

way to achieve this goal is to add T itself. We are however interested in using less than

O(u logσ) bits.

The following characterization of suffix arrays is essential to describe the strings that

share the same suffix array. This characterization was first given by Burkhardt and

Kärkkainen [17] and equivalent propositions were given by Duval and Lefebvre [32].

Theorem 2.16. A permutation SA is the suffix array of string T iff the following condi-

tions hold:

• T [SA[i]] ≤ T [SA[i] + 1]

• ψ[i] > ψ[i+ 1] =⇒ T [SA[i]] < T [SA[i+ 1]]

Proof. Suppose that SA is the suffix array of T . Since SA is the lexicographical order of

the suffixes, the first condition must hold (see Figure 2.2). The second condition states
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that if the relative order of two entries of SA changes when we remove the first character

of both then they must disagree in that character, i.e. T [SA[i]] < T [SA[i+ 1]].

Proving that a permutation with the above properties is the suffix array of T consists

in using induction with the two above properties. The reader is referred to the work of

Schürmann and Stoye [114]. �

Since Theorem 2.16 is a complete characterization of suffix arrays it should now be clear

that what is essential to tell apart the strings that share the same suffix arrays is the string

T [SA[i]]. In fact, given a permutation SA and a compatible string T [SA[i]] we can recover

T by inverting SA, since T [SA[SA−1[i]]] = T [i]. A self-index must therefore find a way

to store string T [SA[i]]. This string however is extremely regular and there is no point in

storing u letters (see Figure 2.2).

Definition 2.17. The count function C : Σ → [0, u−1] of a string T is defined as follows:

• C(l) = i if T [SA[i]] < l and T [SA[i+ 1]] = l.

The count function of our running example is the following:

C =





a b c d

0 3 8 10



 .

Simply storing the C function in an array allows for C to be computed in O(1) time and

uses up only O(σ log u) bits. In this representation we can compute T [SA[i]] in O(log σ)

time by doing a binary search. This can be further improved with a bitmap or a compressed

bitmap. We will discuss these approaches in Chapther 4. However in practice this was the

way we implemented self-indexing in the ILZI, the compressed index that we will discuss

in Chapther 4. Note also that it is easy to extract a substring T [SA[i]..SA[i] + ℓ] by using

the ψ function and outputting T [SA[i]], T [ψ[SA[i]]], T [ψ2[SA[i]]] and so on.

The second condition of Theorem 2.16 is illustrated in Figure 2.5 by vertical dotted

lines. This condition relates the smallest alphabet that can generate a suffix array and



32 2 Basic Full-Text Indexes

the descents of ψ. Let k be the number of descents of ψ ignoring position 0. In fact

since position 0 corresponds to the terminator character we must always have that $ =

T [SA[0]] 6= T [SA[1]]. According to this condition we must have that k < σ. In our example

σ = 4 and k = 2. Counting the number of strings that share the same suffix array is now

a simple matter of counting the number of C functions that are compatible with ψ. The

number of such compatible C functions is
(

u+σ−1−k
σ−1−k

)

.

For every suffix array there is a base string for which σ = k − 1. Bannai et al. [11]

presented an algorithm to compute this string. It consists essentially in considering T [SA[i]]

as the string that has always the same letter in the runs of ψ. In our example this is not

the case because of the last run of ψ (see Figure 2.5).

This analysis not only explains how one can use suffix arrays as self indexes, but it also

gives some insight into why compressed indexes have troubles with large alphabets. The

fewer runs a permutation has the more regular it is and therefore the less space we will

need to represent it. In this Section we have shown that σ is an upper bound on the number

of runs of ψ and, therefore σ influences the complexity of storing ψ. This, of course, is also

a measure of the complexity of storing RA and SA (see Subsection 2.1.3).

This relation between σ and the complexity of storing an index of T allows us to give

another overview of how compressed indexes work. Observe that if σ was close to u there

probably would be very few redundancy both in T and in its suffix array. This means that,

in this case, the suffix array would already be compressed [41]. Therefore a good way to

reduce the space requirements of SA is to transform T into another (shorter) string with

a larger alphabet. An index for that string would already be compressed. The problem

is how to use such an index as an index for the original string. In fact this is how most

compressed indexes work. The mapping usually consists in grouping letters into blocks.

In the Lempel-Ziv based indexes the way to group letters is determined by the Lempel-

Ziv parsing. The compressed suffix arrays group the letters into blocks of size 2⌈log log u⌉.

However, for FM-indexes this description is not very natural.
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Table 2.4. 2-grams index for T = cbdbddcbababa.

2-grams $ a$ ab ba bd cb db cc dd

suffixes 13 12 8, 10 7, 9, 11 1, 3 0, 6 2 5 4

gaps 13 12 8, 4 7, 2, 2 1, 2 0, 6 2 5 4

Table 2.5. 2-samples index for T = cbdbddcbababa, with h = 2.

2-grams a$ ab cb db dd

suffixes 12 8, 10 0, 6 2 4

2.4 Inverted Indexes and q-grams/q-samples Indexes

For some applications we do not need to search for patterns larger than a given q, i.e.

m ≤ q. If this is the case we can cut the suffix tree of T at string-depth q, i.e. we do not

need to organize the suffixes beyond string-depth q. This means that the sub-trees below

string-depth q are stored as arrays that are not lexicographically sorted. In general they

may be sorted by the position in T , as shown in Table 2.4. This kind of index is known as

q-grams index.

This kind of index still requires a lot of space since we must store O(u) numbers. This

can be stored in a compressed format by storing the gaps between consecutive suffixes

(see Table 2.4) with Elias-δ coding [33, 122] (see Subsection 3.1.1). With Elias-δ coding,

representing an integer x requires log x+2 log log x+O(1) bits, but it is possible to recover

the numbers from a binary string of consecutive numbers. Representing the array of suffixes

in this way requires u(q log σ + 2 log(q log σ) + O(1)) bits in the worst case, i.e. when the

gaps between the samples are of size σq. Therefore, for a small q, this requires less space

than suffix arrays.

An index that requires even less space than the q-grams index is the q-samples index.

The idea of the q-samples index is that the text is sampled every h position, i.e. we are

only going to index suffixes T [0..], T [h..], T [2h..] and so on. Usually, we assume that the

samples do not overlap, i.e. that q ≤ h. This means that a q-samples file only needs to store
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Table 2.6. Inverted index for T = to be or not to be.

dictionary be not or to

suffixes 3, 16 9 6 0, 13

u/h numbers. Moreover each number requires even less space since it can be stored divided

by h. Table 2.5 shows an example of a q-samples index with h = q = 2. The problem with

the q-samples index is that it cannot find every occurrence of a pattern of size q efficiently,

since the pattern may appear spread across q-samples.

A variation of the q-samples index for which this problem is not very relevant is the

inverted file. Inverted files are used for natural language texts, like English. Instead of

considering all q-samples we are given a dictionary containing the words of T . We store

the suffixes only for the words in the dictionary. See Table 2.6.

The reader may wonder if it is possible to use the same reasoning that transformed

q-grams into q-samples to reduce the space requirements of suffix trees. This was explored

by Kärkkäinen et. al. [61] that introduced the notion of sparse suffix tree. This idea is also

used in compressed suffix arrays [110].

2.5 Approximate String Matching

We finish this chapter with a brief overview of the basic concepts related with approximate

string matching. In Chapther 6 we will present an algorithm to perform approximate string

matching with the inverted Lempel-Ziv index, that uses some of these concepts.

Approximate string matching is an important subject in computer science, with appli-

cations in text searching, pattern recognition, signal processing and computational biology.

The problem consists in locating all occurrences of a given pattern string in a larger text

string, assuming that the pattern can be distorted by errors. If the text string is long, it may

be infeasible to search it on-line, and we must resort to an index structure. This approach

has been extensively investigated in recent years [8, 9, 10, 24, 56, 88, 100, 119, 123].



2.5 Approximate String Matching 35

State of the art algorithms are hybrid, and divide their time into a neighborhood gener-

ation phase and a filtration phase [88, 99].

During the neighborhood generation phase we compute all the strings that can be

obtained from the pattern by a small amount of distortions. This can be computed with

dynamic programming over a suffix tree [8, 24, 119].

Filtration consists in determining text areas, that do not contain matches, using tech-

niques less expensive than dynamic programming. This approach has the obvious drawback

that it cannot exclude all such areas, the remaining points have to be inspected with other

methods. In the indexed version of the problem, filtration can be used to reduce the size of

neighborhoods, hence speeding up the algorithm. The most common filtration technique

splits the pattern and later on tries to expand it around potential matches. We will give

a more detailed explanation of filtration in Chapther 6. The way the pattern is split de-

termines the balancing point for the hybrid algorithm. Myers [88] and Baeza-Yates and

Navarro [99] presented a detailed treatment of this subject. They also describe the limita-

tions of the method, including the fact that above a given error level the complexity of the

method becomes linear on the size of T .

2.5.1 Basic Concepts

Definition 2.18. The edit or Levenshtein distance, ed(S, S ′), between two strings is the

smallest number of edit operations that transform S into S ′. We consider as operations

insertions (I), deletions (D) and substitutions (S).

For example: D S I

abcd

ed(abcd, bedf) = 3 bedf

The edit distance between strings S and S ′ can be computed by filling up a dynamic

programming table D[i, j] = ed(S[0..i− 1], S ′[0..j − 1]), constructed as follows:
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Table 2.7. Table D[i, j] for abbaa and ababaac.

col 0 1 2 3 4 5 6 7

row a b a b a a c

0 0 1 2 3 4 5 6 7

1 a 1 0 1 2 3 4 5 6

2 b 2 1 0 1 2 3 4 5

3 b 3 2 1 1 1 2 3 4

4 a 4 3 2 1 2 1 2 3

5 a 5 4 3 2 2 2 1 2

D[i, 0] = i, D[0, j] = j

D[i+ 1, j + 1] = D[i, j], if S[i] = S ′[j]

1 + min{D[i+ 1, j], D[i, j + 1], D[i, j]}, otherwise.

Table 2.7 shows an example of the dynamic programming table D.

A different, yet related, approach for the computation of the edit distance is to use a

non-deterministic automaton (NFA). We can use a NFA, denoted Nk
P , to recognize all the

words that are within edit distance k from another string P . Figure 2.6 shows an automaton

that recognizes words that are at distance at most one from abbaa, where Σ represents

any symbol. It should be clear that the word ababaa is recognized by the automaton since

ed(abbaa, ababaa) = 1. A comprehensive survey about these algorithms is available [97],

and should be consulted for a more complete description.

- -a -b -b -a -a

?

Σ
R

ǫ, Σ
?

Σ
R

ǫ, Σ
?

Σ
R

ǫ, Σ
?

Σ
R

ǫ, Σ
?

Σ
R

ǫ, Σ
?

Σ

-a -b -b -a -a

Fig. 2.6. Automaton Nk
P for abbaa with at most one error.

Figure 2.7 shows the computation performed by automaton Nk
P when the input string

is ababaac.
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Fig. 2.7. Computation of ababaac using automaton Nk
P for abbaa with at most one error (flipped horizontally and

rotated 90 degrees clockwise, with active states marked in black).

A useful variation of table D is table D′[i, j] = min0≤l≤j{ed(P [1..i], T [l .. j])}, computed

as table D but setting D[0, j] = 0 (see Table 2.8).

Table 2.8. Table D′[i, j] for abbaa and ababaac.

col 0 1 2 3 4 5 6 7

row a b a b a a c

0 0 0 0 0 0 0 0 0

a
...

. . .
...

. . .
...

. . .
. . .

...

1 1 0 1 0 1 0 0 1

b
...

...
. . .

...
. . .

...
...

. . .

2 2 1 0 1 0 1 1 1

b
...

...
...

. . .
...

. . .
...

...

3 3 2 1 1 1 1 2 2

a
...

...
...

. . .
...

. . .
. . .

4 4 3 2 1 2 1 1 · · · 2

a
...

...
...

...
. . .

... 1
. . . 1

. . .

5 5 4 3 2 2 2 1 2

According to the definition of D′, the last line, D′[m, j], stores the smallest edit distance

between S and a sub-string of S ′ starting at some position l and ending at position j.

Suppose we want to find all occurrences of abbaa in ababaac with at most one error. By

looking at row D′[5, j] we find out that such occurrences can end only in position 6. In
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particular, there are two such occurrences, ababaa and abaa. To compute the same result

we can use an automata N ′k
P , built by adding a loop labeled with all the characters in Σ

to the initial state (see Figure 2.8).

Σ Σ

a bb a a

a b b a a

ε, Σ Σ ε, Σ Σ ε, Σ Σ ε, Σ Σ ε, Σ

Σ

Fig. 2.8. Automaton N ′k
P for abbaa with at most one error.

2.5.2 Indexed Approximate Pattern Matching

If we wish to find the approximate occurrences of P in T in sub-linear time (with O(nα)

complexity, for α = m/k < 1) we need to use an index structure for T . Suffix arrays [99]

and q-grams have been proposed in the literature [56, 88]. An important class of algorithms

for this problem are hybrid in the sense that they find a trade-off between neighborhood

generation and filtration techniques.

A first and simple-minded approach to the problem consists in generating all the words

at distance at most k from P and looking them up in the index T . The set of generated

words is the k-neighborhood of P .

Definition 2.19. The k-neighborhood of P is Uk(P ) = {P ′ ∈ Σ∗ : ed(P, P ′) ≤ k}

Let us denote the language recognized by the automaton Nk
P as L(Nk

P ). It should be clear

that Uk(P ) = L(Nk
P ). Hence, computing Uk(P ) is achieved by computing L(Nk

P ). This can

be done by performing a DFS search in Σ∗ that halts whenever all the states of NK
P became

inactive.

The k-neighborhood, turns out to be quite large. In fact |Uk(P )| = O(mkσk) [118].

Instead we use condensed neighborhoods (CUk) [88, 99] and super condensed neighbor-
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hoods (SCUk) [104, 105] that contain |SCUk(P )| = |CUk(P )| = O(npow(m/k)) strings,

where

pow(α) = log|Σ|

(α−1 +
√

1 + α−2) + 1

(α−1 +
√

1 + α−2) − 1
+ α log|Σ|(α

−1 +
√

1 + α−2) + α

.

Figure 2.9 shows an example of the 1-neighborhood, the 1-condensed neighborhood and

the 1-super condensed neighborhood of abbaa. Observe that SCUk(P ) ⊆ CUk(P ) ⊆ Uk(P ).

Filtration can also be used to reduce the size of the k-neighborhoods. The most common

filtration method divides the pattern into pieces of equal size and distributes the errors by

these pieces, thus generating neighborhoods with smaller k’s and m’s. The disadvantage

of this approach is that it will forces us to verify the text around the occurrences of these

pieces and sometimes there are no approximate occurrences of P in those positions. A

detailed description is given in Chapther 6.

SCU1: abaa, abba, abbba, bbaa

CU1: aabaa, ababaa, babbaa, bbbaa, aabbaa

U1: abaaa, abbaa, abbaaa, abbaab, abbab, abbaba, abbbaa

Fig. 2.9. Figure representing the one-neighborhoods of abbaa.
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Related Work

In this chapter we explain data compression methods, succinct data structures and how

they can be used to design compressed indexes. We focus mainly on Lempel-Ziv compressed

indexes.

3.1 Data Compression

A text compression technique is a way to encode the text in a format that requires less

space than that of the original raw sequence and that still represents the original text. By

representation we mean that we can consult any part of the original text, even if this implies

that first we must decompress the whole string. It should be clear that we wish to recover

exactly the original text, i.e. we are interested only in “lossless” data compression methods.

Text compression usually provides a trade-off between the size necessary to store the text

and the time it takes to consult a part of the text. This trade-off might be advantageous for

storing a text or for transmitting it, such as over the Internet or from secondary memory

to main memory. Storing compressed files saves storage space. Transmitting compressed

files saves time when the overall time to encode, transmit and decode the file is smaller

than the time to transmit the original text. Therefore applications such as gzip or bzip2

became popular for compressing and decompressing texts.
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3.1.1 The 0-th Order Empirical Entropy

Text compression cannot compress a string indefinitely. In fact a simple argument proves

that even if we had enough computational power available, it is not possible to compress

every text by 1 bit. As a lower bound on the compressibility of a string we use the empirical

entropy given by Manzini [80]. Which limits how much a string, considered as a finite object,

can be compressed in practice by a class of known of “good” compressors. This concept

is the best limit for our purposes. In Shannon’s theory [12] different strings are grouped

together into ergodic sources. However this tells us very little about a concrete string since

it can be generated by different sources. Hence we are not interested in how the text was

generated only in how much it can be compressed by a given algorithm. Of course this

immediately raises the problem that for any given text, individually, it is possible to find a

program that outputs it. Hence we must also measure the size of the program that outputs

the string. In other words we could consider Kolmogorov Complexity [69]. However this

complexity is not computable. Hence it is better to use the empirical entropy, which is

computable and can be achieved by a class of known “good” compressors.

We start by defining the 0-th order empirical entropy.

Definition 3.1. Let T , of size u, be a text over alphabet Σ. The zero-order empirical

entropy of T is defined as

H0 = H0(T ) =
∑

c∈Σ

(uc/u) log(u/uc),

where uc is the number of occurrences of character c in T .1

There are several methods to compress T such that the compressed version requires

only uH0 bits, such as Huffman coding, arithmetic coding [12]. In this thesis we briefly

explain the Elias delta coding [33]. This code allows us to represent an integer x in

log x+ 2 log log x+O(1) bits in a way that it is possible to recover a sequence of numbers

1 We assume that 0 log∞ = 0.
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from a string of concatenated bits. For example, the binary representation of 2 and 3 are

respectively 10 and 11. However it is not possible to retrieve this numbers from the string

1011 in an unambiguous way, i.e. this string may be representing eleven instead. A simple

way to solve this problem is a unary code. In this code an integer x ≥ 1 is encoded as x−1

bits followed by a zero bit, e.g. the unary code for 3 is 110 (see Table 3.1).

Table 3.1. Unary, gamma and delta coding

x Unary γ δ

1 0 0 0

2 10 10 0 100 0

3 110 10 1 100 1

4 1110 110 00 101 00

5 11110 110 01 101 01

6 111110 110 10 101 10

7 1111110 110 11 101 11

8 11111110 1110 000 11000 000

9 111111110 1110 001 11000 001

10 1111111110 1110 010 11000 010

Unary coding becomes very ineffective for representing large numbers. The γ-codes

correct this problem by representing x as 1+ ⌊log x⌋ bits followed by ⌊log x⌋ bits. The first

part represents 1 + ⌊log(x)⌋ with the unary coding, the second part represents x − 2⌊log x⌋

in binary, e.g. 2 is represented as 10, which is the unary representation of 1 + ⌊log 2⌋ = 2,

followed by 0 = 2− 2⌊log 2⌋. The δ coding takes this process one step further and represents

an integer by encoding 1 + ⌊log x⌋ using γ-codes and x − 2⌊log x⌋ in binary. This requires

log x+ 2 log log x+O(1) bits.

A common application of δ-coding is to represent the gaps of inverted indexes or q-

grams/q-samples indexes (see Subsection 2.4). Observe for example that a 1-gram in-

dex using gaps and δ-coding can be represented in O(u) + u
∑

c∈Σ(uc/u)(log(u/uc) +
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2 log log(u/uc)) = uH0 + O(log log σ) bits, since the maximum space it can occupy oc-

curs when the gaps are equal, i.e. of size u/uc. This bound was pointed out by Navarro et

al. [95]. Therefore 1-gram indexes can be considered compressed indexes. This reasoning

can also be applied to 1-samples indexes and to inverted files. However, in that case, T

must be considered a sequence of q-samples or words instead of letters. This decreases the

value of u, to u/q, but may increase the value of H0, also a table that maps from the

q-samples to the original bits will contain σq entries.

The fact that by grouping letters we increase the value ofH0 gives us a way to design data

compression methods that achieve a higher compression ratio. Note that H0 reflects the

redundancy of T . The smaller H0 the more redundant T is. A text that has no redundancy

whatsoever is already compressed. Therefore some compression methods focus in grouping

the letters of T in order to obtain higher compression ratios.

3.1.2 The Burrows-Wheeler Transform and the k-th Order Empirical Entropy

The Burrows-Wheeler Transform is an invertible application that maps a string into an-

other string of the same size, BWT : Σ∗ → Σ∗ that is easier to compress. In 1994 Burrows

and Wheeler used it as a way to reorder a string such that information about groups of

consecutive letters is stored in the same location, instead of spread across T [18].

Definition 3.2. The Burrows-Wheeler transform of a string T is the string T bwt, where

T bwt[i] = T [SA[i] − 1] assuming T ends with a $, where SA is the suffix array of T 2.

Figure 2.5 illustrates this concept. The Burrows-Wheeler transform of T = cbdbddcbababa$

is T bwt = abbbaaccdd$bdb. Note that the property we mentioned that T bwt groups the

information of consecutive groups of strings has to do with the fact that T bwt is based on

the suffix array of T . More formally by T bwt
s of a string s of size k we refer to the substring

T bwt[i..j] such that s is a prefix of all the strings between T [SA[i]..] and T [SA[j]..]. For

example T bwt
ba = aac.

2 See definition 2.14.
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The insight behind the Burrows-Wheeler transform is that T bwt should be easier to

compress since each T bwt
s should have a smaller H0 than the overall string. Note for example

that since the “th” is very common in English the T bwt
h string of an English text should

have a disproportionated number of t’s and therefore a smaller H0 than the overall string.

Therefore by using the entropy of this substrings for contexts s of size k we obtain the notion

of k-th order empirical entropy Hk(T ) given by Manzini [80]. The k-th order empirical

entropy gives a lower bound on the best compression ratio that T can achieve, if when

compressing a character of T , we consider only the context of the k characters that follow

it in T . Obviously the larger the context we consider, the better the compression should

be, i.e. 0 ≤ Hk(T ) ≤ . . . ≤ H0(T ) ≤ log σ. Therefore the size of the compressed text will

range from uHk(T ) to uH0(T ) depending on the compressor we use.

Definition 3.3. Let T , of size u, be a text over alphabet Σ. The k-th order empirical

entropy of T is defined as

Hk = Hk(T ) =
∑

s∈Σk

(|T bwt
s |/u)H0(T

bwt
s ).

Note that our definition is not the one usually given in text compression literature. In

fact our definition is the k-th order empirical entropy of TR. This makes little difference.

In theory Ferragina et al. [37] showed that uHk(T ) − O(logu) ≤ uHk(T
R) ≤ uHk(T ) +

O(log u). In practice, Hk(T ) and Hk(T
R) can also be shown to be similar.

A series of techniques are used to encode T bwt in uHk bits, such as move-to-front trans-

form and run-length encoding [18] but we will not discuss them here.

The surprising fact about the Burrows-Wheeler transform is that it is reversible, i.e.

T bwt contains enough information to allow us to recover T . First observe that by sorting

the letters in T bwt we obtain T [SA[i]]. Now the key to recovering T comes from observing

that T [SA[RA[i]]] = T [SA[SA−1[i]]] = T [i]. All that we need to do is compute RA. The

T bwt string contains enough information to compute the LF-mapping and in fact the ELF-

mapping. Observe that according to the definitions of LF-mapping (definition 2.15) and
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of shift permutation (definition 2.4) we have that RA[i] = ψi[RA[0]]] = LF−i[RA[0]]].

Observe also that because of the terminator character LF [RA[0]] = 0 and therefore RA[i] =

LF−i−1[0]. Hence we conclude that T [i] = T [SA[LF−i−1[0]]], i.e. T [−i] = T [SA[LF i−1[0]]].

This equation shows that we can recover T from right to left by iterating LF from 0. All

that is left to show is how to compute the LF mapping from T bwt.

Recall that LF [i] = RA[SA[i] − 1], i.e. the LF mapping corresponds to finding where

in the suffix array is the suffix that precedes T [SA[i]..]. Hence the LF mapping can be

obtained by the following process. Start with a suffix array. Prepend T bwt to every string

T [SA[i] − 1..]. Now sort the resulting array back into back into lexicographical order.

Figure 3.1 shows an example of this process. Clearly since what we are sorting is already

sorted, except for the first character, the sorting procedure is stable. This means that the

relative order of suffixes T [SA[i] − 1..] that start by the same letter is unaltered by the

sorting process. We exemplify this for letter b. Observe that the arrows in Figure 3.1 do

not cross. The LF mapping is called the last to first mapping since T bwt = T [SA[i] − 1] is

the last column of matrix T [SA[i] + j] and T [SA[i]] is the first, see Figures 2.5 and 3.1.

Lemma 3.4. The LF mapping of a string T can be computed as

LF [i] = C(T bwt[i]) + 1 +Occ(T bwt[i], i),

where Occ(ℓ, i) is the number of occurrences of ℓ in T bwt[..i−1] and C is the count function

of Subsection 2.3.2.

For example LF [13] = C(b)+1+Occ(b, 13) = 3+1+4 = 8 (see the last suffix of Figure 3.1,

Figure 2.5 and Subsection 2.3.2).

In general the ELF-mapping can be computed as ELF [i, ℓ] = C(ℓ) + 1 + Occ(ℓ, i).

Therefore the computation time of ELF depends essentially in computing Occ(ℓ, i), since

C can be computed in O(1) time by storing O(σ log u) bits. Computing Occ efficiently and

in compressed space, O(uHk) bits, is possible by using succinct data structures.
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Fig. 3.1. Computation of the LF mapping of T .

Just to be able to recover T from T bwt we do not need to support the general Occ

operation. We can instead compute the values of Occ(T bwt[i], i) and store them in an array.

This can be computed with a scan over T bwt, which, however, requires u log u bits. For this

reason popular implementations of this algorithm start by dividing T into blocks and using

the transformation in each of the blocks separately [129].

3.1.3 Lempel-Ziv Data Compression

A common approach to data compression are dictionary-based compression methods. The

idea is to first analyze T to infer a suitable dictionary D and then represent T as a

concatenation of words in D. Several questions on how to infer and represent the dictionary

are immediately raised. How many strings should the dictionary have ? How big should

the strings in the dictionary be ? Which strings should be part of the dictionary ? How

should the dictionary be represented ?

The total space that is necessary to store the string in compressed form includes the

dictionary. Therefore a partial answer to the above questions is that the dictionary must
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be such that its size plus the size of the compressed text is as small as possible. Computing

this optimal dictionary is surprisingly difficult.

In the 1970s, Ziv and Lempel [126, 127] proposed a greedy way of inferring a dictionary

that was very simple. Moreover their approach had the added bonus of encoding the dic-

tionary implicitly in the compressed text. Their idea was to replace each substring of the

text with a pointer to a place where it had occurred before.

Definition 3.5. The LZ77 parsing of a string T is the sequence Z1, . . . , Zn of strings

such that T = Z1 . . . Zn and, for every i, Zi = Sic where c is a letter and Si is the largest

prefix of Zi . . . Zn that is a substring of Z1 . . . Zi−1.

The LZ77 parsing of T can be computed in O(u) time and space by using the algorithm

of McCreight or Ukkonen (see Subsection 2.2.1).

The compressed indexes proposed by Kärkkäinen and Ukkonen [58, 59] were based on

a variation of the LZ77 parsing. The dictionary underlying the LZ77 parsing is relatively

complex and so Ziv and Lempel proposed a variation of the above parsing that yields a

simpler dictionary.

Definition 3.6. The LZ78 parsing of a string T is the sequence Z1, . . . , Zn of strings

such that T = Z1 . . . Zn and, for every i, Zi = Zjc where c is a letter and Zj is the largest

prefix of Zi . . . Zn belonging to {Z1, . . . , Zi−1}.

The dictionary associated with the LZ78 parsing of string T can be represented as a trie,

i.e. a labeled tree where every label has only one letter. The Zi strings are referred to as

LZ78-blocks. The LZ78 trie of a string T is the trie of its LZ-blocks.

Definition 3.7. The LZ78 trie of a string T is the trie of strings {Z1, . . . , Zn}.

The LZ78 parsing of T can be easily computed in O(u) time by incrementally computing

the LZ78 trie of T . For reasons that will become clear later, we show the LZ78 parsing

of TR. In our example TR is parsed into a, b, ab, abc, d, db, dbc. Figure 3.2 shows the LZ78
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a b d

b b

c c

Fig. 3.2. LZ78 trie of TR.

trie of TR. We assume that n represents the number of blocks of the LZ78 parsing of T .

The relation between n and Hk was established by Kosaraju et al. [66] who showed that

n log u = uHk + o(u logσ) for k = o(logσ u). Therefore, representing T in compressed form

consists in storing the LZ78 trie. This is done by storing the nodes in the same order that

they appear in the text, i.e. storing Z1, . . . , Zn. Decompressing consists in decompressing

each block. Since the blocks are stored in the same order that they appear in the text,

when we need to decompress a block we only need to add a letter to a block that is already

decompressed.

3.2 Succinct Data Structures

The only missing piece we need to describe compressed indexes is succinct data structures.

A succinct data structure is a compact representation of a data structure. The Rank and

Select operations, over bitmaps, are a crucial element to obtaining these data structures.

3.2.1 Basic Rank and Select

By bitmap B we refer to a string over {0, 1}. The operation Rank(B, i) counts the number

of 1’s in B[..i− 1] and Select(B, i) returns the smallest j such that Rank(B, j + 1) = i,



50 3 Related Work

1

012345678901234567

B: 110110100110100100

Fig. 3.3. Sample bitmap.

i.e. the position of i-th 1. For the bitmap in Figure 3.3, we have that Rank(B, 3) = 2 and

Select(B, 2) = 1. Munro [84] and Clark showed how to support these operations in O(1)

time and |B|+ o(|B|) bits. Succinct data structures can also be combined with data com-

pression techniques, i.e. when B is compressible, solutions that require |B|H0(B) + o(|B|)
bits may be more adequate. This line of work was initiated by Pagh [102] and extended by

Raman et al. [103], whose approach can store a bitmap in |B|H0+o(|B| log log |B|/ log |B|)
bits supporting Select1 in O(1) time.

We will briefly explain the basic u + o(u) bits solutions. To avoid having to deal with

floors and ceilings we assume, in this description, that u is a power of 4.

Let us start by Rank. A simple solution would be to store an array with the precom-

puted solution for every i. This however would require u log u bits. Instead we divide B

into blocks of size (log u)/2, log u and log2 u referred to as small blocks, blocks and super

blocks. The super blocks store the precomputed solutions for positions that are multiples

of log2 u, each such value requires log u bits. The blocks store the precomputed solution

for positions log u but only relative to the super block they are in. Each such value re-

quires only log log2 u bits, since each block can contain at most log2 u ones. Finally the

small blocks are handled by the four-Russians technique, which consists in precomputing

and storing all solutions for each of the 2(log u)/2 =
√
u possible small blocks. Each value

requires log((log u)/2) bits. Therefore storing a solution for every position of a small block,

for every type of small block, requires 2(log u)/2((log u)/2) log((log u)/2) bits. Overall storing

these tables and B requires only u+ o(u) bits.

Consider for example the bitmap (01)32, i.e. the string 01 repeated 32 times. In our exam-

ple (log u)/2 = 3, log u = 6 and log2 u = 36. Table 3.2 shows the values of blocks and super
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blocks of our example and table 3.3 shows the preccomputed solutions for small blocks.

In order to compute Rank(B, i) we just add up the values relative to the corresponding

super block, block and, possibly, two small blocks. Consider for example Rank(B, 47) =

Rank(B, 1 × 36 + 1 × 6 + 3 + 2) = super[1] + block[1] + small[010, 3] + small[101, 2] =

18 + 3 + 1 + 1 = 23.

Table 3.2. Table exemplifying Rank for blocks and super blocks.

B (01)3 (01)3 (01)3 (01)3 (01)3 (01)3 (01)3 (01)3 (01)3 (01)3 (01)2

super block 0 18

block 0 3 6 9 12 15 0 3 6 9 12

Table 3.3. Small blocks table.

small block 0 1 0 1 0 1

i mod 4 0 1 2 3 0 1 2 3

0 0 1 1 0 1 1 2

The Select operation is a bit more complicated but works in a similar way. The space

of possible arguments [0, u] is broken into blocks, but this time there is no bound on the

number of bits that the partial solutions for blocks require. For a detailed explanation of

how to solve this problem consult Munro [84] or Navarro et al. [95]. In practice, Select

can be computed with a binary search in O(log u) time [47].

3.2.2 Wavelet Trees

Another kind of succinct structures we require are those to compute orthogonal range

queries. The idea is to preprocess a grid of f × f points to be able to determine the points

inside a two-dimensional range (see Figure 4.1 (bottom-right)). For this purpose, we use a

structure by Chazelle [22], that uses f log f(1 + o(1)) bits and O(f log f) time to be built.

It reports points in O((1 + occ′) log f) time.
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Wavelet trees are a recurrent succinct data structure. They were proposed by Grossi et

al. [49] as a structure for supporting Rank and Select for sequences over an alphabet

larger than 2. They were also proposed by Chazelle [22] for performing orthogonal range

queries. Obviously the algorithms over the structure are different. However, both use Rank

and Select over bitmaps. This description of the structure given by Chazelle was pointed

out by Navarro et al. [95].

Consider for example the sequence 0, 3, 3, 7, 9, 4. The wavelet tree of this sequence is

shown in Figure 3.4. The wavelet tree is a perfect binary tree of height ⌈log σ⌉. Each node

stores a sub-sequence of the original sequence. The root stores the whole sequence. Starting

from the most significant bit, the left node stores the sub-sequence for which this bit is

0, the right node stores the sub-sequence for which this bit is 1. In our example the left

sub-sequence is 0, 3, 3, 7, 4 and the right sub-sequence is 9. This process continues until

all bits have been used. Moving from one node in the tree into a child node consists of

a Rank operation. For the left node, we use Rank0 and, for the right node, Rank1,

i.e. we count the number of zeros or count the number of ones. In our example, we can

track the element 4, that is in position i = 5, by computing Rank0(000010, 5) = 4 at

the root node. Note that element 4 is in position 4 of the left child of the root. Obviously

moving upwards uses the inverse procedure, i.e. the Select0 operation. In this case we

compute Select0(000010, 4 + 1) = 5. Every leaf of the wavelet tree represents a type of

element in the sequence. Moving from the root to a leaf allows us to compute Rank for the

element type of that leaf. Conversely, moving from a leaf to the root allows us to compute

Select for a given element type. For example we can compute Rank3(033794, 4) by using

the following sequence of rank operations Rank0(000010, 4) = 3, Rank0(00011, 3) = 2,

Rank1(0111, 2) = 1, Rank1(11, 1) = 1. Since 033794[4] = 9 6= 3 we must compensate for

that fact and add 1 to obtain Rank3(033794, 4) = 1 + 1 = 2. Note that the sequence of

indexes in the Rank operation is 0011 which corresponds to 3 in binary. Also note that
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by using Select in the reverse order we can obtain Select3(033794, 2) = 2. Hence the

wavelet tree can be used to compute the Occ operation of the ELF-mapping.

The tree structure is only conceptual. In fact the only information that is stored are the

bitmaps highlighted in Figure 3.4. Further Rank and Select operations can be used to

delimit the bits that correspond to a given node of the tree.

The wavelet tree can also be used to compute orthogonal range queries. Consider a

grid [1, f ]× [1, f ] with f points inside. An orthogonal range query consists in determining

the points inside a rectangle (see Figure 4.1). Provided that the points are all distinct in

the first coordinate they can be stored in a wavelet tree, by building a list of the second

coordinate ordered by the first coordinate. In the example of Figure 4.1 the resulting

sequence is 0, 3, 3, 7, 9, 4. This requires f log f(1 + o(1)) bits. In fact, it is easy to extend

the space of the second coordinate, i.e. extend the space to [1, f ]× [1, f ′]. This will require

f log f ′(1+o(1)) bits instead. To compute a range query [i, i′]×[j, j′] we start by locating the

range [i, i′] at the root of the wavelet tree. When we descend, we track the elements i and i′.

The idea is to track every path that is contained in the [j, j′] range. Obviously we can avoid

descending by nodes for which the corresponding range [i, i′] is empty. Therefore, whenever

a leaf is reached, an occurrence is found, i.e. it takes O((1+ occ′) log f ′) time to report occ′

occurrences. A simpler procedure can be used to count the number of occurrences in range

[i, i′] × [j, j′]. The procedure consists in descending by j and j′, the total of occurrences

associated with the non-shared part of these paths gives the number of occurrences. This

takes O(log f ′) time.

There exist other range data structures, proposed by Alstrup et al. [3], that require

O(f log1+γ f) bits of space, for any constant γ > 0. A counting query requires O(log log f)

time and each occurrence can be reporting in constant time. They also propose another

structure that takes O(f log f log log f) bits of space and requires O((log log f)2) time for

a query and reports each occurrence in O(log log f) time.
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Fig. 3.4. Wavelet tree for sequence 0, 3, 3, 7, 9, 4.

3.2.3 Permutations and Trees

Trees are a recurrent data structure in computer science and, in particular, play a central

role in full-text indexing theory. It is therefore natural to consider succinct representations

of trees. Clearly, the less space we need to represent a tree, the less space our indexes will

require. Jacobson [57] was the first to study succinct data structures, such as trees and

bitmaps.

The set of operations provided by succinct trees has been successively enlarged and

improved by several researchers [14, 23, 39, 43, 86, 108].

The representation of Geary et al. [43] requires 2n+ o(n) bits, for a tree with n nodes,

supporting, among others, the following operations in constant time:

• Anc(v, j) returns the j-th ancestor of node v (for example Anc(v, 1) is Father(v));

• LeftRank(v) returns Dfs(v);

• RightRank(v) returns the largest Dfs value among the descendants of v;
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• Select(j) returns the node with Dfs time j;

• Child(v, j) returns the j-th child of node v;

• Deg(v) returns the number of children of node v;

• Depth(v) returns the tree depth of node v.

The underlying techniques of these representations are similar in spirit to the ones behind

Rank and Select, i.e. packing the nodes into blocks of different sizes.

The Rank and Select operations also proved useful for representing permutations.

Munro et al. [85] showed how to represent a permutation of d elements and its inverse in

(1+ǫ)d log d+O(d) bits, where ǫ is constant and 0 < ǫ ≤ 1. An element of the permutation

can be computed in O(1) and an element of the inverse in O(1/ǫ).

Note that a simple way to invert permutation π is to use the Select operation, i.e.

π−1[x] = Selectx(π, 1). Therefore the wavelet tree can be used to invert a permutation in

O(log d) time. Moreover reading an element π(x) also requires O(log d) time. The solution

given by Munro et al. consisted in using the orbits of the permutation. Note that if πk+1[x] =

x then πk[x] = π−1[x]. However scanning an entire orbit may require O(d) time, i.e. k+1 =

d. Therefore we sample π−1 every 1/ǫ position. Assume for simplicity that 1/ǫ is an integer.

In this way, we need to scan at most 1/ǫ positions. A bitmap indicating the positions that

store the π−1 pointers can be used with Rank to locate the positions of these pointers in

an array.

3.3 Compressed Indexes

In this section we describe other compressed indexes. We start by briefly explaining FM-

Indexes and compressed suffix arrays and then describe Lempel-Ziv compressed indexes.
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3.3.1 Full-text Index in Minute Space

The FM-index algorithm searches for a pattern P by reading it form right to left, using the

backward search, see Subsection 2.2.2. The idea is to update the range [sp, ep] for every

suffix of P . For example for P = cbdbddc we would consider the following sequence of suf-

fixes c, dc, ddc, bddc, dbddc, bdbddc, cbdbddc which correspond to the following sequence of

ranges [0, 13], [9, 10], [12, 12], [13, 13], [8, 8], [11, 11], [7, 7], [10, 10] (see Figure 2.5). The fun-

damental tool to achieve this goal is the ELF mapping, see Subsection 3.1.2. The procedure

is shown in algorithm 2.

Algorithm 2 Backward Search
1: sp← 0

2: ep← u− 1

3: for i← m− 1, 0 do

4: sp← ELF [sp,P [i]]

5: ep← ELF [ep+ 1, P [i]]− 1

6: if sp > ep then

7: return ∅

8: end if

9: i← i− 1

10: end for

As we pointed out in Subsection 3.1.2, the key to computing the ELF mapping is

to compute the Occ operation. We also explained in Subsection 3.2.2 that this can be

computed with the wavelet tree in O(log σ) time, requiring u log σ(1 + o(1)) bits. Hence,

this representation is not compressed. However, by using compressed bitmaps, we can

represent a wavelet tree in uH0 + o(u log σ) bits. For more elaborated implementations of

Occ that can achieve uHk+o(u logσ) bits of space, see the survey by Navarro et al. [74, 95].
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3.3.2 Compressed Suffix arrays

Compressed suffix arrays are an abstract optimization of the suffix array data structure.

The search algorithm is the usual algorithm over suffix arrays, i.e. two binary searches over

SA (see algorithm 3). However, instead of storing the suffix arrays explicitly, its values are

computed by some process. This means that the time of this procedure will depend on the

time it takes to compute the entries of the suffix array.

Algorithm 3 Suffix Array Search
1: sp← 0

2: st← u− 1

3: while sp < st do

4: s← 〈(sp+ st)/2〉

5: if P > T [SA[s]..] then

6: sp← s+ 1

7: else

8: st← s

9: end if

10: end while

11: ep← sp− 1

12: et← u− 1

13: while ep < et do

14: e← 〈(ep+ et)/2〉

15: if P < T [SA[e]..] then

16: et← e− 1

17: else

18: ep← e

19: end if

20: end while

There are two main ways to obtain this abstract data structure, the Compact Suffix

Array of Mäkinen [75] and the Compressed Suffix Array of Grossi and Vitter [51]. Both of

these ideas appeared, simultaneously and independently, during the year 2000.
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The compact suffix array explores the self-repetitions of the suffix arrays. In Subsec-

tion 2.1.3, we explained how self-repetitions can be detected, if we consider π−1 as SA we

have that shiftπ = ψ and, therefore, self-repetitions are discovered by using the natural

runs of ψ.

The compressed suffix array of Grossi and Vitter is based on the idea of hierarchical

decomposition of SA. The idea is to reveal the relations between the sparse suffix arrays

of the text, i.e. the suffix arrays associated with the sparse suffix trees of T (see Subsec-

tion 2.4). Consider, for example, the suffix array of T , denoted as SA0, and the suffix array

of the text T where the letters are grouped in 2-samples, denoted as SA1. The relation be-

tween SA0 and SA1 is that SA1 only contains the even entries of SA0. We define a bitmap

B0 such that B0[i] = 1 iff SA0[i] is even. We can compute a value of SA0, from SA1, B0

and ψ0. If B0[i] is 1 then SA0[i] = SA1[Rank(B0, i)]. Otherwise SA0[i] = SA0[ψ0[i]] − 1,

as shown in Table 3.4, note that in this case B0[ψ0[i]] is 1. It may seem that storing B0,

ψ0 and SA1 is not much better than storing only SA0. However if we store SA1 divided

by 2 and we use δ coding for the gaps of ψ0 as for inverted indexes (see Subsection 3.1.1),

it may indeed require less space. We continue this process for successive powers of 2 up to

2⌈log log u⌉, repeating the process ⌈log log u⌉ times. Sadakane [112] modified the suffix array

into a self-index so that it was possible to compare P with T [SA[i]..] without having to

compute SA[i].

Table 3.4. The first level of the hierarchical decomposition of the suffix array of Grossi and Vitter.

SA0 13 12 10 8 11 9 7 1 3 6 0 2 5 4

B0 0 1 1 1 0 0 0 0 0 1 1 1 0 1

ψ0 10 0 4 5 1 2 3 11 13 6 7 8 9 12

SA1 12 10 8 6 0 2 4
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3.4 Lempel-Ziv Compressed Indexes

We will now explain Lempel-Ziv compressed indexes in detail. The first Lempel-Ziv com-

pressed indexes represented the initial work on compressed indexes. They were proposed

by Kärkkäinen and Ukkonen [59].

3.4.1 The LZ-Index of Kärkkäinen and Ukkonen

The LZ-Index of Kärkkäinen and Ukkonen uses a variation of the LZ77 parsing. In fact

the parsing used by Kärkkäinen and Ukkonen is the one given in definition 3.5. In the

original definition by Ziv and Lempel [126, 127] the condition “a substring of Z1 . . . Zi−1”

is replaced by “a substring of T that starts in Z1 . . . Zi−1”.

The occurrences of P in T are classified as primary when they span more than one

LZ77-block or as secondary when they occur completely inside an LZ77-block.

The approach presented by Kärkkäinen and Ukkonen consisted in finding primary oc-

currences first and then finding the secondary occurrences. Note that the secondary oc-

currences are repetitions of other primary or secondary occurrences. The fundamental

observation behind their approach is that the first occurrence of P in T must be a primary

occurrence, unless m = 1. Since this exception is easy to handle we disregard it here.

In order to find primary occurrences we need to consider every possible partition of

P . When P occurs spread across LZ77-blocks a prefix P [..i] of P is a suffix of the first

block that contains the occurrence of P , while P [i + 1..] occurs as the concatenation of

LZ77-blocks. The search consists in associating a range to P [..i] and another range to

P [i+ 1..].

One of the most interesting characteristics of the approach of Kärkkäinen and Ukkonen

is that it reduced the pattern matching problem to a two-dimensional range query prob-

lem. The idea is to store the information relative to consecutive blocks such that we can

determine in which locations in T it occurs simultaneously an LZ77-block that contain as

a suffix P [..i] and a sequence of blocks that contain string P [i+ 1..].



60 3 Related Work

c d

a b c d

d

bd

b

d b c

d b c

0

1

a ba b

d d b d b c

b d b c

c

b

c d d b d b c

a b a b c d d b d b c

2

3

4

5

6

0

1

2

3 4

5

6 7 8

a b

a d

b

a d

dc

Fig. 3.5. (top-right) Tree for strings {a, b, ba, bd, cba, cbd, d}, nodes show their Dfs values. (bottom-left) Sparse

suffix tree, leaves, show their indexes, (bottom-right) linking points over spaces supported by Dfs and suffix array

indexes. Orthogonal range query [4,4]:[5,7].

We search for P [i+ 1..] in a sparse suffix tree that only indexes suffixes of T that start

at blocks. Suppose that we use the LZ78 parsing on TR = abababcddbdbc (we will explain

this in further detail in chapter 4). For simplicity, we will use the LZ78 parsing, since

the properties of the LZ77 parsing we need are also present in the LZ78 parsing. In this

example the LZ78 parsing is a.b.ab.abc.d.db.dbc. The sparse suffix tree contains the following

strings: a.b.ab.abc.d.db.abc, b.ab.abc.d.db.abc, ab.abc.d.db.abc, abc.d.db.abc, d.db.abc, db.abc

and abc. This tree is shown in Figure 3.5(left). The range we are interested in is the range

corresponding to P [i+ 1..] in the suffix array associated to the sparse suffix tree.

Consider for example, that we are searching for P = cddbdbc and that we are trying the

case c = P [..i] and that ddbdbc = P [i + 1..]. In that case, we would descend by ddbdbc in

the sparse suffix tree, and would only have to consider the leaf indexed by 4, i.e. the range

[4, 4].

In order to obtain a range for P [..i] we build a labeled tree with the LZ77-blocks reversed.

In this case we need a labeled tree with the strings {a, b, ba, bd, cba, cbd, d}. This tree is
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denominated RevTrie in the work of Navarro [98] and by T78 suffix tree in our work. Note

that using the LZ77 parsing does not guarantee that this structure is a suffix tree. Since

this tree stores the blocks reversed, finding the blocks that finish by a given suffix can be

achieved simply by descending in this tree. In this example, we descend by c in the tree on

the top-right of Figure 3.5. The corresponding range is [5, 7].

For the orthogonal range search to locate the occurrences we need to store points

with the necessary information. We store points representing the relation between strings

Zi and Zi+1 . . . Zn. In our example this corresponds to the following pairs of strings

〈a, b.ab.abc.d.db.dbc〉, 〈b, ab.abc.d.db.dbc〉, 〈ab, abc.d.db.dbc〉, 〈abc, d.db.dbc〉, 〈d, db.dbc〉 and

〈db, dbc〉. This corresponds to the following sequence of points 〈3, 1〉, 〈1, 2〉, 〈2, 3〉, 〈4, 6〉,

〈5, 8〉 and 〈6, 4〉. In this way, when we execute the [4, 4] : [5, 7] query, the only point in this

range is 〈4, 6〉 which corresponds to the occurrence abc.d.db.dbc.

It is important to notice that even though this process is very ingenious it requires

O(m2) operations since we must descend in the RevTrie by (P [..i])R for every 0 ≤ i < m

by P [i+ 1..] in the sparse suffix tree.

As mentioned before, secondary occurrences are those for which P is a substring of some

Zi. According to definition 3.5, if P is a substring of some Zi then either that substring

contains the respective c or it does not. If the occurrence of P contains c then this can be

found in RevTrie by descending by PR. If the substring does not contain c, then P is a

substring of the corresponding Si. To find these occurrences we store an array S with these

strings. However, instead of storing Si, it stores the interval of T that corresponds to Si,

i.e., S stores the pair of integers 〈xi, yi〉 for every Si = T [xi..yi]. This definition, however,

is ambiguous, since there might be more than one pair of integers for which Si = T [xi..yi].

This is not a relevant problem since any pair of integers will do, provided that, overall, no

interval is contained in another interval, i.e. there are no distinct i and i′ such that xi ≤ xi′

and yi′ ≤ yi. Kärkkäinen and Ukkonen show how to ensure this property. The entries in

the S array are sorted by xi. We also store a bitmap B that is set to 1 for the xi’s and to
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0 for the other positions. To obtain a secondary occurrence from another predetermined

occurrence of P = T [j..j+m−1], we need to determine which of the intervals of S contain

the interval [j, j +m− 1]. Since the elements of S are sorted by xi and are not contained

inside each other, this can be done by checking S[Rank(B, j)] and scanning the previous

elements of S until the first one that does not contain the interval [j, j +m− 1].

The space requirements of this index are O(uHk) + o(u log σ) bits. This can be proved

by using the bound by Kosaraju et al. [66], who showed that n log u = uHk + o(u log σ)

for k = o(logσ u). The trees and the S array requires O(n log u) bits of space. If we use a

wavelet tree as the range data structure, it requires another n logn(1+o(1)) bits. Therefore

the overall space requirement of this index is O(uHk) + o(u logσ) + u log σ since we need

to store T because this index is not a self-index.

The time it takes to count occurrences is O(m2 + (m + occ) log u). Note that, as all

Lempel-Ziv based indexes, it is not possible to compute counting queries without an occ

time dependency. This difficulty is mainly because of the occurrences of P inside a block,

i.e. secondary occurrences. The O(m2) parcel is the time it takes to descend in RevTrie

and in the sparse suffix tree. The O((m+ occ) log u) part is the time to compute the range

queries.

3.4.2 The LZ-Index of Navarro

The LZ-Index of Navarro uses the LZ78 parsing instead of the LZ77 parsing since it has

very nice characteristics for string matching, in particular for secondary occurrences.

Navarro’s approach discards the sparse suffix tree and uses the LZ78 trie. What happens

is that primary occurrences have to be further divided into occurrences that span exactly

two blocks (occ2) and occurrences that span more than two blocks (occ3), since this last

type of occurrences cannot be found using only the LZ78 trie. To find occurrences that

span exactly two blocks Navarro uses the same procedure as for primary occurrences. The

LZ78 trie plays the role of the sparse suffix tree in this procedure. In practice Navarro
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observed that using a range data structure might not be the best alternative. In fact, his

prototype used a naive procedure, which scanned all the points of the smallest interval to

determine which ones are also in the other interval.

To find occurrences that span 3 or more blocks the algorithm searches around the LZ78

blocks that are substrings of P , i.e. the Zi = P [j..j′]. Note that, in an occurrence that

spans at least tree blocks, one of the blocks must be a substring of P . However since the Zi

blocks are distinct among themselves, there can be at most O(m2) such blocks. Therefore

searching around them does not require more than O(m2) time. Note that this checking

is done block-wise and not character-wise. Hence removing the sparse suffix tree will not

increase the asymptotic complexity of the search.

Since this index is based on the LZ78 parsing finding the occurrences that are completely

contained inside one block can be done in a simpler way. We use this procedure in our

prototype and hence it is described in Subsection 4.2.3.

Like the LZ-index of Kärkkäinen and Ukkonen, the LZ-index of Navarro requires O(m2+

(m+occ) log u) time to report the occurrences of P in T . However, since Navarro used self-

indexing, the structure only requires O(uHk) + o(u log σ) bits of space. Moreover Navarro

proposed a succinct representation of this index that was based on representations of trees

using bitmaps, as described in Subsection 4.2. In particular the representation proposed

was based on the work of Munro et al. [86]. The resulting index required 4uHk + o(u logσ)

bits and the queries can be answered in O(m3 log σ + (m + occ) log u) time [98]. This

representation has been recently improved by Arroyuelo et al. [6] to require (2 + ǫ)uHk +

o(u log σ) bits, for any ǫ > 0, and the search complexity is O(m2 logm+ (m+ occ) log u).

They can display ℓ letters in O(ℓ/ logσ u) time.

3.4.3 The LZ-Index of Ferragina and Manzini

The LZ-Index of Ferragina and Manzini was the only existing LZ-index that was able

to count occurrences with a linear time dependency on m, i.e. O(m) time prior to our
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work. They proposed an implementation of the sparse suffix tree and of RevTrie based

on the FM-Index. This means that they are able to search for (P [..i])R and P [i + 1..] by

doing backward search, as described in Subsections 2.2.2 and 3.3.1. The time required for

backward search is linear on m.

They propose to implement RevTrie as the FM-Index of the text (Z1)
R# . . .#(Zn)R#,

where the #’s are special characters that do not appear in T . In our example, since we used

the LZ78 parsing for TR = a.b.ab.abc.d.db.dbc, this would yield the text a#b#ba#cba#d#bd#cbd#.

They show that storing the RevTrie in this form requires O(uHk) bits. In Lemma 4.13 we

give a simple proof of this fact.

Instead of using a sparse suffix tree they use an FM-Index for T . This means that, in fact,

they have another compressed index inside their LZ-index. However, with the proper im-

plementation, it is possible to guarantee that both these structures occupy asymptotically

the same space (Alphabet friendly FM-Index [95]), uHk +o(u log σ) bits. Nonetheless using

another compressed index means they are not really addressing the problems underlying

Lempel-Ziv compressed indexes.

In fact the LZ-Index of Ferragina and Manzini is much more of an FM-index with

improved reporting performance than an LZ-index. As we have explained, by using the

wavelet tree, reporting requires O(logu) time per occurrence of P . However the FM-index

is not so efficient at reporting. In fact, the version by Ferragina and Manzini required

O(σ log1+ǫ u) time and more recent versions need O((log1+ǫ u)(log σ)/ log log u) time, where

ǫ > 0 is an arbitrary constant. Ferragina and Manzini were in fact able to obtain O(1)

reporting time per occurrence. To achieve this result they used the more space demanding

range data structure by Alstrup et al. [3] that requires O(n log1+γ n) bits of space and can

report occurrences in O(1) time, for any constant γ > 0. In Subsection 4.4.2 we confirm

experimentally that Lempel-Ziv based indexes are fast at reporting occurrences. However

this good performance is not due to the range data structure in question, since the Lempel-

Ziv prototypes use the scanning proposed by Navarro.
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Their approach for finding secondary occurrences is similar to Navarro’s, which we will

describe in Subsection 4.2.3. Their approach for finding primary occurrences is similar to

the approach of Kärkkäinen and Ukkonen.

Assuming the underlying FM-indexes used are the alphabet friendly FM-Index, the

Lempel-Ziv index of Ferragina and Manzini requires O(uHk logγ u) + o(u log σ logγ) bits,

counts occurrences in O(m(1 + log σ/ log log u)) time, requires O(1) time to report an

occurrence and displays ℓ characters in O(ℓ + logǫ u) time, for any constants γ > 0 and

0 < ǫ < 1, σ = o(u1/ log log u), k = o(logσ u). Note that since their index contains the

FM-index of T , one can remove the occ variable from the counting time.





4

The Inverted Lempel-Ziv Index

In this Chapter we present a new compressed self-index, the inverted Lempel-Ziv index

(ILZI). The ILZI is based on the Lempel-Ziv data compression technique, just like the

indexes described in Chapter 3. We begin by giving some observations that motivated

us to develop this new index. Next we give a theoretical description of the ILZI based on

generic dictionaries. Finally, we explain the practical decisions made in the implementation

of ILZI and present some empirical results obtained with our prototype.

4.1 Observations and Motivation

There were several reasons for developing a new compressed index based on the Lempel-

Ziv data compression technique. Some remain valid today and others have become less

important as the theory of compressed indexes evolved.

The main reason to develop a new LZ-index was the quadratic nature of its time re-

quirements. Let us ignore the index proposed by Ferragina and Manzini [37] for now. A

quick look at the time performance of LZ-indexes (see Section 3.4) shows that the depen-

dency on m of these indexes is at least O(m2). This is an intriguing phenomenon, specially

since compressed indexes based on other types of data compression have a dependency

of only O(m). Naturally, it is interesting to investigate why this phenomenon occurs and

whether the performance can be improved. Moreover, we are not only interested in this
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problem because it is an intriguing theoretical question, we are also very concerned about

its consequences in practice.

The reason why the dependency on m is O(m2) is that any sub-string of P can be a

Lempel-Ziv block and all such blocks must somehow be considered in the search algorithm.

Obviously the sub-strings that are not LZ blocks do not need to be considered. This means

that in fact, on average, this dependency may not be O(m2). Since the average size of

the LZ-blocks of T is asymptotically (log u)/Hk the average dependency should be closer

to O(mmin(m, (log u)/Hk)). This means that in practice we are proposing to improve

previous LZ-indexes by a factor of (log u)/Hk. This factor varies and some patterns will

have a bigger speedup than others [117]. Speeding up LZ-indexes by a factor of (log u)/Hk

is a considerable improvement in practice. This means that addressing this problem is not

merely a theoretical exercise.

Now that we established our cause let us address the index proposed by Ferragina and

Manzini [37]. The time performance of this index has a linear dependency on m. Moreover

it is able to report each occurrence in O(1) time, which is an extraordinary result. Therefore

it seems the problem we are trying to solve already has a solution. In part this is true, but

there are some shortcomings to this solution. The first obvious problem with this index

is that it requires too much space, O(uHk logγ u) + o(u log σ logγ u) bits for any γ > 0,

or in a more compact version O(uHk log log u) + o(u log σ log log u) bits. This argument

however is not enough to discard this approach right away. In fact the culprit for this

exaggerate space requirements is the data structure used for range queries, since all the

remaining components of this index have more “moderate” space requirements. If they

use the structure given by Chazelle [22], the time performance would still be linear on m,

although now affected by a log u factor, and the space requirements would be significantly

reduced. Note that in this scenario the reporting time is no longer O(1) per occurrence

but O(logu) instead. It is therefore crucial to understand how Ferragina and Manzini solve

the problem of the dependency on m. The solution they presented was intriguing since
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they used another compressed index. One component of their LZ-index is an FM-index,

in fact more than one. Their solution is interesting because it suggests that the original

LZ-parsing is probably not very appropriate and that it should be replaced. However they

replaced it by using another data compression technique, namely the Burrows-Wheeler

transform. This solution has some shortcomings since the FM-Index has some problems

of its own, namely its dependency on the alphabet size. The original FM-index presented

by Ferragina and Manzini [35] contained a large constant σ log σ in the sub-linear part,

which does not decrease with the entropy and an enormous additive constant larger than

σσ. These problems however were systematically addressed [38, 48, 73] and are nowadays

much less preeminent. Therefore in theory it is possible to achieve the same result we

present using the approach proposed by Ferragina and Manzini with a state of the art

FM-Index.

However, such an approach would be very complex. Moreover its real performance would,

most likely, not be significantly improved. In practice this index can be implemented either

with the range data structure or without it. If we use the range data structure the result is

an FM-Index with improved reporting performance. However this improvement will most

likely be null in practice since Navarro pointed out that using the range data structure is

less effective, both in terms of space and time, than a direct scan (see Subsection 3.4.2).

If we do not use the range data structure we can either use only the FM-Index we have

been mentioning or do direct scans. In the first case the resulting index is nothing more

than an FM-Index. The second case contains all the same components of the index we use

in practice, however we do not need to implement them as FM-Indexes.

4.2 Theoretical Description and Results

In this Section we explain the first major contribution of this thesis. In Subsection 3.1.3

we presented the Lempel-Ziv data compression. We pointed out that this technique works
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by inferring a dictionary that is appropriate for T . Therefore we present our algorithm

by assuming that we are given a dictionary. This way we can explain our algorithm by

exploring the similarities that it has with an inverted file. We use this similarity to provide

insights into the algorithm. As we mentioned in Subsection 2.4, inverted indexes work by

dividing the text into words and for every word storing the suffixes by which it starts. In

general however the dictionary is predefined. In Lempel-Ziv indexes we use the Lempel-Ziv

data compression to infer the dictionary instead.

The ranges we are going to use are obtained from other structures in our index, in

particular from suffix trees.

Definition 4.1. The range I(p) of a point p of a suffix tree T is the interval of the Dfs’

values of the points that are descendants of p.

For the example in Figure 4.1 we have that I(c) = [5, 8].

4.2.1 Succinct Suffix Trees

Since our approach is based on suffix trees, we begin our description by presenting a succinct

representation of suffix trees that is adequate for our index. We have already mentioned

that trees can be represented as a sequence of parentheses, i.e. they can be represented as

a bitmap. For example, the bitmap in Figure 4.2 represents the suffix tree T in Figure 4.1

(top-right). The node with Dfs value 2 is represented by the parentheses at positions 3 and

8 of B. The Dfs value can be obtained from B as Rank(B, 3) +B[3]− 1 = 2 + 1− 1 = 2.

This is the definition of the LeftRank operation, i.e. LeftRank corresponds to Dfs.

The RightRank(v) corresponds to the largest Dfs value among the descendants of v.

This operation can be computed as Rank(B, 8)+B[8]−1 = 5+0−1 = 4. This is consistent

with Figure 4.1, where the node with Dfs value 4 is the last descendant of the node with

Dfs value 2.

We assume that the tree structure of T and T R, the reverse tree of T (see Subsec-

tion 2.2.2), are stored using the representation of Geary et al. [43] (see Subsection 3.2.3).
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Arroyuelo et al. [6] proposed a way to represent the R mapping. Since R is a permutation,

R and R−1 can be stored using the representation of Munro et al. [85] in (1+ǫ)d log d+o(d)

bits, where ǫ is fixed and 0 < ǫ ≤ 1. This way R and R−1 can be computed in O(1) and

O(1/ǫ) time respectively (see Subsection 3.2.3).

Lemma 4.2. A suffix tree T with d nodes can be stored in (1 + ǫ)d log d+ 5d+ o(d) bits.

Let p be a point, c a letter and v a node of T . This representation provides the oper-

ations given by Geary et al. in O(1) time. Moreover it provides Sdep(v) in O(1) time,

Suffix Link(v) and Letter(v, i) in O(1/ǫ) time and Descend?(p, c), Descend(p, c)

in O((logσ)/ǫ) time.

Proof. We compute Sdep(v) as DepthT R(R(v)). The operation Suffix Link(v) is com-

puted as R−1(FatherT R(R(v))). Observe that v[0] represents the letter just below the

root. For example cbd[0] = c. We define a bitmap D to compute v[0], in a way sim-

ilar to Sadakane [112]. We have that D[0] = 1 and, for i > 0, D[i] = 0 iff Dfs(v) = i,

Dfs(v′) = i+1 and v[0] = v′[0]. In our example D = 11001001. We can compute v[0], when

v is not the Root, in O(1) as the letter in position Rank1(D,Dfs(v)) of Σ. This requires

d+o(d) bits. The operation Letter(v, i) can be computed fromR−1(AncT R(R(v), i)). This

expression represents the node obtained after following i suffix-links, hence Letter(v, i)

is the first character of its path-label, i.e. Letter(v, i) = R−1(AncT R(R(v), i)[0]. When

p is not a node, Descend?(p, c) can be computed in O(1/ǫ) time by consulting Letter

for the point below p. If p is a node, we do a binary search among the children of p. If we

find a child that starts with c, we return true. Procedure Descend(p, c) updates the value

of p. When p is a point, this is done in O(1) time. When p is a node, we first proceed as

Descend?. �

Finally observe that with this representation we cannot compute Dfs’(v). The Dfs’ values

are essential to our algorithm because they serve as a supporting space for range queries.

This result can be obtained with a compressed bitmap of size t.
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Lemma 4.3. For a suffix tree T with t points, operations Dfs’(p) and I(p) can be computed

in O(1) time using tH0 + o(n) + O(log log t) extra bits, where H0 is the empirical entropy

of a bitmap with (t− 2n) ones and 2n zeros.

Proof. Consider the bitmap that for every point of T stores 1 if the corresponding point

is a node and 0 if it is not a node. The bitmap is sorted in DFS’ order. In our run-

ning example the points of T that correspond to nodes are the ones with DFS’ values

0, 1, 2, 3, 4, 6, 7, 8, 9. Therefore the resulting bitmap is 1111101111. Using the compressed

representation of Raman et al. [103] this bitmap can be stored in tH0 + o(n) +O(log log t)

bits supporting Select1 in O(1) time. Observe that for a node v we have that Dfs’(v) =

Select1(Dfs(v)).

For a point p, Dfs’(p) is computed as Dfs’(v)−Sdep(v)+Sdep(p), where v is the high-

est node that is a descendant of p. Also I(p) = [Dfs’(p),Dfs’(Select(RightRank(v)))].

�

4.2.2 Generic Inverted Index

Throughout Section 4.2 we assume that we are given an arbitrary suffix tree T with d

nodes, that we will use as a dictionary. We consider as dictionary words the path-labels of

the nodes of T . The first thing we should do is to organize T according to our dictionary

T , much like what is done in inverted files when given a lexicon.

Definition 4.4. The T -maximal parsing of string T is the sequence of nodes v1, . . . , vf

such that T = v1 . . . vf and, for every j, vj is the largest prefix of vj . . . vf that is a node of

T .

We assume that T is appropriate for T , i.e. that it is possible to parse T in a maximal way.

In our example, the T -maximal parsing of a string T is the sequence cbd, bd, d, cba, ba, ba.

We refer to the elements of the T -maximal parsing of T as blocks. This notion, although

simple, is absolutely crucial to our algorithm. We intend to replace the LZ78 parsing of T
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with the T -maximal parsing. The reason for this is that usually LZ-indexes consider all

the sub-strings of P that are LZ-blocks, and there can be m(m + 1)/2 such sub-strings,

i.e. O(m2). By replacing the LZ78 parsing with the T -maximal we are able to reduce the

sub-strings we consider to the sub-strings of P that are nodes in T and maximal. A sub-

string of P is maximal in this context if it is not the prefix of another sub-string of P that

is also a node of T . For example for P = cbdbddc the sub-string cb is not maximal since

the sub-string cbd is also a node of T , cbd however is indeed a maximal sub-string of P .

This is in fact the first step towards obtaining a linear dependency on m, since P cannot

have more than O(m) maximal sub-strings.

We will store the T -maximal parsing of T in compact form as a string of numbered

blocks.

Definition 4.5. The translation V (v1 . . . vf) of a sequence v1 . . . vf of nodes is a string

such that V (v1 . . . vf)[i] = Dfs(vi).

We denote by T (T ) the translation of the T -maximal parsing of T . Since the T -maximal

parsing of T is the sequence cbd, bd, d, cba, ba, ba, its translation is the string T (T ) = 748633.

Note that word ba is associated with two blocks, v5 and v6.

Inverted files usually store a list of occurrences for every word of the dictionary. To play

this role we will use a stronger indexing structure, a sparse suffix tree. This sparse suffix tree

indexes the reverse of T (T ). This “reverser” is obtained by extending the canonical mapping

(see Subsection 2.2.2) R to sequences in the following way: R(v1 . . . vf ) = R(vf ) . . .R(v1).

In our example R(T (T )) = R(748633) = R(3)R(3)R(6)R(8)R(4)R(7) = 2′2′3′6′7′8′. This

corresponds to the notion of reverse string, because the concatenation of the path-labels

of R(T (T )) in T R is ab.ab.abc.d.db.dbc = TR.

Definition 4.6. The sparse suffix tree1 ST of a string T and a suffix tree T is the suffix

tree of R(T (T )).

1 Similar to a concept defined by Kärkkäinen et al. [61]
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The sparse suffix tree of our example is shown in Figure 4.1 (bottom-left). We can descend

in the sparse suffix tree in the usual way with DescendST . In LZ-indexes it is necessary

to deal with the blocks that contain the extremes of P . In particular to deal with the block

that contains the left edge of P we will need to specify in some way all the blocks that

terminate by a given suffix. This corresponds to a range of nodes in ST . The notion of

weak descend gives a precise definition of this range. Since T R provides the alphabet for

ST , we can also take that into consideration when descending.

Definition 4.7. The weak descent W (p, vR) for a point p in ST and a node vR in T R

is the interval of DfsST values of the nodes below the following points:

{p.DfsT R(v′) | v′ is a descendant of vR in T R}.

For example, W (RootST , 2
′) = [1∗, 4∗], since this contains the DfsST values for the

nodes below 2′, 3′ in ST (see Figure 4.1). This can be computed in O((log d)/ǫ) time.

We perform two binary searches in the children of p, searching for LeftRankT R(v) and

RightRankT R(v). Then W (p, vR) = [LeftRankST (v′′),RightRankST (v′′′)], where v′′

and v′′′ are the nodes found by the binary searches.

In order to find occurrences of strings across more than one block, we will need to store

the relations across contiguous blocks. This motivates the following two definitions.

Definition 4.8. The head, tail of the T -maximal parsing are respectively sequence v1, . . . , vi

and string vi+1 . . . vf such that v1, . . . , vi is the smallest sequence for which vi+1 . . . vf is a

point in T .

We denote by H(T ) the translation of the head of the T -maximal parsing of T . The head

of the T -maximal parsing of T is cbd, bd, d, cba, ba and the tail is the string ba. Hence H(T )

equals 74863. It may seem that tail is always just vf . However that is not always the case.

Consider a modification TM of tree T were node cbd is replaced by cbde and nodes bde,

de, e are added to complete the suffix tree. Note that cbd is not a node of T M it is only
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a point. The string bcbd is parsed as b.cb.d and the tail is cb.d and therefore it is not just

the last block.

Next we define a set of points relating the leaves of ST with the points in T .

Definition 4.9. The linking points set of the T -maximal parsing v1 . . . vf of T is the

following set:

L =







〈Dfs(R(V (v1 . . . vi))),Dfs’(pi)〉 pi is the largest prefix of vi+1 . . . vf

that is a point in T , for 0 < i ≤ f







The set L is shown in Figure 4.1 (bottom-right) and consists of the following points:

• 〈Dfs(R(V (cbd, bd, d, cba, ba, ba))),Dfs’(ǫ)〉 = 〈Dfs(2′2′3′6′7′8′), 0〉 = 〈2∗, 0〉
• 〈Dfs(R(V (cbd, bd, d, cba, ba))),Dfs’(ba)〉 = 〈Dfs(2′3′6′7′8′), 3〉 = 〈3∗, 3〉

• 〈Dfs(R(V (cbd, bd, d, cba))),Dfs’(ba)〉 = 〈Dfs(3′6′7′8′), 3〉 = 〈4∗, 3〉

• 〈Dfs(R(V (cbd, bd, d))),Dfs’(cba)〉 = 〈Dfs(6′7′8′), 7〉 = 〈5∗, 7〉
• 〈Dfs(R(V (cbd, bd))),Dfs’(d)〉 = 〈Dfs(7′8′), 9〉 = 〈6∗, 9〉

• 〈Dfs(R(V (cbd))),Dfs’(bd)〉 = 〈Dfs(8′), 4〉 = 〈7∗, 4〉

To compute orthogonal range queries we use the wavelet tree. As we mentioned before (see

Subsection 3.2.2), this structure requires f log f ′(1+o(1)) bits and can compute orthogonal

range queries in the space [1, f ]× [1, f ′] in O((1+occ′) log f ′) time. We need to store points

in the [0, d′ − 1]× [0, t− 1] space, where d′ is the number of nodes of ST . We only need to

store f points. Therefore we must reduce the support space to the rank space.

The space [0, d′ − 1] can be reduced to [1, f ] in O(1) time, with Rank over a bitmap of

d′ + o(d′) bits. This bitmap contains a 1 for leaf of ST , and the nodes are ordered by Dfs.

In our example the leaves correspond to nodes 2∗, 3∗, 4∗, 5∗, 6∗, i.e. the bitmap is 0011111.

To determine which point corresponds to node v we compute Rank(B,DfsST (v)+1). For

example for v = 3′6′7′8′ we have compute Rank(B, 4 + 1) = 3, which makes sense since

the point associated with this node is the third if we start counting top-down in Figure 4.1

(bottom right).
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The reduction of space [0, t− 1], is obtained by setting f ′ to t and, therefore, the time

to report occurrences is O((1 + occ′) log t).

We propose an index data structure composed of:

• A dictionary suffix tree T , that is appropriate and chosen in a way that minimizes its

space requirements. In Section 4.3 we show how to use the Lempel-Ziv algorithm to

infer T .

• The sparse suffix tree ST , for searching translated sub-strings of P .

• The linking points, processed for orthogonal range queries to associate a translated suffix

of P with its corresponding prefix.

Our searches for the pattern inside a blocks and spanning more than one block, in

different ways. We refer to this as type 1 and type > 1 occurrences (occ1, occ>1).

4.2.3 Occurrences Lying Inside a Single Block

The algorithm for finding occurrences inside a single block starts by identifying all the

words in the dictionary T that contain P as a sub-string. Since T is a suffix tree, it is

possible to achieve this in a simple way.

• Descend by P in T . If this is impossible then there are no type 1 occurrences of P.

• Start a depth-first traversal of the sub-tree below P .

• For each node v reached compute the range query W (RootST , v
R) : [0, t].

The search in T consists in considering words that start with P and appending some

letters. The weak descend and the range query consist in prep-ending some letters to the

words found on the search in T . For example, consider P = b. By reading b, we reach

node 2 of T (see Figure 4.1). The search on T returns nodes 2, 3, 4, which leads us to

consider words b, ba, bd. This originates the following weak descends: W (RootST , 4
′) = ∅,

W (RootST , 2
′) = [1∗, 4∗], W (RootST , 7

′) = [6∗, 7∗]. We don’t need to consider words that

start with b, since they don’t correspond to blocks; there may be occurrences of ba or cba



78 4 The Inverted Lempel-Ziv Index

because of ba; there may be occurrences of bd and cbd because of bd. The range queries

return no occurrences for b, occurrences 2∗, 3∗ and 4∗ for ba and occurrences 6∗ and 7∗ for

bd. This corresponds to occurrences cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba

for ba and occurrences cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba, for bd.

Theorem 4.10. The above procedure is correct and complete.

Proof. (Correct) Clearly every reported block is α.P.β for some α,β and hence it contains

an occurrence of P . (Complete) Suppose block vi = α.P.β. Hence α.P.β is a node in T .

Since T is a suffix tree, P.β is also a node in T . Node P.β is reached by the search in T ,

since it starts by P . Every node v of ST for which v[0] = Dfs((α.P.β)R) has its DfsST

time in W (RootST , (P.β)R), hence block vi is found in the range query. �

This algorithm was essentially presented by Navarro [98], except that the range queries

were computed as depth-first searches in a trie similar to T R. In Navarro’s algorithm each

node of that trie stored one block. Therefore, the time of these searches was bounded

by the number of type 1 occurrences of p, denoted by occ1. We do not have a direct

correspondence between the nodes of T R and the blocks of T -maximal parsing, which

means that this approach has no worst case guarantees. In essence the problem is that we

may be executing more range queries than the number of occurrences found. To fix this

problem we remove some nodes of T that are “useless” and responsible for this situation.

Definition 4.11. A spurious entry for string T in the suffix tree T is a leaf v of T such

that vR is a leaf of T R and v is not a block in the T -maximal parsing of T .

For a dictionary T without spurious entries, we can guarantee that enough orthogonal

range queries must return occurrences. Note that in the definition of spurious we only

considered leaves. However, removing those leaves may cause internal nodes to become

leaves and spurious. When we refer to a dictionary without spurious entries we mean that

we must have no spurious entries at all, i.e. the nodes that become spurious must also be

removed, until there are no spurious entries at all.
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Lemma 4.12. Assuming T has no spurious entries for T and v is a leaf of T , then the

query W (RootST , v
R) : [0, t] returns at least one linking point.

Proof. There is some α such that (α.v)R is a leaf in T R. Since T is a suffix tree and v is a

leaf of T , then α.v is also a leaf of T . Hence, at least one linking point will be found by

W (RootST , v
R) : [0, t], since DfsST ((α.v)R) ∈W (RootST , v

R). �

Spurious entries may be safely removed from the dictionary. Removing spurious entries

can be done by considering T and T R as a DAG, i.e. a node w in the DAG represents

simultaneously v and vR; there is an edge from w to w′ if that edge exists in T or in T R. To

remove spurious entries we perform a DFS over this DAG. The nodes that are spurious are

the ones that do not have blocks, and are either sinks or have only one outgoing edge that

existed in T . The nodes are checked and removed in their finishing time (see Cormen et

al. [28] for definitions). This procedure runs in O(d) time. Note that the resulting structure

remains a suffix tree.

4.2.4 Occurrences Spanning more than a Single Block

In this Section we focus on finding occurrences that span two or more consecutive blocks,

i.e. occurrences of type > 1. The ideas presented in this Section are similar to those of

Kärkkäinen et al. [61] and related with the approach proposed by Ferragina et al. [37].

We are now faced with the problem of retrieving the words in our dictionary that appear

concatenated in T (T ) and have P as a sub-string. Suppose that P = cbdbddc and that we

split P into two as cbdbdd and c. We will now search for c in T and for cbdbdd in ST . The

point c in T induces the range I(c) = [5, 8]; on the other hand string cbdbdd is parsed into

cbd, bd, b and hence will be translated into 748. To search on the sparse suffix tree, we need

R(748) = 6′7′8′. This will induce the range [5∗, 5∗]. Finally, to solve our problem we perform

the orthogonal range query [5∗, 5∗] : [5, 8] over the linking points L. This corresponds to

the question: is the string cbdbdd, parsed as cbd.bd.d, ever followed by a block that starts by
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i 0 1 2 3 4 5 6 7

P[i] c b d b d d c $’

trace left[i] ǫ c cb cbd b bd d c

DFS’(father left[i]) 0 0 6 8 2 4 9 0

DFS’(trace left[i]) 0 5 6 8 2 4 9 5

DFS’(child left[i]) 0 6 6 8 2 4 9 6

trace right[i] cbd bd d bd d d c ǫ

DFS’(father right[i]) 8 4 9 4 9 9 0 0

DFS’(trace right[i]) 8 4 9 4 9 9 5 0

I(trace right[i]) [8,8] [4,4] [9,9] [4,4] [9,9] [9,9] [5,8] [0,9]

DFS’(child right[i]) 8 4 9 4 9 9 6 0

P[i..] cbd.bd.d.c bd.bd.d.c d.bd.d.c bd.d.c d.d.c d.c c ǫ

tail(P[i..]) c c c c c c c ǫ

H(P[i..]) 748 448 848 48 88 8 ǫ ǫ

R(H(P[i..])) 6’7’8’ udef udef 6’7’ 6’6’ 6’ ǫ ǫ

|father left[i]| == i FALSE TRUE TRUE FALSE FALSE FALSE FALSE

W(R(H(P[i..])), R(father left[i])) ∅ [5*,5*] ∅ ∅ ∅ ∅

I(tail(P[i..])) [5,8] [5,8] [5,8] [5,8] [5,8] [5,8] [0,9]

occ’ 0 1 0 0 0 0

Table 4.2. (Top) Descend and suffix walk of cbdbddc in T . (Bottom) Values for locating type > 1 occurrences.

c? The answer is yes, since there is a linking point in [5∗, 5∗] : [5, 8]. This point corresponds

to cbd.bd.d.cba.ba.ba. We will now explain how to determine in which points to break P .

The pattern should be separated into the head and tail of P [i..], for every 0 < i < m, to

account for every possible translation that can occur (see definition 4.8). These points can

be determined using the following dynamic programming equations:

tail(P [i..]) =







trace right[i] , if |trace right[i]| = m− i.

tail(P [i+ |father right[i]|..]) , otherwise.
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Algorithm 4 Locate R(H(P [i..])) Algorithm
1: procedure Locate HPI

2: for i← m− 1, 0 < i do

3: R(H(P [i..]))← RootST

4: if |trace right[i]| < m− i then

5: R(H(P [i..]))← DescendST (R(H(P [i+ |father right[i]|..])), father right[i])

6: end if

7: end for

8: end procedure

H(P [i..]) =







ǫ , if |trace right[i]| = m− i.

father right[i].H(P [i+ |father right[i]|..]) , otherwise.

We use Algorithm 4 to locate points R(H(P [i..])) in ST . Whenever it is not possible

to descend by a letter, the DescendST procedure returns the udef state. See Table 4.2

(bottom) for an example of this computation. Assume that the descend and suffix walk of P

is already computed. Hence, the arguments of DescendST are available when DescendST

is executed. Therefore Algorithm 4 runs in O((m/ǫ) log d) time, since it runs m times the

DescendST operation, which requires O((log d)/ǫ) time. Having located tail(P [i..]) in T

and R(H(P [i..])) in ST , we know where to break the pattern. Now all that we need are the

ranges for the range query. The range for T is simply I(tail(P [i..])). Whenever P [..i− 1]R

is a node of T R the range for ST is W (R(H(P [i..])), P [..i− 1]R).

Let us consider for example the case of i = 3. We have that H(P [3..]) = 48 and

R(H(P [3..])) = 6′7′. Hence W (6′7′, (cbd)R) = [5∗, 5∗], since 8′ is the only descendant of

itself in T R. This means that, when we are extending bd.d to the left by prep-ending a

word from our dictionary that terminates in cbd, the only such word is cbd. Therefore we

end up considering only the node cbd.bd.d.

Our algorithm for finding type > 1 occurrences of P proceeds as follows:

• Compute the descend and suffix walk of P in T .

• Compute tail(P [i..]) from the descend and suffix walk of P .
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• Locate the R(H(P [i..])) points in ST .

• If |father left[i]| = i then P [..i− 1]R = R(father left[i]),

compute W (R(H(P [i..])), R(father left[i])).

• Compute I(tail(P [i..])) from tail(P [i..]).

• Compute the orthogonal range queriesW (R(H(P [i..])), R(father left[i])) : I(tail(P [i..])).

An example of our algorithm is shown in Table 4.2 (bottom). The only range query that

finds occurrences (occ’) is the [5∗, 5∗] : [5, 8] query, as we have explained in this Section.

4.3 A Compressed Self-Index based on LZ78 Dictionaries

We found it interesting to present this work in a general form, since it seems relevant

to explore other techniques for inferring dictionaries, given a text T . We will now give a

concrete instantiation of the above algorithm, using the Lempel-Ziv 78 Algorithm [127].

See Subsection 3.1.3 for a description of the Lempel-Ziv data compression algorithm.

Given a string T , we proceed as follows: compute the LZ78 parsing of TR = Z1 . . . Zn,

then consider the suffix tree for strings {ZR
1 , . . . , Z

R
n } as our dictionary, denoted by T78.

In our example TR is parsed into a, b, ab, abc, d, db, dbc and the resulting dictionary can be

seen in Figure 4.1 (top-right).

The following lemmas give bound the number elements in our index.

Lemma 4.13. If the number of blocks of the LZ78 parsing of T is n then the T78 has at

most 2n nodes, i.e. d ≤ 2n.

Proof. Observe that every suffix of a ZR
i is a ZR

j for some j. Therefore the set {ZR
1 , . . . , Z

R
n }

is suffix closed. Hence a suffix tree based on {ZR
1 , . . . , Z

R
n } will have at most 2n nodes. �

Lemma 4.14. If the number of blocks of the LZ78 parsing of T is n then the T78-maximal

parsing of T has at most n blocks, i.e. f ≤ n.
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Proof. The idea is to show that if a block vi of the T78-maximal parsing is a sub-string of

some ZR
j then it is a suffix. Suppose that vi is a sub-string of ZR

j . We have that ZR
j = α.vi.β.

Since the dictionary is a suffix tree and ZR
j is a node, viβ is also a node and hence a

dictionary word. Since the parsing is maximal, we have that vi.β = vi, i.e. that vi is a suffix

of ZR
j .

Recall that T = v1 . . . vf = ZR
n . . . Z

R
1 . From the property we demonstrated we conclude

that |v1| ≥ |ZR
n |. Moreover by induction it holds that |v1 . . . vi| ≥ |ZR

n . . . Z
R
n−i+1|. Hence

|ZR
n . . . Z

R
1 | = |T | = |v1 . . . vf | ≥ |ZR

n . . . Z
R
n−f+1|, which means that 1 ≤ n − f + 1, i.e.

f ≤ n. �

4.3.1 Space and Time Complexity

With the previous results we will now determine the space and time complexity of our

algorithm using an LZ78 dictionary.

Lemma 4.15. The Dfs’78 operation can be supported over T78 in O(1) time with o(u log σ)

bits.

Proof. This result is obtained from Lemma 4.3. Observe that t, the number of points of T78,

can be at most u. Moreover the largest value that tH0 assumes can be bounded by the value

of uH0 for a bitmap with u bits, 2n of which are 1’s. Using the bound that n ≤ u/ logσ u,

proved by Ziv et al. [127] we can show that the space occupied by this bitmap is at most

2u log σ(log log u/ logu) + o(u log log u/ logu) bits, which is o(u log σ). �

We will refer to the index that uses LZ78 dictionaries as the Inverted-LZ-Index (ILZI). The

next theorem gives an overview of the space/time complexity of this structure. A previous

version of this result [106] required more space.

Theorem 4.16. Let d and d′ be the number of nodes of T78 and ST 78 respectively. Let t

be the number of points of T78. Let f be the size of the T78-maximal parsing of T . The

space/time trade-off of the Inverted-LZ-Index can be summarized as follows:
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Space in bits [ d
n
(1 + ǫ) + d′

n
(1 + ǫ) + f

n
]uHk + o(u log σ)

≤ (5 + ǫ)uHk + o(u log σ)

Time to count O(((m/ǫ) + occ) log u)

Time to locate free after counting

Time to display l chars O(l/ǫ), improvable to O(l/(ǫ logσ u))

Conditions k = o(logσ u), σ = O(u), 0 < ǫ ≤ 1, ǫ is constant

Proof. (Space) The space requirements come from adding up the space of T78, ST 78 and the

range data structure. The T78 suffix tree suffix tree requires at most (1+ǫ)d logd+5d+o(d),

according to Lemma 4.2. Moreover to support Dfs’78 we need o(u log σ) extra bits. The

ST 78 sparse suffix tree requires (1 + ǫ)d′ log d′ + 5d′ + o(d′) bits, according to Lemma 4.2.

The range data structure (wavelet tree) requires another f log f(1 + o(1)) bits. According

to lemmas 4.13 and 4.14, d, d′ ≤ 2n, f ≤ n, hence the dominate factor is (5 + ǫ) log u. Ziv

et al. [127] showed that
√
u ≤ n ≤ u/ logσ u, and, therefore n = o(u logσ), which means

that all remaining space is o(u log σ). The relation between n and Hk was established by

Kosaraju et al. [66], who showed that n log u = uHk+o(u logσ) for k = o(logσ u). Therefore

the expression in the theorem accounts for the space requirements of the ILZI.

(Count/Locate) We have already seen that Algorithm 1 runs in O((m/ǫ) log σ) time.

The time to find occurrences of type 1 is O((1 + occ1) log u). Observe that the number

of queries computed is less than or equal to twice the number of leaves below P . By

Lemma 4.12 we know that the queries at the leaves must return occurrences. Therefore the

total time amortizes to O((1+ occ1) log u). The time to find occurrences of type > 1 is the

time of Algorithm 4, plus m weak descents and m range queries. Therefore the total time

for occurrences of type > 1 is O((occ>1 + m/ǫ) log u), where occ>1 is the number of type

> 1 occurrences.

(Display) Observe that even though we do not store R(T78(T )) explicitly, we have O(1/ǫ)

access time to it. The idea is to store a pointer to the leaf of ST 78 with path-labelR(T78(T )),
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denoted by FirstLeafST . Therefore R(T78(T ))[i] = LetterST (FirstLeafST , i). Hence

we can compute the j-th letter of R(T78(T ))[i] as Letter(LetterST (FirstLeafST , i), j),

in O(1/ǫ) time. To achieve optimal O(l/(ǫ logσ u)) time we use an approach based on the

work of Sadakane [113], similar to Arroyuelo et al. [6]. We define a new bitmap D′ similar

to bitmap D used to retrieve the first log u bits of a node v instead of the first letter. This

requires d+o(d) bits. We also need a bitmap Q that indicates which sequences of (log u)/2

bits do appear as the first bits of some v. By (i)2 we denote the binary representation of

i, with (log u)/2 bits. The Q bitmap is defined as Q[i] = 1 iff (i)2 is the prefix of some

(v)2 padded with zeros. Bitmap Q contains 2(log u)/2 =
√
u bits and can therefore be stored

in o(u) bits. With these bitmaps we are able to retrieve (log u)/2 bits from a block in

O(1) time, i.e. logσ u/2 letters. We repeat these bitmaps for ST 78 and hence are able to

retrieve (log u)/2 bits from consecutive blocks. Finally we need another bitmap to be able

to skip blocks. We use a bitmap V that marks the beginnings of the blocks in R(T78(T )).

In our running example T is parsed as cbd.bd.d.cba.ba.ba. Therefore the V bitmap would be

100.10.1.100.10.10 (the dots are obviously not part of the bitmap). This can be represented

in o(u logσ) bits using the argument of Lemma 4.15. As pointed out by Arroyuelo et al. [6],

this bitmap can be used to report the occurrences of P as positions in T instead of as a

block and an offset. This can be obtained with a simple Select query. For example to

determine the starting position of the second block we compute Select1(V, 2) = 3. �

The worst case of the space expression is (5+4ǫ)Hk+o(u logσ). However the worst example

we were able to find, based on De Bruijn cycles, yielded (4+3ǫ)Hk + o(u log σ) bits. In the

next Section we show concrete values for the space expression. We will now explain this bad

case. A De Bruijn Cycle for a given q is a binary string of size 2q − q+ 1 whose sub-strings

of size q are all the different strings of size q. For example the string 0000111101100101000

is a De Bruijn cycle for q = 4, see Figure 4.3. Our example consists in setting T to be

the prefixes of a De Bruijn Cycle in such a way that the resulting LZ78-trie is the cycle

itself. In our example this would yield 0.00.000.0000..., note that the dots are not part of
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0000111101100101000

0000 1110 1001 1000

0001 1101 0010

0011 1011 0101

0111 0110 1010

1111 1100 0100

Fig. 4.3. Bruijn Cycle for q = 4

the string and are only present to make it easier to understand the example. This example

is designed to make the T78 have as many nodes as possible and in fact the expression

d/n converges to 2 in this example, with increasing q. This is easy to observe since T78

contains approximately contains one leaf for every node of the LZ-trie, therefore in total

it will contain about 2n nodes. However we were unable to make d′/n converge to 2 and

in fact it converges to 1 in this example. Since f/n also converges to 1 we obtain the

(4 + 3ǫ)Hk + o(u logσ) worst case we mentioned.

Let us make a brief parentheses to point out that some simpler alternatives to our

approach fail. In fact it is really necessary to reverse T and to use the suffix tree T78.

Suppose that instead of using the approach we have been described we decided to parse

T forward and do a maximal parsing with the LZ78 trie of T instead of with T78. In this

scenario consider that T = aabaa, the LZ78 parsing of T is a.ab.aa. Observe, however,

that it is not possible to do a maximal parsing this way since the process would begin by

selecting aa but it would stall at b since b is not a block of the LZ78 trie. This problem

could be overcome but this is a symptom of a more important problem. If we decide to

build our index this way we would loose any guarantees about its space requirements.

Another simplification that one may consider is to think that turning the LZ78 trie into

a suffix tree by making it suffix closed should not add too many nodes and that we could

use that structure instead. This, in fact, is not true and some experimental results show

that we would end up with around O(u) nodes.
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4.4 Practical Issues and Testing

4.4.1 Practical Considerations

This Section presents some results obtained with a prototype that was implemented to test

these ideas, more extensive empirical results are given in appendix A. Navarro [98] pointed

out that, by using a naive search instead of the range data structure, it was possible to

build a smaller index that was faster in practice. The naive way to compute an orthogonal

range query is to choose the smallest range and, for each point of that range, check whether

the point belongs to the other range. Suppose for example, that we wish to compute the

range query W (RootST , 2
′) = [1∗, 4∗] : [0, 9] = [0, t − 1]. First observe that, when we

refer to the smallest range, we are referring to the range in the [1, f ] × [1, f ] grid not

in the [0, d′ − 1] × [0, t − 1] space. Therefore we reduce the [1∗, 4∗] : [0, 9] query to the

[1p∗, 3p∗] : [1p, 6p] query. Obviously the smallest range is the [1p∗, 3p∗] one. Since, for this

particular query, the second range covers the whole space, the result is [1p∗, 3p∗], which

corresponds to {2∗, 3∗, 4∗}. We have already seen that this type of queries is used for type

1 occurrences. Therefore, using this method, the time to compute the range queries for

type 1 occurrences is O(occ1), since the verification is always trivially true.

For type > 1 occurrences this procedure has no worst case guarantees. However, in

practice, this is acceptable and more efficient [98]. Therefore we did not implement the range

data structure and used this approach instead. This immediately removes our capability

of reducing [0, t− 1] to [1, f ], which means that we cannot use points of T to support the

linking points. This means that there is no reason to use a compressed bitmap to support

the Dfs’ operation for points that are not nodes, as described in Lemma 4.3. Instead we

store 〈Dfs(R(V (v1 . . . vi))),Dfs(vi+1)〉 when i < f and 〈Dfs(R(V (v1 . . . vi))), 0)〉 when

i = f , since vi+1 is the largest prefix of vi+1 . . . vf that is a node in T . Note that these

points can be obtained by storing T78(T ), since two consecutive blocks represent a point.
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Observe that the linking points in our example actually coincide exactly with this defini-

tion, (see Figure 4.1) (bottom-right). To find the linking points associated with a node v of

T , we find the leaves below point R(v) in ST . Moreover, to decide which range is smaller,

we estimate the number of points in I ′(v) as the number of points in W (RootST , R(v)).

In Navarro’s approach, occurrences of type > 1 are further distinguished between type

2 and type > 2. Navarro did not use dynamic programming, because it is possible to

guarantee that there are not too many occurrences of type > 2 (type > 2 occurrences

span more than two blocks). The fundamental argument is that, since the LZ78-blocks are

all distinct, a given Zi occurs in at most one position. Therefore the P [i..j] sub-strings of

P occur in at most O(m2) positions. Hence there cannot be more than O(m2) type > 2

occurrences of P in the LZ78 parsing of T . For T78(T ) no such result exists. However, even

though a word v may correspond to more than one block of T78(T ), in average it does not

correspond to many. Therefore we do not use dynamic programming either. Instead, we

use different procedures for type 2 and type > 2 occurrences.

There is not a very compelling reason to store ST 78 as a suffix tree when not using

dynamic programming. Inverted files store a list of occurrences for every dictionary word.

These lists are usually ordered by the position in T of the occurrences of the words. This

regularity is usually explored, for example, with delta coding, to store these lists in com-

pressed form. This property is also important when searching for patterns because, since

it scans the text sequentially, it provides better cache performance. Our implementation

of ST 78 is similar to a sparse suffix array, i.e. a suffix array for R(T78(T )). However, the

suffixes of R(T78(T )) are only sorted by the first block. Suffixes that start with same block

are ordered by position in R(T78(T )), just like in inverted files.

A very important aspect of our prototype is that the implementation of T78 differs

considerably from the succinct representation we presented. The fundamental reason for

this fact is that the succinct implementation could suffer from poor cache performance.

Instead we opted for a more cache aware implementation. The T78 tree is implemented in a
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pointer like fashion. Every node is stored in a memory cell indexed by its breath-first time-

stamp. For example, node cb will be stored in cell 3. The Letter operation is replaced by

a Head pointer, that, for every node v with father node v[..i−1], points to node v[i..]. This

information suffices to read edge-labels, by using suffix links. Every node v stores a Child

pointer, its Dfs time, the suffix link, the string depth, the Head pointer and pointers

indicating W (RootST 78
, vR) over ST 78. This provides better cache performance in several

points. First, we store the information in the nodes and the topological structure of the

tree together. Second, there is no need to traverse back and forth from T78 to T R
78 to read

edge-labels or compute suffix links. Third, the Bfs ordering avoids some cache faults in

branching.

Therefore, our implementation consisted in tree main components, the T78 suffix tree,

implemented in a pointer like fashion, the ST 78 sparse suffix tree, implemented in as a sort

of suffix array and the string and the T78 maximal parsing (T78(T )). These structures are

linked in the following way: T78 points to ST 78 by storing, in every node v, two pointers

that represent W (RootST 78
, vR); ST 78 points to T78(T ), since it is a suffix array of T78(T );

T78(T ) points to T78 since it is a sequence of nodes of ST 78.

The size of each of these components is dependent on n. However since T78 stores a

considerable amount of information per node it requires a considerable amount of space.

This constitutes a severe problem. In order to solve it, we infer a smaller dictionary, i.e. a

T78 tree with fewer nodes. In practice, we use the following variation of the LZ78 parsing:

Definition 4.17. The LZ78 parsing with quorum l of a string T is the sequence

Z1, . . . , Zn of strings such that T = Z1 . . . Zn and, for every i, Zi = Zjc where c is a

letter and Zj is the largest prefix of Zi . . . Zn that appears at least l + 1 times among the

Z1, . . . , Zi−1.

Clearly the LZ78 parsing with quorum 0 corresponds to the usual notion of LZ78 parsing.

In practice a quorum of 2 compensates for the space requirements of T78 without affecting
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english.50MB

l i/223 i/u8 i/uHk d/n d′/n f/n |T | |ST | f(log u)/223

32 47.6 0.95 2.63 0.02 - 1.58 1.81 26.83 19.00

16 46.4 0.93 2.56 0.04 - 1.45 3.41 24.57 18.43

8 45.8 0.92 2.53 0.07 - 1.33 6.18 21.69 17.92

4 48.5 0.97 2.68 0.12 - 1.24 11.01 20.08 17.46

2 54.3 1.09 2.99 0.19 - 1.15 18.44 18.72 17.10

1 61.8 1.24 3.41 0.29 - 1.08 28.19 17.58 16.05

0 93.3 1.87 5.15 0.64 1.33 0.94 63.41 15.28 14.61

dna.50MB

l i/223 i/u8 i/uHk d/n d′/n f/n |T | |ST | f(log u)/223

32 30.9 0.62 2.24 0.02 - 1.37 1.43 16.94 12.52

16 31.3 0.63 2.27 0.04 - 1.29 2.88 15.92 12.46

8 33.0 0.66 2.39 0.08 - 1.22 5.39 15.11 12.48

4 37.0 0.74 2.68 0.14 - 1.16 10.17 14.36 12.48

2 44.0 0.88 3.19 0.24 - 1.11 17.75 13.73 12.54

1 52.5 1.05 3.81 0.37 - 1.07 27.20 13.22 12.07

0 92.6 1.85 6.72 0.92 1.20 0.97 69.21 11.97 11.45

Table 4.3. Space requirements of the ILZI index for different quorum values. Variable l represents different quorum

values. Variable i represents the size of the different indexes in bits. Therefore i/223 gives the size in Megabytes

(MB), i/u8 gives the ratio with the original string, i/uHk gives the ratio with a compressed string, where Hk is

estimated as (n log u)/u. Columns d/n, d′/n and f/n, shows empirical values for the space terms of our index. Most

of the time we do not know the d′/n since we implemented the ST 78 sparse suffix tree as a suffix array. Columns

|T |, |ST | and f(log u)/223 show the size occupied by these data structures in Megabytes (MB).

performance too much. Table 4.3 and Figure 4.4 show the trade-off obtained using different

quorum values in our prototype, for detailed exposition see Appendix A. Table 4.3 shows the

size of the ILZI for different quorum values. Our results show that increasing the quorum

value significantly reduces the space requirements of the ILZI while degrading the time

performance only slightly. Observe that with a quorum of 2 our index has acceptable space

requirements, in practice. Our results also show the ILZI has acceptable space requirements

in theory. For example the results show that for the English file the practical value is
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Fig. 4.4. Time performance of the ILZI index for counting. The x-axis represents different quorum values. The

results are given in seconds.

2.99uHk bits with is close to the size estimated for quorum 0, i.e. ((0.64 + 1.33)(1 + ǫ) +

0.94)uHk + o(u logσ) bits.

4.4.2 Experimental Results

We compared our implementation, Inverted-Lempel-Ziv-Index (ILZI), against the imple-

mentations provided in the Pizza&Chili corpus [128]2. As texts, we used the following files

from the Pizza&Chili corpus:

2 Tested on Pentium 4, 3.2 GHz, 1 MB of L2, 1Gb of RAM, with Fedora Core 3, compiled with gcc-3.4 -O9.
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• DNA (DNA sequences). This file is a sequence of newline-separated gene DNA sequences

(without descriptions, just the bare DNA code) obtained from files 01hgp10 to 21hgp10,

plus 0xhgp10 and 0yhgp10, from Gutenberg Project. Each of the 4 bases is coded as an

uppercase letter A,G,C,T, and there are a few occurrences of other special characters.

Downloaded on June 9, 2005.

• English (English texts). This file is the concatenation of English text files selected from

etext02 to etext05 collections of Gutenberg Project. We deleted the headers related to

the project so as to leave just the real text. Downloaded on May 4, 2005.

The files were trimmed to 50 Megabytes. The indexes were parametrized to occupy

approximately the same space whenever possible. The indexes used were the following:

• Raw is the raw string with one character per byte.

• ILZI is the inverted Lempel-Ziv index described in this Chapter.

• LZI, is the Lempel-Ziv index proposed and implemented by Navarro [98].

• NFMI is an implementation of the FM-index by Navarro [98].

• CSAx8 is an implementation of Sadakane’s compressed suffix array [110] by Sadakane.

• LZI-7 is a less space demanding variation of Navarro’s Lempel-Ziv index, proposed and

implemented by Arroyuelo et al. [6].

• SSA is an implementation of the Succinct Suffix Array [73] by Veli Mäkinen and Rodrigo

González.

• AFFMI is an implementation of the alphabet friendly FM-Index [38] by Rodrigo

González.

• FMI2 is an implementation of the FM-Index [37] by Paolo Ferragina and Rossano Ven-

turini. This prototype corresponds to version 2.

• SAC is an implementation of the suffix array [79] using ⌈log u⌉ bits for each entry.

Implemented by Veli Mäkinen and Rodrigo González.
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Raw ILZI LZI NFMI CSAx8 LZI-7 SSA RL AFFMI FMI2 SAC

dna.50MB i/223 50.0 44.0 60.9 63.4 44.6 54.5 44.3 44.1 43.5 47.1 212.5

i/uHk 3.63 3.19 4.42 4.60 3.23 3.95 3.21 3.19 3.16 3.42 15.41

english.50MB i/223 50.0 54.3 81.1 66.8 56.3 72.3 54.1 52.2 54.6 53.2 212.5

i/uHk 2.76 2.99 4.47 3.69 3.11 3.99 2.99 2.88 3.01 2.94 11.73

Table 4.4. Table with the size of different compressed indexes for sample files. It shows the space requirements

of different indexes, the original string (Raw), the Inverted-LZ-Index (ILZI), Navarro’s LZ-index (LZI), Navarro’s

implementation of the FM-index (NFMI), Sadakane’s CSArray (CSAx8), smaller LZ-index (LZI-7), the succinct

suffix array (SSA), the run-length FM-index (RL), the alphabet friendly FM-index (AFFMI), the second version

of the FM-index (FMI2), SAC is a suffix arrays in uncompressed form, packed in bits. Variable i represents the

size of the different indexes in bits. Therefore i/223 gives the size in Megabytes (MB), i/uHk gives the ratio with

a compressed string, where Hk is estimated as (n log u)/u.

In Table 4.4 we show the space requirements of different compressed indexes for the

sample files. The indexes were parametrized to occupy roughly the same space but within

reasonable performance results.

Figures 4.5,4.6,4.7 show the time performance of different compressed indexes. The

performance of compressed indexes can be described as Θ(m.C + occ.R + out.O), where

out is the number of letters that we wish to display, C is the counting factor, R is the

reporting factor and O is the outputting factor. For some compressed indexes it is possible

to run the indexes in counting mode and the resulting time is Θ(m.C). However for Lempel-

Ziv indexes this is not possible, and our index runs in Θ(m.C + occ.R) even for counting.

To be precise it is not exactly occ. Instead it is something in between occ>1 and occ, since

some type 1 occurrences can be counted faster in practice. We determined the factors and

overall query time for all the indexes.

The fact that LZ-based indexes cannot operate in counting mode can be observed em-

pirically since the time of these indexes is not constant in the graphs of Figure 4.5. As

expected, when m increases occ decreases and the time also decreases. Eventually, the

overall time becomes competitive with other compressed indexes. For most examples this

happens when m is around 20. Figure 4.5 also shows that reducing the dependency on m
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Fig. 4.5. Time results for counting. These graphs shows the impact of our improvement. This can be observed by

comparing the ILZI and LZI indexes. The graphs also show the fact that LZ based indexed cannot count in optimal

time. However they do become competitive when m increases, causing occ to decrease.
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from O(m2) to O(m) had significant impact in the query time. This makes our index up

to an order of magnitude faster than LZI for counting when m is large. On the contrary,

for small patterns (m = 5) it is up to 2.6 times slower than LZI and up to four orders of

magnitude slower than the other compressed indexes.
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Fig. 4.6. Time results for reporting factor (R). Theses graphs confirm that in fact LZ based indexes are the fastest

at reporting occurrences. These results show that this factor is comparable to that of suffix arrays, being orders of

magnitude faster than the alternatives.
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On the other hand LZ-based indexes are extremely fast at reporting occurrences. In

fact they are the only self-indexes using O(uHk) bits able to spend O(log u) time per

occurrence. This is also visible, in the graphs of Figure 4.6, since the reporting factor of

LZ-based indexes is around an order of magnitude smaller than that of other compressed

indexes. Moreover, since, in practice, these indexes do not use range queries, the reporting
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Fig. 4.7. Time results for outputting factor (O). These results show that the ILZI is among the fastest compressed

indexes at outputting.
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time is obtained directly from memory, which means that their real performance is closer

to O(1) than to O(logn). This explains why their performance is so close to that of suffix

arrays. This comparison is not completely fair for LZI-7, since it reports positions instead

of blocks and hence requires further computation.

The displaying time per character is not a very decisive factor to tell indexes apart

since all of them are very fast (see Figure 4.7). The FM-index performed extremely well on
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natural language based files. The Lempel-Ziv compressed indexes had more stable perfor-

mance and are among the fastest for all samples. The suffix arrays are around two orders

of magnitude faster than the compressed indexes, most likely due to cache effects.

4.5 Conclusions

In this Chapter we presented a new compressed full-text self-index, the ILZI. We began by

pointing out our objectives and motivation as clearly as possible, we then gave a detailed

description of this index containing both theory and practice.

From a theoretical point of view we made several important contributions. First we

observed that our dictionary, the T78 tree, is a suffix tree. This structure was first presented

by Kärkkäinen [59], but his version required T to be present and since it was based on LZ77,

it was not necessarily a suffix tree. In the work presented by Navarro [98] the structure

is called RevTrie, but its suffix tree nature is not explored and, in fact, reading an edge-

label requires O(m2) time. In the work presented by Ferragina and Manzini [37] it appears

as an FM-Index of TR
$ . They prove that its space requirements can be related to the

entropy of the text T . However its suffix tree structure is also not explored. Second we

observed that in the LZ78 the same string S may appear in O(m) different ways as the

concatenation of LZ78 blocks. This, in turn, forces algorithms based on the LZ78 parsing

to have quadratic behavior. We solved this problem by discarding the original parsing

and using a maximal parsing. In the maximal parsing, a string S appears in at most one

way as the concatenation of blocks. Navarro uses the original LZ78 parsing. Ferragina and

Manzini discard the parsing and solve the problem by using an FM-index, i.e. resorting to

the Burrows-Wheeler transformation.

Our index is a significant contribution to LZ-based compressed indexes. We improved

the counting time performance of LZ-based indexes to linear time on m, without resorting

to other compressed indexes. At the same time, the structure we propose is smaller than
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LZI, for all the files we tested. In theory, with the terms we obtained in Table 4.3, we

can choose an ǫ to make the index smaller than 4uHk + o(u logσ). In practice it can be

seen in Table 4.3 that ILZI is always smaller than LZI. However a new version of the LZ-

index proposed by Arroyuelo et al. [6] requires only (2+ ǫ)uHk + o(u log σ) with worst case

guarantees. Without worst case guarantees it requires (1 + ǫ)uHk + o(u log σ) bits and it

has O(m2) average search time for m ≥ 2 logσ u. It is interesting to notice that Arroyuelo

et al. independently explored the suffix tree structure of T78 to reduce the time to read an

edge-label to O(m). We cannot achieve the reduced space requirements of Arroyuelo et al.,

essentially because we are storing more structures.

Another important theoretical contribution was a succinct representation of suffix trees

(Lemma 4.2). This representation is not very competitive when compared to the compressed

suffix trees presented by Sadakane [109]. Nevertheless, it is adequate for our goals. For

suffix trees, in general, it requires more space than the representation of Sadakane. In fact,

the problem is the space required to store R and R−1, (1 + ǫ)n log n bits. Arroyuelo et

al. [6] showed how to reduce the space requirements of R. However, even with such an

improvement, it is still not comparable to Sadakane’s approach in terms of space.

We also presented some important practical observations. The notion of spurious entries,

although introduced for theoretical reasons, played an important role in reducing the space

requirements of the ILZI, which became considerably smaller than the LZI (see Table 4.4).

The most evident consequence of this fact can be seen in Table 4.3, which shows the

theoretical values of d/n. Observe that, in theory, ignoring the effect of spurious entries,

we should have that 1 ≤ d/n ≤ 2, since this expression evaluates the ratio of nodes that

T78 (d) should have when compared to the number of nodes in the LZ78 trie (n). However,

all the values presented in this table are smaller than 1. This improvement is a consequence

of removing spurious entries.

Another very important practical contribution was the notion of LZ78 parsing with quo-

rum l. This allowed us to reduce the overall space requirements of the ILZI. By adjusting
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the value of l we can balance between the size of T78 and the size of ST 78. The improve-

ment this notion provided in terms of space was crucial and, moreover, the performance

was degraded only slightly. This can be observed in Table 4.3 and Figure 4.4. We only

show the impact of this notion in the counting performance since the reporting (R) and

outputting (O) times are unaffected by this notion. A careful look at Table 4.3 shows an

impressive improvement in space from quorum 0 to quorum 1, that becomes progressively

less significant for increasing quorum values. The penalty in performance is not very severe.

For small values of m, i.e. m = 5 or m = 10, it is practically zero. This is important since

these are the values for which the ILZI performs worst and as we mentioned before for

these values it actually is less efficient than the LZI.





5

Finding Longest Common Sub-Strings

In this chapter we explain how to use the Inverted-Lempel-Ziv-Index to solve the longest

common substring problem, in linear time.

A longest common substring between string P and string T is one largest string that

occurs both in P and T 1. Determining a longest common substring is relevant in many

DNA applications, were a given pattern P is compared against an already existing database

T . Using a suffix tree for T , this problem can be solved in O(m) time, for a pattern of size m.

Suffix trees, however, require a considerable amount of space. Compressed indexes can be

used to store T and require less space than suffix trees. However not all the functionality

of suffix trees is supported by all compressed indexes. Moreover, some fully functional

representation of suffix trees do not have optimal space requirements. In this chapter we

extend the functionality of the Inverted Lempel-Ziv Index, to solve the longest common

substring problem. Our algorithm runs in O((m/ǫ) log2 u) time requiring, O(uHk) + 5ǫu+

o(u log σ) bits, for any 0 < ǫ ≤ 1.

The longest substring problem consists in searching a large text T for a longest substring

of a given pattern string P . Usually T is known a priori and can be preprocessed. The search

procedure starts when a pattern string P is given. This is the scenario when searching, for

instance, DNA databases [82]. In essence, a large amount of DNA data is compiled into

a database, and, when a new DNA string is obtained, it is useful to uncover its relations

1 This string is not necessarily unique.
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with the existing DNA. One important such relation, that gives a similarity measure, is a

longest common substring.

A number of interesting applications for longest common substrings are known [52]. We

describe two of these to illustrate the importance of the problem. The first application is

the identification of organic samples. The idea is to use a database of human Mitochondrial

DNA. This kind of DNA can be reliably identified by polymerase chain reaction. Moreover

these strings are highly variable and can be used as a “nearly unique” identification of a

person. The longest common substring can be used to identify to whom the DNA fragments

of a given sample of blood or hair belong to.

Another application is related to the DNA contamination problem. Most of the processes

used to manipulate DNA may contaminate a DNA sample with external DNA. This is a

very serious problem that can lead to wasted sequencing. To solve this problem we can

store a database of the DNA that is likely to contaminate an experience. A sequenced

sample is then compared against this database. If there are common substrings, between a

piece of sequenced DNA and the database, larger than a given threshold, then the sample

is probably contaminated. In this example it may not be crucial to determine what caused

the contamination and it may be enough to determine that it is contaminated.

5.1 Related Work

The classical solution for the longest common substring problem consists in preprocessing T

into a suffix tree [52]. The problem with suffix trees is that they are very space demanding.

We propose to solve this problem using the ILZI.

Many compressed indexes do not have full suffix tree functionality. In particular, they

are only capable of solving the longest common substring problem in a naive way, by

reducing it to the exact matching problem, which gives an O(m2) time complexity. A con-

siderable amount of research has been done to extend the functionally of these structures,
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mainly by extending the functionality of compressed suffix arrays by adding a parentheses

representation of the shape of the corresponding suffix tree [50, 51, 62, 87, 111, 112]. Of

these representations, only the one given by Sadakane using the compressed suffix array

of Grossi, Gupta and Vitter [50] is dependent on Hk. Using other compressed suffix arrays

either depends on H0 or it requires O(u logσ) bits. We propose, as far as we know, the first

approach that solves the longest common substring problem with linear time complexity

on m using a compressed index.

Our algorithm works as a sort of sliding window over P . The window starts out empty

and is increased as we find larger common substrings between P and T . Once the window

size increases it never decreases again. For every substring of P inside the window, we

verify if that string occurs in T . If it does, we increase the window. Otherwise, we shift the

window. In the end, the size of this window corresponds to the size of a longest common

substring. This is essentially how the classical algorithm over suffix trees works. However,

we are able to support this procedure over the inverted Lempel-Ziv index, even though this

index does not have full suffix tree functionality.

5.2 Basic Concepts and Notation

For a description of basic concepts, the Inverted-Lempel-Ziv-Index and notation please

refer to the previous chapters.

Definition 5.1. A longest common substring is one largest string that is a substring

of P and T , denoted by LCSS(P, T ).

As a running example we shall consider, again, string T = cbdbddcbababa and T78 as the

suffix tree in Figure 5.2 (top-right). This figure is similar to Figure 4.1 and is repeated here

for convenience. For P = cbddcbabd, the longest common substring is bddcbab. Figure 5.1

gives a schematic representation of this solution.
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1

012 3456789 012

T: cbd.bddcbab.aba

|||||||

P: cbddcbabd

Fig. 5.1. Schematic representation of the solution of the longest common substring problem for P = cbddcbabd.
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Fig. 5.2. (top-right) Suffix tree T78. (top-left) Reverse tree T R
78 . (bottom-left), Sparse suffix tree ST 78. (bottom-

right) Linking points and orthogonal range query [4*,4*]:[2,4].

We need to add a new operation to the ILZI, the SdepAnc(v, i), that returns the

ancestor of node v that is at string-depth i. This can be computed using the Anc(v, j) and

Sdep(v) operations. The idea is to perform a binary search in the elements Anc(v, j), i.e.

a binary search over the Sdep(Anc(v, j)) values. This requires O(log |v|) time.
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Recall that d and d′ are the number of nodes of T78 and ST 78 respectively, that t is the

number of points of T78 and that f is the size of the T78-maximal parsing of T .

5.3 Computing a Longest Common Sub-String

We now explain how to use the ILZI to solve the longest common substring problem.

Similarly to what happens in the exact matching problem, the algorithm runs in two

phases. In the first phase we find a longest substring of P that occurs inside a block of

T78(T ). In the second phase, we find a longest substring of P that occurs as a sequence of

blocks and later as a substring of a sequence of blocks.

5.3.1 LCSS Inside a Single Block

We start by explaining how to determine a longest common substring of P that is contained

inside a block of T78(T ). This is essentially the classical solution to the problem, i.e. compute

the descend and suffix walk of P in T78 and report a point with maximal string-depth. This

string-depth is denoted by lcss1. Assuming that T78 has no spurious entries (recall that

those can be removed, Section 4.2.3), lcss1 can be determined in O((m/ǫ) log σ) time.

In our example the resulting LCSS would be string cbd or cba (see trace right[0], and

trace right[4] in Table 5.1, top).

5.3.2 Aligned Longest Common Sub-String

In order to explain the computation of the LCSS of P that spans more than a single block,

we start by introducing the concept of sparse descend and suffix walk. To solve the LCSS

problem, we would like to compute the descend and suffix walk of P in the suffix tree of T .

However we do not have the suffix tree of T . Instead, we have a sparse suffix tree ST 78. We

will start by solving the longest common substring in the sparse suffix tree ST 78. This will

provide some insight and tools to find the LCSS. This motivates the following problem:
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Definition 5.2. The aligned longest common substring problem for the T78-maximal

parsing of T consists in finding a longest string that appears as a concatenation of blocks

in T78(T ) and is a substring of P , i.e. P [i..j] = vi′ . . . vj′.

This restriction of the longest common substring problem allows us to introduce the

solution without paying attention to the blocks at the extremes of the substring. The

solution for this problem is essentially the same as performing a descend and suffix walk

of P in ST 78 and reporting the lowest point. Recall that ST 78 is, in a way, indexing TR,

so we must read P backwards. First, we must translate the pattern P , since ST 78 indexes

R(T78(T )). This must be done in a maximal way. For this we use the trace right of the

descend and suffix walk of P in T78. Algorithm 5 shows how to compute this procedure.

We will refer to Algorithm 5 as the sparse descend and suffix walk of P . Note that for

the sparse descend and suffix walk of P , we assume that Suffix LinkST 78
(RootST 78

)

does not exist. Therefore if the sparse descend and suffix walk reaches this point, it should

return the udef state.

The aligned longest common substring problem can be solved by computing the sparse

descend and suffix walk of P in ST 78 and outputting the lowest node, i.e. the one with the

largest string-depth. In our example, that point corresponds to string bddcba, as shown in

Table 5.1 (bottom).

The fundamental problem with Algorithm 5 is that it can require O(m2) time. The

quadratic behavior occurs in the following example: suppose ST 78 is the suffix tree of string

An. Then, trace right[i] = A for m/2 < i < m and trace right[i] = Xi, for 0 ≤ i ≤ m/2,

where |A| = 1 and |Xi| = m/2− i+ 1 (see fig. 5.3(a)). In this example, the while cycle in

the sparse descend and suffix walk runs O(m/2) times for O(m/2) cases, giving a total of

O(m2/4) operations.

The solution for this problem consists in observing that the while cycle in the sparse

descend and suffix walk is a naive scan over a list of elements to find the first one with a

given property. The property is that Descend?(point[i], father right[i]) is true. Replacing
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Algorithm 5 Sparse Descend and Suffix Walk
1: procedure Sparse Descend and Suffix(P )

2: point[|P |]← Root

3: for i← |P | − 1, i ≥ 0 do

4: point[i]← point[i+ |father right[i]|]

5: while NOT Descend?(point[i], father right[i]) do

6: point[i]← Suffix Link(point[i])

7: end while

8: i−−

9: end for

10: end procedure

this search by a binary search will allow us to compute the sparse descend and suffix walk

of P in ST 78 without a quadratic dependency on m. Let us start by solving the problem
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i jpoint[i]

trace_left[j]

point_left[i,j]

ext_point[i,j]
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(b)

Fig. 5.3. (left) Pattern with O(m2) sparse descend and suffix walk. (right) Schematic representation of

ext point[i, j] and point left[j].

when point[i] is a node of ST 78. A chain of suffix links across nodes corresponds to part

of a branch of ST R
78. In fact, following a suffix link from a node, in ST 78, corresponds

in ST R
78 to moving up to the father node. This is the way Suffix Link(v) is computed,

i.e. Suffix Link(v) = R−1(AncST R
78

(R(v), 1)). In order to do a binary search, all that we

need is to be able to access an arbitrary ancestor of a node of ST R
78 in constant time, i.e.

AncST R
78

(R(v), j). This is already possible in the representation of suffix trees. Therefore,

by replacing the while cycle in Algorithm 5 by a binary search, the algorithm runs in

O((m/ǫ)(logm) log n) time when point[i] is a node.
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i 0 1 2 3 4 5 6 7 8 9

P [i] c b d d c b a b d $′

trace left[i] ǫ c cb cbd d c cb cba b bd

Dfs
′(father left[i]) 0 0 6 8 9 0 6 7 2 4

Dfs
′(trace left[i]) 0 5 6 8 9 5 6 7 2 4

Dfs
′(child left[i]) 0 6 6 8 9 6 6 7 2 4

trace right[i] cbd bd d d cba ba a bd d ǫ

Dfs
′(father right[i]) 8 4 9 9 7 3 1 4 9 0

Dfs
′(trace right[i]) 8 4 9 9 7 3 1 4 9 0

Dfs
′(child right[i]) 8 4 9 9 7 3 1 4 9 0

P [i..] cbd.d.cba.bd bd.d.cba.bd d.d.cba.bd d.cba.bd cba.bd ba.bd a.bd bd d ǫ

V −1R−1(point[i]) cbd bd.d.cba d d.cba cba ba udef bd d ǫ

point[i] 8′ 3′6′7′ 6′ 3′6′ 3′ 2′ udef 7′ 6′ ǫ

Table 5.1. (Top) Descend and suffix walk of cbddcbabd in T78. (Bottom) Sparse descend and suffix walk of cbddcbabd

in ST 78.

When point[i] is not a node and the Descend?(point[i], trace-right[i]) is false, then

it will remain false until point[i] becomes a node. Hence there is no need to test the

Descend? predicate for the in-between points. Therefore we can skip the in-between

points. A point is represented by storing its father node, father point[i], its string-depth

and its child node child point[i]. Suppose we wish to determine if Suffix Link(point[i]) is

a node or a point. One way to compute this result is to determine if there is an ancestor of

Suffix Link(child point[i]) at the string-depth Sdep(point[i])−1. This can be computed

by using the SdepAnc operation and verifying whether the resulting node has the desired

string-depth. The SdepAnc operation over the ST 78 tree takes O(log f) time, since it is a

binary search. Therefore, verifying whether there is an ancestor of child point[i] at a given

string-depth takes O(logn) time. Hence, computing the first node in the trail of suffix links

of point[i] can be done in O(((logm)/ǫ) log f) time, using a binary search.

Overall, the sparse descend and suffix walk takes O((m/ǫ)(logm) log u) time, including

the O((m/ǫ) log σ) time to compute the descend and suffix walk of P in T78. We assume that
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we are able to compute the size of the substring found by using an operation represented

string-depth and denoted by ||.||. For example the represented string depth of 3′6′7′ is

6 since it corresponds to the size of string abc.d.bd. We will now make a slight detour to

explain, in detail, how to compute represented string depth.

5.3.3 Represented String Depth

In this subsection we explain how to compute the represented string depth. The problem is

that the string-depth in ST 78 does not correspond to the size of the substring of P that it

may represent. For example, for point 3′6′7′, its string-depth is 3, i.e. |3′6′7′| = 3. The size

of the string that is translated into 3′6′7′ is different. Observe that R(V (bd, d, cba)) = 3′6′7′

and |bddcbaR| = 6. This value will be denominated by represented string-depth and is

denoted as |V −1(R−1(3′6′7′))|, or ||3′6′7′||.

This value can be computed in two ways: with the V bitmap (see the display portion

of the proof of Theorem 4.16); or by preprocessing a dependency tree;

The first solution consists in using Select1 over V . In our example, we have that

V = 100.10.1.100.10.10. We start by determining a leaf that is a descendant of p = 3′6′7′.

In this case this is trivial since 4∗, the first node below p, is already a leaf. In general,

we obtain this result as v′ = RightRankST 78
(v), where v is the first node below p.

We now compute SdepST 78
(v′). In our example we have that SdepST 78

(4∗) = 4. The

represented string-depth can now be computed as Select1(V, 4+1)−Select1(V, 4+1−

|3′6′7′|) = Select1(V, 5)−Select1(V, 2) = 9− 3 = 6. The general expression is therefore

Select1(V, 1+Sdep(v′))−Select1(V, 1+Sdep(v′)−|p|). This requires only O(1) time.

The problem with this bitmap is that it adds u+ o(u) bits to the index. A compressed

version requires only o(u logσ) bits, as noted in Lemma 4.15.

We will now give a version that is less space demanding and, moreover, provides some

insight into the sparse descend and suffix walk. We give a solution that does not increase

the index size, but requires more space at query time. Still, the query space remains O(m)
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Fig. 5.4. Dependency tree

computer words, i.e. O(m logm) bits. Our solution does not allow us to compute ||p||

for every point in ST 78. However, we are able to compute it for all necessary points, i.e.

prefixes of point[i]. The idea is to associate to the descend and suffix walk of P , in T78, a

dependency tree. The dependency tree shows which father right[i] can be concatenated

to give substrings of P .

Definition 5.3. The dependency tree of the descend and suffix walk of P in T78 is a tree

with m+ 1 nodes, labeled by 0, . . . , m, such that for every i, node i+ |father right[i]| is a

child of node i.

The dependency tree for our example is shown in Figure 5.3.3. The dependency tree

represents the concatenations of blocks that build substrings of P . These concatenations

correspond to portions of branches in the tree. That doesn’t necessarily mean that all those

configurations must appear in T . In fact, the concatenations that do appear in the text are

given by the sparse descend and suffix walk. For example, consider the branch from node 1

to the root. This branch consists of nodes 1, 3, 4, 7, 9, that have the following father right[i]

strings bd, d, cba, bd, ǫ. Concatenating these blocks gives a suffix of pattern P . However,

the string bd.d.cba.bd does not occur in T . This can be seen because the correspond-

ing point in ST 78 does not exist, i.e. point 7′3′6′7′ = R(4, 8, 6, 4) = R(V (bd, d, cba, bd))
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does not exist in ST 78. In fact point[1] = 3′6′7′, which represents that bd.d.cba is

a substring of T but bd.d.cba.bd is not. To determine the represented string-depth of

point[1] all we need to do is to observe that it corresponds to the branch 1, 3, 4, 7.

Hence, the value we want can be obtained from the first and last nodes of this branch

as |bd.d.cba| = 6 = 7 − 1. Observe that node “i = 7” is the third ancestor of node

“i = 1” in the dependency tree. Therefore the represented string-depth can be computed

as |V −1(R−1(point[i]))| = Anc(i,Sdep(point[i]))−i, were Anc(i, j) gives the j-th ancestor

of node i in the dependency tree. In our example this is |bd.d.cba| = |V −1(R−1(point[1]))| =

Anc(1,Sdep(point[1]))− 1 = Anc(1, 3)− 1 = 7− 1 = 6. The operation Anc can be sup-

ported in O(1) time by preprocessing the dependency tree in O(m) time, using the algo-

rithms given by Dietz [31], Berkman and Vishkin [15] and Bender and Farach-Colton [13].

5.3.4 LCSS Spanning More than a Single Block

We have now completely solved the aligned longest common substring problem. In our

example, the aligned longest common substring is bd.d.cba. The size of an aligned longest

common substring is denoted by lcss>1. We will now be concerned with a longest substring

of P that appears in T spanning across more than one block. The solution consists in trying

to extend the aligned substrings found by the previous algorithm. The idea is to try to add

a block in the left and one block in the right and finding a maximal substring.

Adding a block to the right of an aligned longest common substring turns out to be

trickier than expected. The problem is that the block in the end may extend over some

blocks that already existed in the end, i.e. simply concatenating a block will not solve the

problem. Consider the example where node cbd of T78 is replaced by cbde and nodes bde,

de, e are added to complete the suffix tree. Note that cbd is no longer a node, it is only a

point. Consider that P = b.cb.d.d.d and T = b.cb.d.d.b.cbddde. The aligned longest common

substring is b.cb.d.d. However the real longest common substring is b.cbddd and this string

cannot be obtained by concatenating a block in front of b.cb.d.d. Instead in this case the



112 5 Finding Longest Common Sub-Strings

second block must be extended. The information of how many letters, in the end of P , can

be potentially joined into one block is obtained from trace left[i].

The algorithm we propose consists in successively extending the longest common sub-

string known so far. This value is denoted by l. We start with l = max(lcss1, lcss>1). Then,

we try to extend every substring of P with size l. When we find a substring of P with size

l′ > l, we update the value of l to l′ and the rest of the search uses this new value. This

search would require O(m) verifications if the substrings of P always appeared with the

same configuration in T78(T ). However, this is not the case.

Let us start by explaining the solution for the blocks in the right. Suppose we choose two

indexes i and j. We must start by finding the smallest suffix2, ext point[i, j], of point[i]

that can be extended by trace left[j] until position j (see Figure 5.3(b)). This can be

computed in O((logn)/ǫ) time by doing a binary search using the AncST R
78

operation in

ST R
78, between R(child point[i]) and RootST 78

, searching for the first point p in ST R
78

such that ||R(child point[i])|| − ||p|| ≤ |trace left[j]|.
Alternatively ext point[i, j] can be computed in O(logm) time with the dependency

tree. The idea is to do a binary search in the dependency tree using the Anc operation,

searching for the first ancestor i′ such that i′ − i+ trace left[j] >= j

Observe (see Figure 5.3(b)) that trace left[j] and ext point[i, j] may overlap. Therefore

V −1(R−1(ext point[i, j])).trace left[j] may be different from P [i..j]. To solve this problem

we use point left[i, j], that can be obtained as an ancestor point of trace right[i+ ||ext−
point[i, j]||+1], i.e. point left[i, j] = SdepAnc(trace right[i+ ||ext− point[i, j]||], j+1−

(i + ||ext − point[i, j]||)). This requires O(logm) time. Overall, for every j, the time to

compute the ext point[i, j] and point left[i, j] is O(logm).

The problem of adding a block at the left consists basically in extending the case in

Figure 5.3(b) by adding an incomplete block before position i. In other words we wish

to search for string P [k..j], (see Figure 5.3(b)). A node in T78 representing string P [k..i]

2 Recall that point[i] represents a string oriented from left to right.
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can be obtained from trace right[k] by using the SdepAnc operation, i.e. P [k..i − 1] =

SdepAnc(father right[k], i − k). This requires O(logm) time. The information from

P [k..i] and P [i..i+ ||ext point[i, j]||] can be combined with the weak descent operation.

We now have all the pieces to search for string P [k..j] assuming that the configuration is

determined by point i. We know that P [k..j] = P [k..i].P [i+1..i+ ||ext−point[i, j]||].P [i+

||ext − point[i, j]|| + 1..j] and that P [k..i] = SdepAnc(father right[k], i − k), that

P [i..i + ||ext point[i, j]||] = V −1(R−1(ext point[i, j])) and that P [i + ||ext point[i, j]|| +

1..j] = point left[i, j]. Therefore checking whether string P [k..j] occurs in T with

a configuration determined by i can be performed with the following range query:

W (ext point[i, j], R(Dfs(P [k..i]))) : I(point left[i, j])

This query is used only to determine whether there are points in this range and not to

output them. The result is denoted by Check(P, k, i, j) and can be computed in O(log u)

time, including the time to compute all necessary values and points and assuming that the

sparse descend and suffix walk is already computed. For example Check(P, 1, 1, 7) will

originate the range query W (3′6′7′, 0′) : I(b) = [4∗, 4∗] : [2, 4] that does find a point and

corresponds to the LCSS of our example, i.e. bd.d.cba.b.

5.3.5 Space and Time Complexity

Algorithm 6 shows our search procedure. Let us now study its complexity. First, observe

that the internal while guard evaluates to true at most |LCSS(T, P )| times and that

|LCSS(T, P )| < m. Therefore, the Check(P, k, i, k + l + 1) operations that return true

require at most O(m logn) time. The Check operations that return false are actually the

most time consuming ones. Observe that the number of times that the external while cycle

executes depends on |father left[i − 1]| and that |father left[i − 1]| ≤ lcss1. Therefore

the number of times that the Check(P, k, i, k + l + 1) operation returns false is at most

O(m.lcss1). Hence, overall, the external for cycle requires O(m.lcss1 log u) time. Adding
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Algorithm 6 LCSS search
1: procedure LCSS(P )

2: Descend and Suffix(P )

3: Sparse Descend and Suffix(P )

4: l← max(lcss1, lcss>1)

5: for i← |P |, i ≥ 0 do

6: k ← i

7: while |father left[i− 1]| ≤ i− k do

8: while Check(P, k, i, k + l + 1) do

9: l + +

10: end while

11: k −−

12: end while

13: end for

14: return l

15: end procedure

up the time of the descend and suffix walk and the sparse descend and suffix walk we have

that our algorithm takes O(m(lcss1 + (logm)/ǫ) log u) time.

Our final concern has to do with the value of lcss1. Observe that lcss1 must be smaller

than the largest block in the LZ78 parsing and therefore this value is not hiding an O(m)

time dependency. Even so it would be preferable to have a bound on lcss1. We will achieve

this by preventing the Lempel-Ziv blocks from growing beyond (log u)/ǫ.

Definition 5.4. The ǫ bounded LZ78 parsing of a string T and 0 < ǫ ≤ 1 is the

sequence Z1, . . . , Zn of strings such that T = Z1 . . . Zn. For every i, Zj is the largest prefix

of Zi . . . Zn among the Z1, . . . , Zi−1 and Zi = Zjc if |Zj| < (log u)/ǫ or Zi = Zj otherwise.

We can use this parsing, instead of the original LZ78, to generate the Lempel-Ziv suffix tree

T78. With this variation our algorithm requires O((m/ǫ) log2 u) time, since lcss1 < (log u)/ǫ.

Theorem 5.5. Assume that we use the ǫ bounded LZ78 parsing of string T . Let d and

d′ be the number of nodes of T78 and ST 78 respectively. Let t be the number of points of
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T78. Let f be the size of the T78-maximal parsing of T . The space/time trade-off of the

Inverted-LZ-Index for the longest common substring problem is summarized as follows:

Space in bits [ d
n
(1 + ǫ)]uHk + [d′

n
(1 + ǫ) + f

n
]u(ǫ+Hk) + o(u logσ)

≤ (2 + ǫ)uHk + (3 + ǫ)u(ǫ+Hk) + o(u log σ)

Time to compute lcss O((m/ǫ) log2 u)

Conditions k = o(logσ u), σ = O(n), 0 < ǫ ≤ 1, ǫ is constant

Proof. (Space) Kosaraju et al [66] showed that n log u = uHk + o(u log σ) for k = o(logσ u)

for the LZ78 parsing. In order to determine n log u for the bounded LZ78 parsing, just

separate T into two strings, one with no repeated blocks and one in which every block is

of size (log u)/ǫ. For the first string use the previous bound. For the second string observe

that we have at most ǫu/ log u blocks. Therefore, this part will require at most ǫu bits, and

n log u = u(ǫ+ Hk) + o(u logσ). An important detail to notice is that the dictionary tree

T78 does not need to store repeated blocks and therefore has a smaller bound.

5.4 Practical Issues and Testing

We implemented a prototype for testing these ideas and compared it against naive LCSS

algorithm implemented with other compressed indexes.

We start by testing all possible longest common substrings that span across more than

two blocks. Since we have no range data structure (see Subsection 4.4.1), there is no way

to avoid searching all this space. Usually a long common substring will be found in this

space. This allows us to prune a large amount of the search space for substrings that are

contained in two blocks, which is important because it is a very large space. Moreover,

since our scanning technique basically consists in trying to extend substrings of P in T ,

there is little point in bounding the LZ78 parsing in practice. To test our algorithm, we

implemented a naive LCSS algorithm. The idea is, for every suffix of P , to determine its

largest prefix that occurs in T . The largest of these prefixes are LCSS’s. To determine these
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Fig. 5.5. Average user time of processing a byte for different lcss values.

prefixes, we use a compressed index. We used all the compressed indexes in the Pizza&Chili

that were either suffix arrays or FM-indexes. In practice, we reduced the problem to the

exact matching problem by determining these prefixes a priori and using them to do exact

matching with the compressed indexes. As texts, we used the files in the Pizza&Chili

corpus.
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Table 6.2 shows the size of different indexes. The time results are shown in Figure 5.5.

The pattern strings were generated randomly in such a way that the average size of the

above prefixes is lcss/2. This is in fact the dominant factor for the naive, algorithm, that

has a running time close to O(lcss.m/2). In the y-axes, we show the time each index takes

to process a byte, i.e. seconds per byte. This gives curves similar to O(lcss/2) for the naive

method. The x-axes represent the LCSS value. Note that both axes use logarithmic scales.

Tests used patterns of roughly 1MB of size and ran for 60 seconds each. The tests were

performed on a Pentium 4, 3.2 GHz, 1 MB of L2, 1Gb of RAM, with Fedora Core 3, and

the prototype was compiled with gcc-3.4 -O9.

5.5 Conclusions and Future Work

In this chapter we extended the functionality of the Inverted-Lempel-Ziv-Index to be able

to solve the longest common substring problem. This allowed us to show how flexible

this index is. Note that the ability to perform pattern matching and compute the longest

common substring are two of the main virtues of suffix trees.

As far as we are aware, this is the only existing method to compute the longest common

substring using a compressed index. However, there is a data structure, by Sadakane,

that gives compressed suffix trees (CST) with full functionality [109] in compressed space

uHk+6u+o(u logσ) bits. Using CST’s it is possible to compute a longest common substring

in O((m(log σ) min(σ, log u) log2 u)/ log log u) time. Sadakane pointed out that the u terms

in the space requirements may become a bottleneck, which happens for Hk < 1. Grossi et

al. [50] solved this problem by adding an O(log u) slowdown factor. Our extension of the

ILZI provides the best of two worlds, since we can eliminate our 3u bits dependence by

choosing any o(1) function. In particular, if we take ǫ = 1/ log log u then the ILZI requires

at most 5uHk + o(u log σ) bits and computes LCSS in O(m(log2 u) log log u) time. This is

competitive with the solution presented by Grossi et al, especially because, in practice, the
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uHk factor is much smaller than 5, it is usually 3 (see the column i/uHk of Table 4.3). If

we take ǫ = 1 the resulting ILZI is competitive against Sadakane’s CST, since CST’s is

still slower than the ILZI by an O((log σ) min(σ, log u)/ log log u) factor.

We implemented a prototype to test this algorithm that showed a linear dependence on

m. This is in fact the fundamental problem associated with the longest common substring.

In fact our extension of the ILZI performs worse for small LCSS sizes, mainly because

it is forced to check for LCSS that are spread across only two blocks and this is time

consuming. We also concluded that, interestingly, the naive method is in fact efficient for

a considerable interval of LCSS sizes.



6

Approximate String Matching

Despite the explosion of interest on self-indexes in recent years, there has not been much

progress on search functionality beyond the basic exact search. In this chapter we focus

on indexed approximate string matching (ASM), which is of great interest in many ap-

plications. We present an ASM algorithm that works on top of the inverted Lempel-Ziv

index. We build on top of a hybrid approach, which is the best in practice for this problem.

We show that the ILZI can be seen as an extension of the classical q-samples index. We

give new insights on this type of index, which can be of independent interest, and then

apply them to the ILZI. We show experimentally that our algorithm has a competitive

performance and provides a useful space-time tradeoff compared to classical indexes.

Approximate string matching (ASM) is an important problem that arises in applications

related to text searching, pattern recognition, signal processing, and computational biology,

to name a few. It consists in locating all the occurrences of a given pattern string P in a

larger text string T , letting the occurrences be at edit distance at most k from P . In this

chapter, we focus on edit distance, that is, the minimum number of character insertions,

deletions, and substitutions of single characters to convert one string into the other.

6.1 Related Work

In the on-line version of the problem we can preprocess the pattern but not the text

[97]. The classical sequential search solution runs in O(um) worst-case time (see [97]). An
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optimal average-case algorithm requires time O(u(k + logσ m)/m) [21, 40], where σ is the

size of the alphabet Σ. Those good average-case algorithms are called filtration algorithms:

they traverse the text fast while checking for a simple necessary condition, and only when

this holds do they verify the text area using a classical ASM algorithm. For long texts,

however, sequential searching may be impractical because it must scan all the text.

There exist indexes specifically devoted to ASM [20, 25, 26, 71], but these are oriented

to worst-case performance. There seems to exist an unbreakable space-time barrier with

indexed ASM: either one obtains exponential times (in m or k), or one obtains exponential

index space (e.g. O(u logk u)). Another trend is to reuse an index designed for exact search-

ing, all of which are linear-space, and try to do ASM over it. Indexes based on suffix trees

[121], suffix arrays [78], q-grams and q-samples, have been used. There exist several algo-

rithms, based on suffix trees or arrays, which focus on worst-case performance [24, 45, 119].

Given the mentioned time-space barrier, they achieve a search time independent of u but

exponential on m or k. Essentially, they simulate the sequential search over all the possible

text suffixes, taking advantage of the fact that similar substrings are factored out in suffix

trees or arrays.

Indexes based on q-grams (indexing all text substrings of length q) or q-samples (in-

dexing non-overlapping text substrings of length q) are appealing because they require

less space than suffix trees or arrays. The algorithms on those indexes do not offer any

relevant worst-case guarantee, but perform well on average when the error level α = k/m

is low enough, say O(1/ logσ u). Those indexes basically simulate an on-line filtration al-

gorithm, such that the “necessary condition” checked involves exact matching of pattern

substrings, and as such can be verified with any exact-searching index. Such filtration in-

dexes, e.g. [90, 116], cease to be useful for moderate k values, which are still of interest in

many applications.

The most successful approach, in practice, is in between the two techniques described

above, and is called “hybrid” indexing. The index determines the text positions requiring
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verification using not an exact, but an approximate-matching condition. Those are checked

with a technique of the first kind (whose time is exponential on the length of the string

or the number of errors). Since these searches are done over short strings and allowing few

errors, the exponential cost is controlled. Indexes of this kind offer average-case guarantees

of the form O(muλ) for some 0 < λ < 1, and work well for higher error levels. They

have been implemented over q-gram indexes [88], suffix arrays [92] and over q-sample

indexes [101].

Yet, many of those linear-space indexes are very large anyway. For example, suffix

arrays require 4 times the text size and suffix trees require at the very least 10 times [67].

Therefore, it does make sense to use compressed indexes for this problem.

Despite the great success of self-indexes, they have been mainly used for exact searching.

Only very recently some indexes taking O(u) or O(u
√

log u) bits have appeared [20, 55, 68].

Yet, those are again of the worst-case type, and thus all their times are exponential in k.

We present a practical algorithm that runs on a compressed self-index and belongs to

the most successful class of hybrid algorithms. More details are given next.

6.2 Our Contribution in Context

One can easily use any compressed self-index to implement a filtration ASM method that

relies on looking for exact occurrences of pattern substrings, as this is what all self-indexes

provide. The details of how to divide P are given by Lemma 6.1, using j = k + 1, A = P

and B = O. Indeed, this has been already attempted [83] using the FM-index [37] and a

Lempel-Ziv index [98]. The Lempel-Ziv index worked better because it is faster to extract

the text to verify (recall that in self-indexes the text is not directly available). The specific

structure of the Lempel-Ziv index used allowed several interesting optimizations (such as

factoring out the work of several text extractions) that we will not discuss further here.
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Lempel-Ziv indexes are based on splitting the text into a sequence of so-called phrases

of varying length. They are rather efficient to find the (exact) occurrences that lie within

phrases, but those that span two or more phrases are more costly.

Our goal in this chapter is to have efficient approximate searching over a small and

practical self-index. Based on the described previous experiences we want:

1. An algorithm of the hybrid type, which implies that the self-index should do approxi-

mate search for pattern pieces.

2. A Lempel-Ziv-based index, so that the extraction of text to verify is fast.

3. A way to avoid the problems derived from pieces spanning several Lempel-Ziv phrases.

We will focus on our index of Chapter 4 whose suffix-tree-like structure is useful for this

approximate searching.

Mimicking q-sample indexes is particularly useful for our goals. Consider that the text

is partitioned into contiguous q-samples. Any occurrence O of P is of length at least m−k.
Wherever an occurrence lies, it must contain at least j = ⌊(m− k − q + 1)/q⌋ complete q-

samples. The following lemma, simplified from [94], gives the connection to use approximate

searching for pattern substrings with a q-samples index [101].

Lemma 6.1. Let A and B be strings such that ed(A,B) ≤ k. Let A = A1A2 . . . Aj, for

strings Ai and for any j ≥ 1. Then there is a substring B′ of B and an i such that

ed(B′, Ai) ≤ ⌊k/j⌋.

Consider for example that k = 9, A = A1.A2.A3, A1 = ab, A2 = cdefghijklm, A3 = no

and B = axbcxdxexfgxhixjkxlxmnxo, see Table 6.1. We can conclude that there is a

substring B′ of B and an i such that ed(B′, Ai) ≤ ⌊9/3⌋ = 3. In particular ed(A1, axb) = 1.

In this case we also have that ed(A3, nxo) = 1.

Therefore, if we interpret B = P and A contained in O, we index all the different text

q-samples into, say, a trie data structure. Then the trie is traversed to find q-samples that

match within P with at most ⌊k/j⌋ errors. All the contexts around all occurrences of the
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matching q-samples are examined for full occurrences of P . Note, in passing, that we could

also take A = P and B contained in O, in which case we choose how to partition P but

we must be able to find any text substring with the index (exactly [90] or approximately

[88, 92], depending on j). Thus, we must use a suffix tree or array [92], or even a q-gram

index if we never use pieces of P longer than q [88, 90].

A Lempel-Ziv parsing can be regarded as an irregular sampling of the text, and therefore

our goal in principle is to adapt the techniques of [101] to an irregular parsing (thus we must

stick to the interpretation B = P ). As desired, we would not need to consider occurrences

spanning more than one phrase. Moreover, the trie of phrases stored by all Lempel-Ziv

self-indexes is the exact analogous of the trie of q-samples. Thus, we could search without

requiring further structures in the index.

The irregular parsing poses several challenges, however. There is no way to ensure that

there will be a minimum number j of phrases contained in an occurrence. Occurrences

could even be fully contained in a phrase!

We develop several tools to face those challenges. First, we point out a variation of

Lemma 6.1 that distributes the errors in a convenient way when the samples are of varying

length. Second, we introduce a new filtration technique where the samples that overlap

the occurrence (not only those contained in the occurrence) can be considered. This is

of interest even for classical q-sample indexes. Third, we search for q-samples within long

phrases to detect occurrences even if they are within a phrase. This technique also includes

novel insights.

We implement our scheme and compare it experimentally with the best technique in

practice over classical indexes [92], and with the previous developments over compressed

self-indexes [83]. The experiments show that our technique is practical and provides a

relevant space-time tradeoff for indexed ASM.



124 6 Approximate String Matching

Table 6.1. The shortest path in the edit graph is shown in bold, we do not show inactive cells. (Left) Dynamic

programming table D for strings, B = P = axbcxdxexfgxhixjkxlxmnxo (vertical) and A = O = abcdefghijklmno

(horizontal) with k = 9. (Right) Dynamic programming table D for string axbcxdxexfgxhixjkxlxmnxo and A

divided into strings A1 = ab, A2 = cdefghijklm and A3 = no and searched for with k = 3, k = 7 and k = 3

respectively.

a b c d e f g h i j k l m n o

0 1 2 3 4 5 6 7 8 9

a 1 0 1 2 3 4 5 6 7 8 9

x 2 1 1 2 3 4 5 6 7 8 9

b 3 2 1 2 3 4 5 6 7 8 9

c 4 3 2 1 2 3 4 5 6 7 8 9

x 5 4 3 2 2 3 4 5 6 7 8 9

d 6 5 4 3 2 3 4 5 6 7 8 9

x 7 6 5 4 3 3 4 5 6 7 8 9

e 8 7 6 5 4 3 4 5 6 7 8 9

x 9 8 7 6 5 4 4 5 6 7 8 9

f 9 8 7 6 5 4 5 6 7 8 9

g 9 8 7 6 5 4 5 6 7 8 9

x 9 8 7 6 5 5 6 7 8 9

h 9 8 7 6 5 6 7 8 9

i 9 8 7 6 5 6 7 8 9

x 9 8 7 6 6 7 8 9

j 9 8 7 6 7 8 9

k 9 8 7 6 7 8 9

x 9 8 7 7 8 9

l 9 8 7 8 9

x 9 8 8 9

m 9 8 9

n 9 8 9

x 9 9

o 9

a b c d e f g h i j k l m n o

0 1 2

a 1 0 1

x 2 1 1

b 3 2 1 0 1 2 3 4 5 6 7

c 1 0 1 2 3 4 5 6 7

x 2 1 1 2 3 4 5 6 7

d 3 2 1 2 3 4 5 6 7

x 4 3 2 2 3 4 5 6 7

e 5 4 3 2 3 4 5 6 7

x 6 5 4 3 3 4 5 6 7

f 7 6 5 4 3 4 5 6 7

g 7 6 5 4 3 4 5 6 7

x 7 6 5 4 4 5 6 7

h 7 6 5 4 5 6 7

i 7 6 5 4 5 6 7

x 7 6 5 5 6 7

j 7 6 5 6 7

k 7 6 5 6 7

x 7 6 6 7

l 7 6 7

x 7 7

m 7 0 1 2

n 1 0 1

x 2 1 1

o 3 2 1
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6.3 An Improved q-samples Index

In this Section we extend classical q-sample indexes by allowing samples to overlap the

pattern occurrences. This is of interest by itself, and will be used for an irregular sampling

index later. Remind that a q-samples index stores the locations, in T , of all the substrings

T [qi..qi+ q − 1].

6.3.1 Varying the Error Distribution

We will need to consider parts of samples in the sequel, as well as samples of different

lengths. Lemma 6.1 gives the same number of errors to all the samples, which is disadvan-

tageous when pieces are of different lengths. The next lemma generalizes Lemma 6.1 to

allow different numbers of errors in each piece.

Lemma 6.2. Let A and B be strings, let A = A1A2 . . . Aj, for strings Ai and some j ≥ 1.

Let ki ∈ R such that
∑j

i=1 ki > ed(A,B). Then there is a substring B′ of B and an i such

that ed(Ai, B
′) < ki.

Proof. The edit distance between A and B corresponds to the shortest path in the edit

graph of A and B. The partition of A induces a partition in this graph and in particular

splits the shortest path. Let Bi be the substring of B that shares the shortest path with

Ai. This means that
∑j

i=1 ed(Ai, Bi) = ed(A,B).

Suppose, by absurd, that for every B′ substring of B and every i we have that

ed(Ai, B
′) ≥ ki. Therefore, this is also true for the Bi’s, i.e., ed(Ai, Bi) ≥ ki. This is

absurd since that way ed(A,B) =
∑j

i=1 ed(Ai, Bi) ≥
∑j

i=1 ki > ed(A,B). Therefore, there

must exist an i such that ed(Ai, Bi) < ki. Note that Bi is the substring B′ we mention in

the lemma. �

Recall the application of Lemma 6.1 with k = 9, A = A1.A2.A3, A1 = ab, A2 =

cdefghijklm, A3 = no and B = axbcxdxexfgxhixjkxlxmnxo (see Table 6.1). We can
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conclude that there is a substring B′ of B and an i such that ed(B′, Ai) ≤ ⌊9/3⌋ = 3.

In particular, we have that ed(A1, axb) = 1 and ed(A3, nxo) = 2. This number of errors

(3) is excessively high for strings a as small as A1 and A3. If, instead, we use Lemma 6.2

with k1 = k3 = 1.2 and k2 = 6.7, note that k1 + k2 + k3 = 9.1 > 9. Using this lemma, we

only allow for 1 error for A1 and A3. In this case we have that ed(A1, axb) = 1 < 1.2. We

also have that ed(A3, nxo) = 1 < 1.2. Lemma 6.1 is a particular case of Lemma 6.2: set

ki = k/j + ǫ for a sufficiently small ǫ > 0.

An early version of this lemma was given by Navarro et al. [93] in the context of hier-

archical verification. This result was later improved by Navarro et al. [94], that presented

the following lemma:

Lemma 6.3. Let A and B be strings, let A = A1A2 . . . Aj, for strings Ai and some j ≥ 1.

Let ki ∈ N0 such that j ≥ 1 and
∑j

i=1 ki ≥ ed(A,B) − j + 1. Then there is a substring B′

of B and an i such that ed(Ai, B
′) ≤ ki.

Proof. We will prove this lemma using Lemma 6.2. Let ki be the numbers referred in this

lemma. Consider k′i = ki + 1. The k′i numbers satisfy the conditions of Lemma 6.2, i.e.
∑j

i=1 k
′
i = j +

∑j
i=1 ki ≥ j − j + 1 + k = k + 1 > k. Therefore, by Lemma 6.2, we can

conclude that there is a substring B′ of B and an i such that ed(Ai, B
′) < k′i = ki + 1.

Since ed(Ai, B
′) and ki are integers we have that ed(Ai, B

′) ≤ ki. �

In our version the ki’s can be real numbers. However, this is not the case with the version

given by Navarro et al. For example with k = 3, ki = 1/3 and j = 3, where
∑j

i=1 ki = 1 =

3− 3 + 1 = k− j + 1, we conclude that some Ai must occur with at most 1/3 errors. Since

the edit distance between two strings is always an integer, the conclusion would be that

ed(Ai, B
′) ≤ 0, which is not correct. This conclusion is the main reason for Lemma 6.2. In

this way, we can expose our results without being forced to work with integers, i.e. having

to deal with floors and ceilings. Also, we do not need to know j a priori, which is important

since we do not know the value of j before locating O in T . The proof of Lemma 6.3 shows
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that it is a consequence of Lemma 6.2. In fact, Lemma 6.2 and Lemma 6.3 are equivalent.

To prove that Lemma 6.3 implies Lemma 6.2 use the transformation k′i = ⌈ki⌉ − 1 and a

reasoning similar to the one above.

Lemma 6.2 can be used to adapt the error levels to the length of the pieces. For example,

it is appropriate to try to maintain a constant error level, by taking ki = (1+ ǫ) k · |Ai|/|A|

for any ǫ > 0.

In our example, this would yield k1 = k3 = (1 + ǫ) 9 × 2/15 = (1 + ǫ)1.2 and k2 =

(1 + ǫ) 9 × 11/15 = (1 + ǫ)6.6. This gives essentially the same result we presented before.

6.3.2 Partial q-sample Matching

Contrary to all previous work, let us assume that A in Lemma 6.2 is not only that part of

an approximate occurrence O formed by full q-samples, but instead that A = O, so that

A1 is the suffix of a sample and Aj is the prefix of a sample. An advantage of this is that

now the number of involved q-samples is at least j = ⌈(m − k)/q⌉, and therefore we can

permit fewer errors per piece (e.g. ⌊k/j⌋ using Lemma 6.1). On the other hand, we would

like to allow fewer errors for the pieces A1 and Aj. Yet, notice that any text q-sample can

participate as A1, Aj, or as a fully contained q-sample in different occurrences at different

text positions. Lemma 6.2 tells us that we could allow ki = (1 + ǫ) k · |Ai|/|A| errors for

Ai, for any ǫ > 0. Conservatively, this is ki = (1 + ǫ) k · q/(m− k) for 1 < i < j, and less

for the extremes.

In order to adapt the trie searching technique to those partial q-samples, we should not

only search all the text q-samples with (1 + ǫ) k · q/(m− k), but also all their prefixes and

suffixes with fewer errors. This includes, for example, verifying all the q-samples whose first

or last character appears in P (cases |A1| = 1 and |Aj | = 1). This is unaffordable. Our

approach will be to redistribute the errors across A using Lemma 6.2 in a different way to

ensure that only sufficiently long q-sample prefixes and suffixes are considered.
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Let v be a non-negative integer parameter. We associate to every letter of A a weight: the

first and last v letters have weight 0 and the remaining letters have weight (1+ǫ)/(|A|−2v).

We define |Ai|v as the sum of the weights of the letters of Ai. For example if Ai is within

the first v letters of A then |Ai|v = 0; if it does not contain any of the first or last v letters

then |Ai|v = (1 + ǫ) |Ai|/(|A| − 2v).

We can now apply Lemma 6.2 with ki = k · |Ai|v, provided that k > 0. Note that
∑j

i=1 ki = (1+ ǫ) k > k. In this case, if |A1| ≤ v we have that k1 = 0 and, therefore, A1 can

never be found with strictly less than zero errors. The same holds for Aj . This effectively

relieves us from searching for any q-sample prefix or suffix of length at most v.

Parameter v is thus doing the job of discarding q-samples that have very little overlap

with the occurrence O = A, and maintaining the rest. It balances between two exponential

costs: one due to verifying all the occurrences of too short prefixes/suffixes, and another

due to permitting too many errors when searching for the pieces in the trie. In practice,

tuning this parameter will have a very significant impact on performance.

Recall the application of Lemma 6.2 with k = 9, A = A1.A2.A3, A1 = ab, A2 =

cdefghijklm, A3 = no, k1 = k3 = 1.2, k2 = 6.7 and B = axbcxdxexfgxhixjkxlxmnxo.

In this case we would need to search for all the q-samples that end in a string that is at

edit distance 1 from A1 = ab. This, in particular, includes all the q-samples that contain

the suffix a, all the q-samples that contain the suffix b and so on. This yields an excessive

number of samples to verify. If we consider v = 1 in this example we will instead obtain

k1 = k3 = (1+ ǫ) 9×1/13 ≈ 0.7 and k2 = (1+ ǫ) 9×11/13 ≈ 7.7. Note that k1 +k2 +k3 =

9.1 > 9. In our example we have that ed(A2, cxdxexfgxhixjkxlxm) = 7 < 7.7. Note that,

in this example, we moved the errors to A2 since A1 and A3 are very small.

6.3.3 A Hybrid q-samples Index

We have explained all the ideas necessary to describe a hybrid q-samples index. The algo-

rithm works in two steps. First we determine all the q-samples Oi for which ed(Oi, P
′) <
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k · |Oi|v for some substring P ′ of P . In this phase we also determine the q-samples that con-

tain a suffix O1 for which ed(O1, P
′) < k · |O1|v for some prefix P ′ of P (note that we do not

need to consider substrings of P , just prefixes). Likewise we also determine the q-samples

that contain a prefix O′
j for which ed(O′

j, P
′) < k · |Oj|v for some suffix P ′ of P (similar

observation). The q-samples that classify are potentially contained inside an approximate

occurrence of P , i.e. Oi may be a substring of a string O such that ed(O,P ) ≤ k. In order

to verify whether this is the case, in the second phase we scan the text context around Oi,

with a sequential algorithm.

As the reader might have noticed, the problem of verifying conditions such as ed(Oi, P
′) <

k · |Oi|v is that we cannot know a priori which i does a given text q-sample correspond to.

Different occurrences of the q-sample in the text could participate in different positions of

an O, and even a single occurrence in T could appear in several different O’s. We do not

know either the size |O|, as it may range from m− k to m+ k.

A simple solution is as follows. Conservatively assume |O| = m − k (in Section 6.5.1

we give a more sophisticated approach). Then, search P for each different text q-sample

in three roles: (1) as a q-sample contained in O, so that |Oi| = q, assuming pessimistically

|Oi|v = (1 + ǫ) min(q/(m − k − 2v), 1); (2) as an O1, matching a prefix of P for each

of the q-sample suffixes of lengths v < ℓ < q, assuming |O1| = ℓ and thus |O1|v = (1 +

ǫ) min((ℓ−v)/(m−k−2v), 1); (3) as an Oj, matching a suffix of P for each of the q-sample

prefixes, similarly to case (2) (that is, |Oj|v = |O1|v). For the q-samples index we assume

that q < m− k and therefore the case of O contained inside a q-sample does not occur.

In practice, one does not search for each q-sample in isolation, but rather factors out

the work due to common q-gram prefixes by backtracking over the trie and incrementally

computing the dynamic programming matrix between every different q-sample and any

substring of P .We note that the trie of q-samples is appropriate for role (3), but not

particularly efficient for roles (1) and (2) (finding q-samples with some specific suffix). In
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our application to a Lempel-Ziv index this will not be a problem, because we will have also

a trie of the reversed phrases, that will replace the q-grams.

6.4 Using a Lempel-Ziv Self-Index

We now adapt our technique to the irregular parsing of phrases produced by a Lempel-

Ziv-based index. We will focus on the ILZI although the results can be carried over other

similar indexes.

Recall that the ILZI partitions the text into phrases such that every suffix of a phrase is

also a phrase (similarly to LZ78 compressors [125], where every prefix of a phrase is also a

phrase). It uses two tries, one storing the phrases and another storing the reverse phrases.

In addition, it stores a mapping that facilitates moving from one trie to the other, and it

stores the compressed text as a sequence of phrase identifiers.

6.4.1 Handling Different Lengths

As explained, the main idea is to use the phrases instead of q-samples. For this sake,

Lemma 6.2 solves the problem of distributing the errors homogeneously across phrases.

However, other problems arise, especially for long phrases. For example, an occurrence

could be completely inside a phrase. In general, backtracking over long phrases is too

costly.

Even when an occurrence is not completely contained inside a phrase, it is not vi-

able to start searching for an occurrence with too many errors, even if the occurrence

is long. This is essentially the argument in favor of filtration and hybrid indexes. Re-

call our example with k = 9, A = A1.A2.A3, A1 = ab, A2 = cdefghijklm, A3 = no,

k1 = k3 = 0.7, k2 = 7.7 and B = axbcxdxexfgxhixjkxlxmnxo. Recall also that we are

considering P = B and O = A. It is not a viable approach to search for all the sam-

ples A′ such that ed(A′, cxdxexfgxhixjkxlxm) ≤ 7, by using neighborhood generation.
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The problem is essentially that, in this way, we allow for all the seven errors to concen-

trate in the beginning of A′,i.e., we have to potentially consider for σ7 strings. Only a

very small percentage of these strings will end up extending to a sample A′ that veri-

fies ed(A′, cxdxexfgxhixjkxlxm) ≤ 7. In order to avoid this problem we adopt a hybrid

approach.

We resort again to q-samples, this time within phrases. We choose two non-negative

integer parameters q and s < q. We will look for any q-gram of P that appears with less

than s errors within any phrase. All phrases spotted along this process must be verified.

Still, some phrases not containing any pattern q-gram with < s errors can participate in

an occurrence of P (e.g. if ⌊(m − k − q + 1)/q⌋ · s ≤ k or if the phrase is shorter than

q). Next, we show that those remaining phrases have a specific structure that makes them

easy to find.

Lemma 6.4. Let A and B be strings and q and s be integers such that 0 ≤ s < q ≤ |A| and

for any substrings B′ of B and A′ of A with |A′| = q we have that ed(A′, B′) ≥ s. Then for

every prefix A′ of A there is a substring B′ of B such that ed(A′, B′) ≤ ed(A,B)−s⌊(|A|−

|A′|)/q⌋.

Proof. This lemma is an application of Lemma 6.2 and it is important because it gives a

good description of the restrictions obtained by the filtration.

Apply Lemma 6.2 with A1 = A′, |Aj | < q and the remaining Ai’s of size q, i.e. |Ai| = q.

Consider k1 = ed(A,B) − s⌊(|A| − |A′|)/q⌋ + ǫ with 0 < ǫ < 1, kj = 0. The remaining

ki’s are equal to s. Note that j = ⌊(|A| − |A′|)/q⌋ + 1 and therefore
∑j

i=1 ki = ed(A,B) +

ǫ − s⌊(|A| − |A′|)/q⌋ + s(j − 1) = ed(A,B) + ǫ − s⌊(|A| − |A′|)/q⌋ + s⌊(|A| − |A′|)/q⌋ =

ed(A,B) + ǫ > ed(A,B).

Therefore we conclude that there is a substring B′ of B and an i such that ed(Ai, B
′) <

ki. We will prove that it must be i = 1. Suppose that i = j then ed(Aj, B
′) < kj = 0,

which is impossible. Suppose that 1 < i < j, then ed(Ai, B
′) < ki = s with |Ai| = q, which
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contradicts the hypotheses of the lemma. Therefore i = 1 and ed(A1, B
′) = ed(A′, B′) <

k1 = ed(A,B) − s⌊(|A| − |A′|)/q⌋ + ǫ, which means that ed(A′, B′) ≤ ed(A,B) − s⌊(|A| −

|A′|)/q⌋. �

The lemma implies that, if a phrase is close to a substring of P , but none of its q-grams

are sufficiently close to any substring of P , then the errors must be distributed uniformly

along the phrase. Therefore we can check the phrase progressively (for increasing prefixes),

so that the number of errors permitted grows slowly. This severely limits the necessary

backtracking to find those phrases that escape from the q-gram-based search.

Let us consider q = 4 in our running example. Note that for a substring A′ of A of size

4 we have that k · |A′|v = (1 + ǫ) 9× 4/13 ≈ 2.8. Therefore we choose s = 2. Note that we

cannot use Lemma 6.4 with A = A2 = cdefghijklm and B = cxdxexfgxhixjkxlxm, since

ed(fghi, fgxhi) = 1 < 2 = s and |fghi| = 4. This means that there is an exceptionally well

preserved area of B in A where we only deleted 1 letter out of 5 consecutive characters.

Consider instead that A = cdefghijklm and that B = cxdxexfgxhxijxkxlm. In this case

we can use Lemma 6.4 and obtain the bound ed(cdefghijklm[..i], B′) ≤ 7 − 2⌊(11 − i −

1)/4⌋ for some substrings B′ of B. Note in particular that this is tight for i = 6, i.e.

ed(cdefghijklm[..6], B′) = ed(cdefghi, cxdxexfgxhxi) = 5 = 7 − 2 × ⌊4/4⌋.

Parameter s allows us to balance between two search costs. If we set it low, then the

q-gram-based search will be stricter and faster, but the search for the escaping phrases will

be costlier. If we set it high, most of the cost will be related with the q-gram search.

6.4.2 A Hybrid Lempel-Ziv Index

The following lemma describes the way we combine previous results to perform approximate

search using the ILZI.

Lemma 6.5. Let A and B be strings such that 0 < ed(A,B) ≤ k. Let A = A1A2 . . . Aj,

for strings Ai and some j ≥ 1. Let q, s and v be integers such that 0 ≤ s < q ≤ |A| and

0 ≤ v < |A|/2. Then there is a substring B′ of B and an i such that either:
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1. there is a substring of A′ of Ai such that |A′| = q and ed(A′, B′) < s, or

2. ed(Ai, B
′) < k · |Ai|v in which case for any prefix A′ of Ai there exists a substring B′′

of B′ such that ed(A′, B′′) < k · |Ai|v − s⌊(|Ai| − |A′|)/q⌋.

Proof. As we have explained, our approach first consists in applying Lemma 6.2 considering

ki = k · |Ai|v for 0 ≤ i ≤ j. Observe that, by the definition of |Ai|v, we have that
∑j

i=1 k ·

|Ai|v = k(ǫ+ (|A| − 2v)/(|A| − 2v)) = k(ǫ+ 1) > k. Now, we classify the resulting Ai into

one the two classes we defined before. The first class justifies the first condition of this

lemma. If Ai belongs to the second class, then we apply Lemma 6.4 with the resulting ki.

�

As before, the search runs in two phases. In the first phase, we find the phrases whose

text context must be verified. In the second phase we verify those text contexts for an

approximate occurrence of P . Lemma 6.5 gives the key to carry out the first phase. We

find the relevant phrases via two searches:

• We look for any q-gram contained in a phrase which matches within P with less than s

errors. We backtrack in the trie of phrases for every P [y1..], descending in the trie and

advancing y2 in P [y1..y2] while computing the dynamic programming matrix between

the current trie node and P [y1..y2]. We look for all trie nodes at depth q that match

some P [y1..y2] with less than s errors. Since every suffix of a phrase is a phrase in the

ILZI, every q-gram within any phrase can be found starting from the root of the trie

of phrases. All the phrases Z that descend from each q-gram trie node found must be

verified (those are the phrases that start with that q-gram). We must also spot the

phrases suffixed by each such Z. For this sake, we map each phrase Z to the trie of

reverse phrases and also verify all the descent of the reverse trie nodes. This search

covers case 1 in Lemma 6.5.
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This is precisely the case in our example, since we have that q = 4 and ed(fghi, P [9..13]) =

ed(fghi, fgxhi) = 1 < 2 = s. We then determine that the phrase cdefghijklm contains

the string fghi and locate the occurrence by searching the context around that phrase.

• We look for any phrase Ai matching a portion of P with less than k · |Ai|v errors. This

is done over the trie of phrases. Yet, as we go down in the trie (thus considering longer

phrases), we can enforce that the number of errors found up to depth d must be less

than k · |Ai|v − s⌊(|Ai| − d)/q⌋. This covers case 2 in Lemma 6.5, where the equations

vary according to the roles described in Section 6.3.3 (that is, depending on i):

– 1 < i < j, in which case we are considering a phrase contained inside O that is not

a prefix nor a suffix. The k · |Ai|v formula (both for the matching condition and the

backtracking limit) can be bounded by (1 + ǫ) k · min(|Ai|/(m − k − 2v), 1), which

depends on |Ai|. Since Ai may correspond to any trie node that descends from the

current one, we determine a priori which |Ai| ≤ m − k maximizes the backtracking

limit. We apply the backtracking for each P [y1..].

This is occurs in the variation with P = axbcxdxexfgxhxijxkxlmnxo, that obtains

the limit ed(cdefghijklm[..d + 1], B′) ≤ 7.7 − 2⌊(11 − d)/4⌋ for some substring B′

of P [3..13] = cxdxexfgxhxijxkxlm. Note that, in particular, this limit is valid for

string cdefghijklm. Any string for which this is not the case is abandoned by the

search.

– i = j, in which case we are considering a phrase that starts by a suffix of O. Now

k · |Ai|v can be bounded by (1 + ǫ) k ·min((d− v)/(m− k− 2v), 1), yet still the limit

depends on |Ai| and must be maximized a priori. This time we are only interested in

suffixes of P , that is, we can perform m searches with y2 = m and different y1. If a

node verifies the condition, we must consider also those that descend from it, to get

all the phrases that start with the same suffix of P .

– i = 1, in which case we are considering a phrase that ends in a prefix of O. This

search is as the case i = j, with similar formulas. We are only interested in prefixes of
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P , that is y1 = 0. As the phrases are suffix-closed, we can conduct a single search for

P [0..] from the trie root, finding all phrase suffixes that match each prefix of P . Each

such suffix node must be mapped to the reverse trie and the descent there must be

included. The case i = j = 1 is different, as it includes the case where O is contained

inside a phrase. In this case we do not require the matching trie nodes to be suffixes,

but also prefixes of suffixes. That is, we include the descent of the trie nodes and

map each node in that descent to the reverse trie, just as in case 1.

A simplified version of the previous searches is shown in Algorithm 7. The return statement

terminates the Search procedure, while the Report procedure does not. The elements

obtained by return and Report are used in the second phase of the algorithm. Note that

depending on whether i′ = 0 or j′ = m− 1 the Report procedure includes the Z phrases

relative to cases i = 1 or i = j respectively. The C variable does not represent a specific

string. Instead it represents a generic string, which means that bound in line 13 is generic.

6.4.3 Homogeneous Lempel-Ziv Phrases

In this section we give further insight into the structure of the homogeneous Lempel-Ziv

phrases, i.e. those that verify the conditions of Lemma 6.4. The objective of this section

is to analyze the complexity of the search for the escaping phrases, i.e. those that are not

found in the q-gram based search. The search for these homogeneous phrases is described

in the second point of the previous subsection.

We need a couple of lemmas that give further insight into the structure of these ho-

mogeneous phases. Lemma 6.4 explained that by restricting the minimal number of errors

that a substring of A, of size q, may have we are also restricting the maximal number of

errors that it can have. In fact this condition also restricts the spacing between consecutive

errors. The next lemmas explain this property.
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Algorithm 7 Simplified first phase
1: procedure Search(A′, i′)

2: j′ ← i′

3: for j′ < m do

4: B′ ← P [i′..j′]

5: if |A′| = q and ed(A′, B′) < s then

6: return all Z’s that contain A′

7: end if

8: Ai ← A′

9: if ed(Ai, B
′) < k · |Ai|v then

10: Report(Ai, i
′, j′)

11: end if

12: Ai ← A′.C

13: if ed(A′, B′) < k · |Ai|v − s⌊(|Ai| − |A
′|)/q⌋ then

14: for c ∈ Σ when A′.c is a Z phrase do

15: Search (A′.c, i′)

16: end for

17: end if

18: j′ + +

19: end for

20: end procedure

21: i′ ← 0

22: for i′ < m do

23: Search (ǫ, i′)

24: i′ + +

25: end for

Lemma 6.6. Let A and B be strings and q and s be integers such that 0 ≤ s ≤ q ≤ |A|

and for any substrings B′ of B and A′ of A with |A′| = q we have that ed(A′, B′) ≥ s.

Then for any prefix of A′ of A such that for any substring B′ of B, ed(A′, B′) ≥ 1 we can

conclude that |A′| > |A| − q⌈(ed(A,B) − 1 + ǫ)/s⌉, for any ǫ > 0.

Proof. Suppose by absurd that there is a prefix A′ of A such that for any substring B′ of

B we have ed(A′, B′) ≥ 1 and |A′| ≤ |A| − q⌈(ed(A,B) − 1 + ǫ)/s⌉ for some ǫ > 0.
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Now apply Lemma 6.2 with A1 = A′, |Aj| < q and the remaining Ai’s of size q, i.e.

|Ai| = q and j = 2+ ⌈(ed(A,B)−1+ ǫ)/s⌉. Consider k1 = 1, kj = 0 and the remaining ki’s

equal to s. Therefore
∑j

i=1 ki = 1+ s(j−2) = 1+ s⌈(ed(A,B)−1+ ǫ)/s⌉ ≥ 1+ ed(A,B)−

1 + ǫ = ed(A,B) + ǫ > ed(A,B).

Therefore we conclude that there is a substring B′ of B and an i such that ed(Ai, B
′) <

ki. This, however, is absurd because no value of i may verify this condition. Suppose that

i = j. Then ed(Aj, B
′) < kj = 0, which is impossible. Suppose that 1 < i < j. Then

ed(Ai, B
′) < ki = s with |Ai| = q, which contradicts the hypotheses of the lemma. Finally,

it cannot be that i = 1 either. That would mean that ed(A1, B
′) = ed(A′, B′) < k1 = 1 for

some B′ and this contradicts our initial hypotheses that ed(A′, B′) ≥ 1 for any B′. �

Lemma 6.7. Let A and B be strings and q and s be integers such that 0 ≤ s ≤ q ≤ |A|

and for any substrings B′ of B and A′ of A with |A′| = q we have that ed(A′, B′) ≥ s.

Then for any prefix of A′ of A for which there is a substring B′ of B, ed(A′, B′) ≤ 1 we

can conclude that |A′| < q⌈(1 + ǫ)/s⌉, for any ǫ > 0.

Proof. Suppose by absurd that there is a prefix A′ of A for which there is a substring B′

of B such that ed(A′, B′) ≤ 1 and |A′| ≥ q⌈(1 + ǫ)/s⌉, for some ǫ > 0.

Consider the suffix A′′ that results from A by removing A′. Consider also the suffix B′′

that results when removing B′ from B. Note that B′ is not necessarily a prefix of B, but

we are only interested in the remaining suffix.

We must have ed(A,B) ≤ ed(A′, B′) + ed(A′′, B′′), because of the shortest path inter-

pretation. Therefore ed(A′′, B′′) ≥ ed(A,B) − ed(A′, B′) ≥ ed(A,B) − 1. The suffix A′′

however is too small to contain this number of errors. To see this, apply Lemma 6.6,

replacing 1 by ed(A,B) − 1 and using A′′ and B′′. We conclude that we must have

|A′′| > |A| − q⌈(1 + ǫ)/s⌉. On the other hand, by our initial hypotheses, we conclude

that |A′′| = |A| − |A′| ≤ |A| − q⌈(1+ ǫ)/s⌉. Therefore we have reached an absurd condition

and the lemma is proved. �
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Ukkonen studied the structure of the set of O strings such that ed(P,O) = k, denoted as

Uk(P ) [118], showing that |Uk(P )| ≤ (12/5)(m + 1)k(σ + 1)k (see Subsection 2.5.2). We

will now count the number of strings for which the errors are spread homogeneously. We

define as Uk,q,s(P ) the set of O strings such that ed(P,O) = k, and for any substring O′ of

O, with |O′| = q, and substring P ′ of P we have that ed(O′, P ′) ≥ s.

Lemma 6.8. |Uk,q,s| ≤ (2σ + 1)k(2k + 1)[q(2 + k/s) + k −m− 1]k

Proof. From the previous lemmas we conclude that, for the strings in Uk,q,s the spacing

from an error to the next varies from |O| − q⌈(k − 1 + ǫ)/s⌉ to q⌈(1 + ǫ)/s⌉. Therefore,

counting the number of strings in Uk,q,s is a matter of choosing these spacings and the type

of error to use. The total number of error types is 2σ+1. One σ counts insertions, the other

counts substitutions, and the 1 counts the deletions. The number of spacings available is

given by the following expression:

q⌈(1 + ǫ)/s⌉ − (|O| − q⌈(k − 1 + ǫ)/s⌉) − 1 ≤ q(2 + k/s) − |O| − 1.

Therefore, the number of strings in Uk,q,s can be bounded as follows:

|Uk,q,s| ≤ (2σ + 1)k

m+k
∑

|O|=m−k

[q(2 + k/s) − |O| − 1]k

= (2σ + 1)k[q(2 + k/s) + k −m− 1]k(2k + 1).

�

This bound is somewhat loose. In fact, the (2σ + 1) and [q(2 + k/s) + k −m − 1] never

occur together. For example when [q(2 + k/s) + k −m− 1] occurs, the other factor is 1.

He have therefore shown that, by choosing q and s properly, Uk,q,s is much smaller than

Uk. Consider for example the optimal case where m.s = q.k. Then Uk,q,s = O((2σ+1)k(k−

1 + 2(m.s/k))k(2k + 1)). This shows that the dependency in m can be reduced to m.s/k,

which is considerably smaller, especially when we take s = 1. To obtain this optimal result

we choose the q and s parameters the same way as the hybrid index, by using q = ⌊m/h⌋
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and s = ⌊k/h⌋ + 1 for an appropriate parameter h. This parameter plays the role of the j

parameter in the hybrid index of Navarro et al. [99].

6.5 Practical Issues and Testing

We implemented a prototype to test our algorithm on the ILZI compressed index [106]. As a

baseline, we used efficient sequential bit-parallel algorithms, namely BPM, the bit-parallel

dynamic programming matrix of Myers [89], and EXP, the exact pattern partitioning by

Navarro and Baeza-Yates [91].

We also included in the comparison an implementation of a filtration index using the

simple approach of Lemma 6.1 with A = P and B = O, as briefly described in the beginning

of Section 6.2 [83]. The indexes used in that implementation are the LZ-index [98] (LZI)

and Navarro’s implementation of the FM-index [37]. We also compare an improved variant

of the approximate LZ-index (DLZI [83]). Note that the FM-Index does not need to divide

the text into blocks. However it takes longer to locate occurrences.

The machine was a Pentium 4, 3.2 GHz, 1 MB L2 cache, 1GB RAM, running Fedora

Core 3, and compiling with gcc-3.4 -O9. For the texts we used the files in the Pizza&Chili

corpus (http://pizzachili.dcc.uchile.cl), with 50 MB of English and DNA and 64

MB of proteins. The pattern strings were sampled randomly from the text and each char-

acter was distorted with 10% of probability. All the patterns had length m = 30. Every

configuration was tested during at least 60 seconds using at least 5 repetitions. Hence, the

numbers of repetitions varied between 5 and 130,000. To parametrize the hybrid index we

tested all the j values from 1 to k + 1 and reported the best time. For the ILZI we choose

q = ⌊m/h⌋ and s = ⌊k/h⌋+1 for some convenient h, since Lemma 6.8 shows this is the best

approach and it was corroborated by our experiments. To determine the value of h and

v, we also tested the viable configurations and reported the best results. In our examples,

choosing v and h such that 2v is slightly smaller than q yielded the best configuration.



140 6 Approximate String Matching

Table 6.2. Memory peaks, in Megabytes, for the different approaches when k = 6.

ILZI Hybrid LZI DLZI FMIndex

English 55 257 145 178 131

DNA 45 252 125 158 127

Proteins 105 366 217 228 165

Figure 6.1 shows how the parameter v affects the average query time. The average query

time, in seconds, is shown in Figure 6.2 and the respective memory heap peaks for indexed

approaches are shown in Table 6.2. The incomplete results are due to limitations of the

respective prototype. The hybrid index provides the fastest approach to the problem. How-

ever it also requires the most space. Aside from the hybrid index, our approach is always

either the fastest or within reasonable distance from the fastest approach. For low error

levels, k = 1 or k = 2, our approach is significantly faster, up to an order of magnitude

better. This is very important since the compressed approaches seem to saturate at a given

performance for low error levels: in English k = 1 to 3, in DNA k = 1 to 2, and in proteins

k = 1 to 5. This means that indexed approaches are the best alternative only for low error

levels. In fact, the sequential approaches outperform the compressed indexed approaches

for higher error levels. In DNA this occurs at k = 4 (BPM) and in English at k = 5 (EXP).

Our index performed particularly well on proteins, as did the hybrid index. This could

happen due to the fact that proteins behave closer to random text, and this means that the

parametrization of ours and the hybrid index indeed balances between exponential worst

cases.

In terms of space, the ILZI is also very competitive, as it occupies almost the same

space as the plain text, except for proteins, that are not very compressible. We presented

the space that the algorithms need to operate and not just the index size, since the other

approaches need intermediate data structures to operate.
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6.5.1 A Tight Backtracking Bound

For the real prototype we used a stricter backtracking than what was explained in previous

sections. For each pattern substring P [y1..y2] to be matched, we computed the maximum

number of errors that could occur when matching it in the text, taking into consideration

the position O[x1..x2] where it would be matched, and maximizing over the possible areas

of O where the search would be necessary. For example, the extremes of P can be matched

with fewer errors than the middle. This process involves precomputing tables that depend

on m and k.

For each Oi = O[x1..x2 − 1], we can compute the value of |Oi|v as (v(x2) − v(x1))(1 +

ǫ)/(|O|−2v), where v(x) = max(v,min(|O|− v, x)). The problem is that, as we mentioned

in the previous section, we perform searches for P ′ = P [y1..y2 −1] and therefore the values

of x1 and x2 are not known. Therefore, we will compute a table that, for each pair y1, y2−1,

stores the maximal possible value of |Oi|v. To compute this maximal value we can use linear

programming. Consider that I1, D1, S1, I2, D2, S2 and I3, D3, S3 are variables. The D

variables represent deletions, the S variables represent substitutions and the I variables

represent insertions in the process that transforms O into P . The variables indexed by

1 (I1, D1, S1) are relative to the transformation of O[0..x1 − 1] into P [0..y1 − 1]. The

variables indexed by 2 (I2, D2, S2) are relative to the transformation of O[x1..x2 − 1] into

P [y1..y2 − 1]. The variables indexed by 3 (I3, D3, S3) are relative to the transformation of

O[x2..|P | − 1] into P [y2..|O| − 1].

The following equations describe the relations between P and O, the first three equations

describe the effect of the errors and the last two reflect the bounds on the number of errors,

namely that ed(P,O) ≤ k and ed(Oi, P
′) < k.|Oi|v.
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y1 + I1 −D1 = x1

y2 − y1 + I2 −D2 = x2 − x1

|P | − y2 + I3 −D3 = |O| − x2

I1 + I2 + I3 +D1 +D2 +D3 + S1 + S2 + S3 ≤ k

I2 + S2 +D2 < k.|Oi|v

For q-samples, we have the restriction that x2 − x1 = q. Our goal is, therefore, to compute

a table MO(y1, y2) that stores the maximum |Oi|v restricted by the relations above, for

predetermined values of m and v. This can be solved by dividing this problem into linear

programming problems, considering |O| constant. A naive solution simply scans the possi-

ble values of I1, I2, I3, D1, D2, D3, S1, S2, S3, |O|, requiring O(k10) operations for each pair

(y1, y2). This table depends on m and k, however it is completely independent of T , hence

it can be computed a priori. Therefore the time to compute this table is not considered at

query time.

We also need to maximize the limit condition k.|Oi|v−s⌊(|Oi|−|O′|)/q⌋. For this purpose

we add variables x3, I4, D4, S4 and the following equations:

I4 ≤ I3

D4 ≤ D3

S4 ≤ S3

x2 +D4 ≤ x3 ≤ |O|

In this scenario Oi = O[x1..x3 − 1] and O′ = O[x1..x2 − 1]. The formula for |Oi|v becomes

(v(x3) − v(x1))(1 + ǫ)/(|O| − 2v) and the expression s⌊(|Oi| − |O′|)/q⌋ is computed as

s⌊(x3 − x2)/q⌋. We store the maximal value of expression k.|Oi|v − s⌊(|Oi| − |O′|)/q⌋ in a

table MOSQ(y1, y2, |O′|). Therefore, we can verify that condition ed(O′, P ′) < k.|Oi|v −
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s⌊(|Oi| − |O′|)/q⌋ is verified by checking ed(O′, P [y1..y2 − 1]) < MOSQ(y1, y2, |O′|), where

|O′| is the current string depth of the search, i.e. d. This table can also be precomputed,

since it does not depend on the letters of P . However it does depend on q and s.

6.6 Conclusions and Future Work

We presented an adaptation of the hybrid index for Lempel-Ziv compressed indexes. We

started by addressing the problem of approximate matching with q-samples indexes, where

we described a new approach to this problem. We then adapted our algorithm to the

irregular parsing produced by Lempel-Ziv indexes. Our approach was flexible enough to be

used as a hybrid index instead of an exact-searching-based filtration index. We implemented

our algorithm and compared it with the simple filtration approach built over different

compressed indexes, with sequential algorithms, and with a good uncompressed index.

Our results show that our index provides a good space/time tradeoff, using a small

amount of space (at best 0.9 times the text size, which is 5.6 times less than a classical

index) in exchange for searching from 6.2 to 33 times slower than a classical index, for

k = 1 to 3. This is better than the existing compressed approaches for low error levels,

which is significant since indexed approaches are most valuable, if compared to sequential

approaches, when the error level is low. Therefore our work significantly improves the

usability of compressed indexes for approximate matching.

A crucial part of our work was our approach to the prefixes/suffixes of O. This approach

is in fact not essential for q-samples indexes. However it can improve previous results [101]

(see Table A.14). However for a Lempel-Ziv index it is essential. In practice, we verified

that 2v ≤ q. This means that we are sort of sacrificing q letters from the pattern and

distribute the errors by the remaining letters, the same way that q-samples sacrifice at

least q − 1 letters.
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An interesting idea we presented was to associate error weights to the letters of O.

This was done in a uniform fashion, except for the edges. We believe that tuning these

weights may lead to considerable improvements. For example, assigning smaller weights

to least frequent letters will force the algorithm to search for less frequent strings and,

therefore, decrease the number of positions to verify. This weighting, however, cannot be

precomputed and therefore requires further research.

Finally, our implementation can be further improved since we do no secondary filtering,

that is, we do not apply any sequential filter over the text contexts before fully verifying

them.
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Fig. 6.1. Average user time, in seconds, that the ILZI takes to find occurrences of patterns of size 30 with k errors,

using different v’s.
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Fig. 6.2. Average user time, in seconds, for finding the occurrences of patterns of size 30 with k errors.
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Conclusions

The central focus of the work described in this thesis is the study of Lempel-Ziv based

compressed self-indexes. Compressed indexes are a relatively new form of full-text index

that are becoming popular due to their remarkable performance. Moreover, index data

structures are also the focus of a great deal of attention, due to potential applications in

computational biology and information retrieval. In this chapter, we present a resume of

what has been obtained and what is left to do.

7.1 Results Obtained

In this thesis, we proposed a new Lempel-Ziv compressed index, the ILZI. In Chapter 4

we note that the search time of Lempel-Ziv compressed indexes is affected by an O(m2)

dependency on m. We explain that the Lempel-Ziv index of Ferragina and Manzini [37]

does not completely address this problem, since, even though it obtains an O(m) search

time, it does so by using the FM-Index.

We clearly identify the reasons that cause the O(m2) time dependency. We propose the

inverted Lempel-Ziv index that obtains an O(m) time dependency by addressing these

causes. The main cause for the O(m2) complexity is that the same string may appear

in O(m) different ways as the concatenation of LZ78 blocks and this is an undesirable

property when searching for p. We proposed the maximal parsing to solve this problem.
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We also pointed out that our dictionary T78 is a suffix tree. This property was previously

unknown and hence unexplored.

Our approach reduces the dependency from O(m2) to O(m), which represents a sig-

nificant improvement. We argued theoretically that the underlying improvement should

be around (log u)/Hk. We implemented a prototype of the inverted Lempel-Ziv index and

demonstrated empirically that our improvement was significant. We also introduced some

important practical notions such as spurious entries (this concept is also of theoretical im-

portance) and the LZ78 parsing with quorum, which were important to reduce the space

requirements of the ILZI. In fact in practice the ILZI is smaller than the LZI (see Table 4.4).

We also proposed a new succinct representation of suffix trees (see lemma 4.2) that is

efficient for our index. Our representation is based on the duality between suffix trees and

tries and on the succinct representation of trees by Geary et al. [43] that is able to access

the j-th ancestor of a node in constant time. This representation may be of independent

interest. Note, however, that a naive implementation will not be by itself competitive, not

even against classical approaches. Suppose we assume a naive implementation that uses

a wavelet tree for storing R. This representation will require (d log d + 5d)(1 + o(1)) bits.

If we use the implementation of Rank and Select by Gonzalez et al. [47], we have that

(1 + o(1)) = 1, 375. Also if we assume that log d = 32 and that d = 2u this representation

requires around 12.7u bytes. This is less competitive than the representation of Kurtz [67]

and than representations of enhanced suffix arrays by Abouelhoda et al. [1]. However,

assuming that d = 2u may be too pessimistic. A simple test with 10 megabytes of English

and DNA (from Pizza&Chili) shows empirically that d = 1.7u. Using these values this

representation requires 10.8u bytes, which is competitive with Kurtz’s representation but

not so much with the representation of Abouelhoda et al.

In Chapter 5 we show that the functionality of the ILZI can be extended to solve the

longest common substring problem (see Chapter 5). This shows that, in fact, compressed

indexes based on the Lempel-Ziv data compression are extremely flexible. Note that this
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result is the best known algorithm for this problem using only O(uHk) bits. We also imple-

mented a prototype to show that, in practice, we were able to obtain a linear dependency

on m.

Chapter 6 describes a hybrid approach to perform approximate pattern matching with

the ILZI. Our approach focused on adapting filtration techniques to the structure of the

ILZI, instead of first using filtration and then using the ILZI as a black-box index. We

demonstrated empirically that our approach was more efficient than this simpler approach,

particularly for low error levels. This includes most typical searches. To achieve this ob-

jective, we introduced new algorithmic ideas. We abstracted some of the structure of the

ILZI and explained it as a variable q-samples index. We pointed a variation of the filtration

lemma that distributes errors according to the size of the samples. We introduced a new

filtration technique where the samples that overlap the occurrence (not only those con-

tained in the occurrence) can be considered. This is of interest even for classical q-sample

indexes. We search for q-samples within long phrases to detect occurrences even if they are

within a phrase. This technique also includes novel insights.

We believe that this thesis makes a valuable contribution to the field. We clearly pointed

out a crucial problem in the performance of Lempel-Ziv based compressed indexes, explain-

ing the causes of the phenomenon and proposing a way to solve it without using another

data compression technique. Our work contributes to the overall understanding of Lempel-

Ziv based indexes. Throughout this thesis we recurrently pointed out the parallelism be-

tween LZ based compressed indexes and inverted indexes. This relation also accounts for

much of the flexibility of LZ based compressed indexes. In fact, we believe that it is pos-

sible to extend the functionality of the ILZI by importing results from inverted indexes.

Inverted indexes have a number of desirable properties: they perform well in secondary

memory and some work on dynamic inverted indexes already exists. Moreover, from our

point of view, this parallelism may contribute greatly to a larger awareness of the inverted-

LZ-index. From a high level point of view, the ILZI can simply be described as “an inverted
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index with a dictionary inferred by the LZ78 algorithm”. Due to the popularity of inverted

indexes and of the LZ data compression, this should immediately give a rough idea to a

vast amount of computer science professionals and scientists. The practical approach we

used should also be easy to grasp.

7.2 Future Work

Compressed indexes, in particular Lempel-Ziv based compressed indexes, are still being

heavily researched. We believe a number of problems are important enough to require

further research. The first is related with word based indexes. Adapting the Lempel-Ziv

indexes to consider words as indivisible, instead of characters, may provide indexes that

are more effective, both in terms of space and time, for natural language applications. In

particular it is interesting to study if it can effectively replace inverted indexes.

Another interesting area of research is related with compressed suffix trees. Designing a

Lempel-Ziv based compressed suffix tree representation is an important open problem in

this area. Recall that Sadakane [109] proposed a representation of suffix trees (see Chap-

ter 5), that supports all the operations that suffix trees support with reasonable perfor-

mance, based in the compressed suffix array of Grossi, Gupta and Vitter [50]. However,

it seems very challenging to obtain a representation that requires O(uHk) bits and allows

moving from one node to another in less than O(m) time. The main problem that we faced

when trying to design such a representation is how to represent nodes, since a node in

the suffix tree will be associated with O(m) range queries in the ILZI. In Chapter 5 we

were able to move through O(m) nodes in O(1) amortized time per transition, because the

sequence of nodes to visit had a very regular structure. However, moving arbitrarily from

one node to another requires O(m) time in general.

The construction process also requires further attention. Compressed indexes are usually

derived from an uncompressed one. Although this is usually a simple process, it is also a
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very space consuming approach. Arroyuelo et al. [7] have recently proposed a way to

construct the LZI in a space efficient way. It is necessary to apply this type of research to

the ILZI, mainly addressing the problems caused by spurious entries and maximal parsing.

Designing dynamic indexes is also an interesting challenge. Most indexes are static,

meaning that they must be rebuilt from scratch upon text changes. This is currently

a problem even on uncompressed full-text indexes. Note that this problem is related to

the previous point, since having a dynamic compressed representation also permits us to

construct the index with small space requirements. There is some recent work on dynamic

compressed indexes [19, 35, 54, 77] and some interesting older work for inverted files [42, 70].

Finally obtaining indexes that operate efficiently in secondary memory is crucial for

many applications. Secondary memory is a largely overlooked issue in compressed indexes.

However, it is crucial to address this issue to obtain indexes that can handle very large

text collections, as is the case of information retrieval systems. This is also a problem

for uncompressed full-text indexes. A survey on full-text indexes in secondary memory was

given by Kärkkäinen et al. [60]. Recently Arroyuelo et al. [5] proposed a secondary memory

aware Lempel-Ziv index. We expect our analogy with inverted files to prove very useful in

improving this kind of results.
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Experimental Results

In this appendix we give more extensive experimental results.

The texts used for the experiments were obtained from the Pizza&Chili corpus:

• Sources (program source code). This file is formed by C/Java source code obtained

by concatenating all the .c, .h, .C and .java files of the linux-2.6.11.6 and gcc-4.0.0

distributions. Downloaded on June 9, 2005.

• Pitches (MIDI pitch values). This file is a sequence of pitch values (bytes in 0-127, plus

a few extra special values) obtained from a myriad of MIDI files freely available on

Internet. The MIDI files were processed using semex 1.29 tool by Kjell Lemstrom, so

as to convert them to IRP format. This is a human-readable tuple format, where the

5th column is the pitch value. Then the pitch values were coded in one byte each and

concatenated. Downloaded during April 2005.

• Proteins (protein sequences). This file is a sequence of newline-separated protein se-

quences (without descriptions, just the bare proteins) obtained from the Swissprot

database. Each of the 20 amino acids is coded as one uppercase letter. Updated on

December 15, 2006.

• DNA (DNA sequences). This file is a sequence of newline-separated gene DNA sequences

(without descriptions, just the bare DNA code) obtained from files 01hgp10 to 21hgp10,

plus 0xhgp10 and 0yhgp10, from Gutenberg Project. Each of the 4 bases is coded as an
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uppercase letter A,G,C,T, and there are a few occurrences of other special characters.

Downloaded on June 9, 2005.

• English (English texts). This file is the concatenation of English text files selected from

etext02 to etext05 collections of Gutenberg Project. We deleted the headers related to

the project so as to leave just the real text. Downloaded on May 4, 2005.

• XML (structured text). This file is an XML that provides bibliographic information

on major computer science journals and proceedings and it is obtained from dblp.uni-

trier.de. Downloaded on September 27, 2005.

Some files were trimmed to 50 Megabytes. The other files already occupied approxi-

mately the same space. The files that were trimmed are referred with a 50MB suffix, as

for example sources.50MB. The size of the other files can be consulted in table A.6 under

Raw.

The information about the test files in Tables A.1,A.2 and A.3 was obtained from the

Pizza&Chili site. The inverse probability of matching is 1 divided by the probability that

two text characters chosen at random match. This is a measure of the effective alphabet

size (on a uniformly distributed text, it is precisely the alphabet size). In Table A.6 we

Table A.1. Alphabet size and Inverse matching probability for the collections of the Pizza&Chili corpus.

Collection Alphabet size Inverse matching probability

Sources 230 24.77

Pitches 133 39.75

Proteins 27 17.02

DNA 16 3.91

English 239 15.25

XML 97 28.73

estimate the empirical entropy by using the number of blocks in the LZ78 parsing of T .

However in Table A.2 we show the compressibility of the available texts using other meth-



A.1 The Inverted Lempel-Ziv Index 155

ods. Compression ratios are all expressed as the percentage of the compressed text size

divided by size of the original text. In particular, Gzip (v.1.3.3) gives an idea of compress-

ibility via dictionaries, Bzip2 (v.1.0.3) gives an idea of block-sorting compressibility, and

PPMDi gives an idea of Partial-Match-based compressors. Table A.3 gives the true value

of the empirical entropy for different k’s measured in number of bits per input symbol. In

parentheses we give the corresponding compression ratio.

Table A.2. Compression ratios for the collections of the Pizza&Chili corpus.

Collection Size (Mb) gzip -1 gzip -9 bzip -1 bzip -9 ppmdi -l 0 ppmdi -l 9

SOURCES 50.00 28.95% 23.29% 22.18% 19.79% 19.35% 16.71%

PITCHES 53.25 30.59% 30.24% 34.62% 35.73% 29.81% 30.31%

PROTEINS 50.00 49.71% 47.39% 46.25% 45.56% 43.77% 42.05%

DNA 50.00 32.50% 27.05% 26.55% 25.98% 23.82% 24.31%

ENGLISH 50.00 44.90% 37.52% 32.85% 28.40% 29.91% 24.35%

XML 50.00 21,46% 17.23% 14.31% 11.22% 12.10% 9.21%

Table A.3. Empirical entropy for the collections of the Pizza&Chili corpus.

Collection Size (Mb) H0 H1 H2 H3 H4 H5

SOURCES 50.00 5.537 (69.21%) 4.038 (50.48%) 3.012 (37.65%) 2.214 (27.68%) 1.714 (21.43%) 1.372 (17.15%)

PITCHES 53.25 5.628 (70.35%) 4.716 (58.95%) 4.119 (51.49%) 3.443 (43.04%) 2.341 (29.26%) 1.275 (15.94%)

PROTEINS 50.00 4.195 (52.44%) 4.173 (52.16%) 4.146 (51.82%) 4.034 (50.43%) 3.728 (46.61%) 2.705 (33.81%)

DNA 50.00 1.982 (24.78%) 1.935 (24.19%) 1.925 (24.06%) 1.920 (24.00%) 1.913 (23.91%) 1.903 (23.79%)

ENGLISH 50.00 4.529 (56.61%) 3.606 (45.08%) 2.922 (36.53%) 2.386 (29.83%) 2.013 (25.16%) 1.764 (22.05%)

XML 50.00 5.230 (65.37%) 3.294 (41.17%) 2.007 (25.09%) 1.322 (16.53%) 0.956 (11.95%) 0.735 (9.19%)

A.1 The Inverted Lempel-Ziv Index

The results in this section are related to the algorithms described in chapter 4.
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Fig. A.1. Time performance of the ILZI index for counting. The x-axis represents different quorum values. The

results are given in seconds.
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In Table A.6 we show the space requirements of different compressed indexes for the

sample files. Variable i represents the size of the different indexes in bits. Therefore i/223

gives the size in Megabytes (MB), i/u8 gives the ratio with the original string, i/uHk gives
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the ratio with a compressed string, where Hk is estimated as (n log u)/n. The par line gives

the parameters used for indexes that require it. The parameters were chosen so that the

resulting index occupied approximately the same size as the ILZI. However, some minimal

values were used for performance reasons. For the CSArray we give the D value, for CSAx8

we have that L = 8 ×D.

Figures A.2,A.3,A.4,A.5,A.6 show the time performance of different compressed indexes,

the same results can be observed in Tables A.7 to A.12.
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sources.50MB dblp.xml.50MB dna.50MB

l i/223 i/u8 i/uHk i/223 i/u8 i/uHk i/223 i/u8 i/uHk

32 50.0 1.00 2.80 26.9 0.54 2.73 30.9 0.62 2.24

16 48.0 0.96 2.69 24.8 0.50 2.52 31.3 0.63 2.27

8 46.6 0.93 2.61 24.2 0.48 2.46 33.0 0.66 2.39

4 48.6 0.97 2.72 24.1 0.48 2.45 37.0 0.74 2.68

2 53.5 1.07 3.00 26.1 0.52 2.65 44.0 0.88 3.19

1 59.6 1.19 3.34 28.9 0.58 2.93 52.5 1.05 3.81

0 87.4 1.75 4.90 42.5 0.85 4.32 92.6 1.85 6.72

d/n d′/n f/n d/n d′/n f/n d/n d′/n f/n

0.60 1.19 0.90 0.54 1.08 0.87 0.92 1.20 0.97

total total total

2.70 + 1.79ǫ 2.49 + 1.62ǫ 3.09 + 2.12ǫ

proteins pitches english.50MB

l i/223 i/u8 i/uHk i/223 i/u8 i/uHk i/223 i/u8 i/uHk

32 85.9 1.35 2.54 75.8 1.42 2.83 47.6 0.95 2.63

16 85.6 1.34 2.53 73.9 1.39 2.76 46.4 0.93 2.56

8 87.5 1.37 2.59 72.6 1.36 2.71 45.8 0.92 2.53

4 93.7 1.47 2.77 76.4 1.43 2.85 48.5 0.97 2.68

2 102.8 1.61 3.04 84.7 1.59 3.16 54.3 1.09 2.99

1 120.4 1.89 3.56 97.9 1.84 3.65 61.8 1.24 3.41

0 226.5 3.55 6.69 161.7 3.04 6.04 93.3 1.87 5.15

d/n d′/n f/n d/n d′/n f/n d/n d′/n f/n

0.85 1.22 0.98 0.76 1.25 0.94 0.64 1.33 0.94

total total total

3.04 + 2.07ǫ 2.95 + 2.01ǫ 2.90 + 1.96ǫ

Table A.4. Space requirements of the ILZI index for different quorum values. Variable l represents different quorum

values. Variable i represents the size of the different indexes in bits. Therefore i/223 gives the size in Megabytes

(MB), i/u8 gives the ratio with the original string, i/uHk gives the ratio with a compressed string, where Hk is

estimated as (n log u)/n. The bottom part of the column shows empirical values for the space terms of our index,

d/n, d′/n and f/n. Below total we show the empirical value of the space expression. Note that the factor associated

with the ǫ counts the space of all the structures except the range data structure.
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dblp.xml.50MB pitches

(↓ l)(m→) 5 10 20 30 40 50 60 5 10 20 30 40 50 60

32 4.91e-4 1.91e-4 4.41e-5 1.85e-5 1.17e-5 7.68e-6 5.78e-6 2.77e-4 4.53e-5 2.10e-5 1.51e-5 1.24e-5 1.06e-5 9.43e-6

16 4.58e-4 1.73e-4 3.76e-5 1.49e-5 8.64e-6 5.40e-6 3.96e-6 2.74e-4 3.85e-5 1.71e-5 1.23e-5 1.01e-5 8.84e-6 7.81e-6

8 4.38e-4 1.57e-4 3.33e-5 1.28e-5 7.43e-6 4.26e-6 3.01e-6 2.64e-4 3.25e-5 1.41e-5 9.98e-6 8.27e-6 7.21e-6 6.42e-6

4 4.25e-4 1.48e-4 3.26e-5 1.20e-5 6.49e-6 3.68e-6 2.53e-6 2.77e-4 2.94e-5 1.24e-5 8.83e-6 7.30e-6 6.38e-6 5.74e-6

2 4.37e-4 1.45e-4 3.25e-5 1.15e-5 6.18e-6 3.42e-6 2.32e-6 2.57e-4 2.77e-5 1.16e-5 8.20e-6 6.78e-6 5.92e-6 5.34e-6

1 4.69e-4 1.47e-4 3.19e-5 1.16e-5 6.10e-6 3.33e-6 2.23e-6 2.59e-4 2.67e-5 1.10e-5 7.83e-6 6.49e-6 5.67e-6 5.14e-6

0 5.30e-4 1.64e-4 3.28e-5 1.19e-5 6.01e-6 3.07e-6 2.05e-6 2.66e-4 2.49e-5 9.99e-6 7.15e-6 5.98e-6 5.25e-6 4.79e-6

dna.50MB proteins

(↓ l)(m→) 5 10 20 30 40 50 60 5 10 20 30 40 50 60

32 1.89e-2 4.35e-4 1.38e-5 9.12e-6 7.00e-6 5.75e-6 4.92e-6 4.89e-4 2.62e-5 1.37e-5 9.42e-6 7.31e-6 6.05e-6 5.22e-6

16 1.90e-2 4.37e-4 8.43e-6 5.46e-6 4.30e-6 3.59e-6 3.12e-6 4.79e-4 1.60e-5 8.49e-6 6.01e-6 4.75e-6 4.01e-6 3.50e-6

8 1.85e-2 4.24e-4 5.44e-6 3.41e-6 2.71e-6 2.31e-6 2.05e-6 4.73e-4 8.96e-6 5.04e-6 3.74e-6 3.09e-6 2.70e-6 2.43e-6

4 1.90e-2 4.37e-4 4.25e-6 2.56e-6 2.09e-6 1.83e-6 1.68e-6 4.66e-4 5.33e-6 3.24e-6 2.54e-6 2.19e-6 1.98e-6 1.84e-6

2 1.93e-2 4.44e-4 3.50e-6 2.01e-6 1.67e-6 1.50e-6 1.40e-6 4.72e-4 3.76e-6 2.48e-6 2.01e-6 1.80e-6 1.67e-6 1.59e-6

1 2.00e-2 4.59e-4 3.20e-6 1.74e-6 1.46e-6 1.33e-6 1.26e-6 4.85e-4 3.10e-6 2.08e-6 1.78e-6 1.63e-6 1.54e-6 1.48e-6

0 2.42e-2 5.49e-4 3.07e-6 1.46e-6 1.24e-6 1.16e-6 1.13e-6 5.81e-4 2.42e-6 1.61e-6 1.49e-6 1.44e-6 1.40e-6 1.38e-6

english.50MB sources.50MB

(↓ l)(m→) 5 10 20 30 40 50 60 5 10 20 30 40 50 60

32 1.90e-3 5.93e-5 1.48e-5 1.01e-5 7.76e-6 6.39e-6 5.46e-6 9.87e-4 1.50e-4 2.95e-5 1.48e-5 1.03e-5 8.01e-6 6.56e-6

16 1.89e-3 5.20e-5 9.49e-6 6.49e-6 5.07e-6 4.22e-6 3.66e-6 9.54e-4 1.38e-4 2.36e-5 1.06e-5 7.13e-6 5.53e-6 4.52e-6

8 1.75e-3 4.54e-5 5.82e-6 4.02e-6 3.18e-6 2.69e-6 2.38e-6 9.13e-4 1.28e-4 1.96e-5 8.05e-6 5.30e-6 4.06e-6 3.30e-6

4 1.79e-3 4.50e-5 4.45e-6 3.13e-6 2.55e-6 2.22e-6 2.01e-6 9.01e-4 1.24e-4 1.73e-5 6.45e-6 4.23e-6 3.21e-6 2.61e-6

2 1.78e-3 4.32e-5 3.34e-6 2.39e-6 1.99e-6 1.77e-6 1.63e-6 9.13e-4 1.22e-4 1.58e-5 5.58e-6 3.60e-6 2.71e-6 2.18e-6

1 1.79e-3 4.29e-5 2.82e-6 2.03e-6 1.73e-6 1.57e-6 1.47e-6 9.01e-4 1.20e-4 1.48e-5 4.85e-6 3.12e-6 2.36e-6 1.90e-6

0 1.89e-3 4.28e-5 2.19e-6 1.59e-6 1.42e-6 1.32e-6 1.27e-6 9.48e-4 1.19e-4 1.35e-5 4.14e-6 2.62e-6 2.00e-6 1.63e-6

Table A.5. Time performance of the ILZI for counting in seconds. Variable l represents different quorum values.
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Raw ILZI LZI NFMI CSAx8 LZI-7 SSA RL AFFMI FMI2 SAC

sources.50MB i/223 50.0 53.5 80.9 68.1 54.6 73.6 57.2 53.2 54.1 53.7 212.5

i/8u 1.00 1.07 1.62 1.36 1.09 1.47 1.14 1.06 1.08 1.07 4.25

i/uHk 2.80 3.00 4.53 3.81 3.06 4.13 3.20 2.98 3.03 3.01 11.91

par 5 7 512 26 36 0.17

dblp.xml.50MB i/223 50.0 26.1 44.5 64.9 25.8 40.4 54.6 33.6 32.9 28.7 212.5

i/8u 1.00 0.52 0.89 1.30 0.52 0.81 1.09 0.67 0.66 0.57 4.25

i/uHk 5.08 2.65 4.52 6.60 2.62 4.11 5.55 3.42 3.35 2.91 21.60

par 5 19 512 512 512 0.1

dna.50MB i/223 50.0 44.0 60.9 63.4 44.6 54.5 44.3 44.1 43.5 47.1 212.5

i/8u 1.00 0.88 1.22 1.27 0.89 1.09 0.89 0.88 0.87 0.94 4.25

i/uHk 3.63 3.19 4.42 4.60 3.23 3.95 3.21 3.19 3.16 3.42 15.41

par 5 11 24 64 24 0.17

proteins i/223 63.7 102.8 152.9 100.9 100.1 136.3 108.2 104.1 109.0 270.8

i/8u 1.00 1.61 2.40 1.58 1.57 2.14 1.70 1.63 1.71 4.25

i/uHk 1.88 3.04 4.52 2.98 2.96 4.03 3.20 3.08 3.22 8.00

par 10 6 10 12 0.27

pitches i/223 53.2 84.7 124.8 86.8 86.1 114.4 87.5 84.8 92.9 226.3

i/8u 1.00 1.59 2.34 1.63 1.62 2.15 1.64 1.59 1.74 4.25

i/uHk 1.99 3.16 4.66 3.24 3.21 4.27 3.27 3.17 3.47 8.44

par 9 5 16 12 0.26

english.50MB i/223 50.0 54.3 81.1 66.8 56.3 72.3 54.1 52.2 54.6 53.2 212.5

i/8u 1.00 1.09 1.62 1.34 1.13 1.45 1.08 1.04 1.09 1.06 4.25

i/uHk 2.76 2.99 4.47 3.69 3.11 3.99 2.99 2.88 3.01 2.94 11.73

par 5 7 64 30 24 0.17

Table A.6. Table with the size of different compressed indexes for sample files. It shows the space requirements

of different indexes, the original string (Raw), the Inverted-LZ-Index (ILZI), Navarro’s LZ-index (LZI), Navarro’s

implementation of the FM-index (NFMI), Sadakane’s CSArray (CSAx8), smaller LZ-index (LZI-7), the succinct

suffix array (SSA), the run-length FM-index (RL), the alphabet friendly FM-index (AFFMI), the second version

of the FM-index (FMI2), SAC is a suffix array in uncompressed form, packed in bits.
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Fig. A.2. Time results for counting. These graphs shows the impact of our improvement. This can be observed

by comparing the ILZI and LZI indexes. The graphs also show the fact that LZ based indexed cannot count in

optimal time. However they do become competitive when m increases, causing occ to decrease.
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Fig. A.3. Time results for the total reporting time.
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Fig. A.4. Time results for reporting factor (R). Theses graphs confirm that in fact LZ based indexes are the fastest

at reporting occurrences. These results show that this factor is comparable to that of suffix arrays, being orders of

magnitude faster than the alternatives.
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Fig. A.5. Time results for outputting.
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Fig. A.6. Time results for outputting factor (O). These results show that the ILZI is among the fastest compressed

indexes at outputting.
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Table A.7. Time results for file dblp.xml.50MB in seconds. C is counting, R is the reporting factor, TR it the

total reporting time, O is the outputting factor and TO is the total outputting time.

m ILZI LZI NFMI CSAx8 LZI-7 SSA RL AFFMI FMI2 SAC

C 5 (8) 4e-4 (9) 5e-4 (1) 1e-6 (6) 5e-6 (10) 5e-4 (3) 2e-6 (5) 4e-6 (2) 2e-6 (7) 9e-5 (4) 2e-6

10 (8) 1e-4 (10) 2e-4 (2) 1e-6 (6) 5e-6 (9) 2e-4 (4) 2e-6 (5) 5e-6 (3) 2e-6 (7) 1e-4 (1) 1e-6

20 (7) 3e-5 (8) 4e-5 (2) 1e-6 (5) 5e-6 (9) 5e-5 (4) 2e-6 (6) 5e-6 (3) 2e-6 (10) 1e-4 (1) 5e-7

30 (7) 1e-5 (8) 3e-5 (2) 1e-6 (5) 5e-6 (9) 4e-5 (4) 2e-6 (6) 5e-6 (3) 2e-6 (10) 9e-5 (1) 3e-7

40 (7) 6e-6 (8) 3e-5 (2) 1e-6 (5) 5e-6 (9) 3e-5 (4) 2e-6 (6) 5e-6 (3) 2e-6 (10) 8e-5 (1) 3e-7

50 (5) 3e-6 (8) 3e-5 (2) 1e-6 (6) 5e-6 (9) 3e-5 (4) 2e-6 (7) 5e-6 (3) 2e-6 (10) 7e-5 (1) 2e-7

60 (5) 2e-6 (8) 3e-5 (2) 1e-6 (6) 5e-6 (9) 3e-5 (4) 2e-6 (7) 5e-6 (3) 1e-6 (10) 6e-5 (1) 2e-7

R 5 (2) 3e-7 (4) 5e-7 (7) 3e-5 (6) 1e-5 (3) 3e-7 (8) 3e-4 (10) 1e-3 (9) 3e-4 (5) 2e-6 (1) 3e-7

10 (2) 3e-7 (4) 5e-7 (7) 3e-5 (6) 9e-6 (3) 4e-7 (8) 3e-4 (10) 1e-3 (9) 3e-4 (5) 5e-6 (1) 2e-7

20 (3) 3e-7 (4) 5e-7 (7) 3e-5 (6) 8e-6 (2) 3e-7 (8) 3e-4 (10) 1e-3 (9) 3e-4 (5) 3e-6 (1) 2e-7

30 (2) 3e-7 (4) 5e-7 (7) 3e-5 (5) 8e-6 (3) 3e-7 (8) 3e-4 (10) 1e-3 (9) 3e-4 (6) 8e-6 (1) 2e-7

40 (2) 3e-7 (4) 5e-7 (7) 3e-5 (5) 8e-6 (3) 4e-7 (8) 3e-4 (10) 1e-3 (9) 3e-4 (6) 8e-6 (1) 3e-7

50 (3) 3e-7 (4) 5e-7 (7) 3e-5 (5) 8e-6 (2) 3e-7 (8) 3e-4 (10) 1e-3 (9) 3e-4 (6) 9e-6 (1) 2e-7

60 (2) 3e-7 (3) 5e-7 (7) 3e-5 (5) 7e-6 (4) 5e-7 (8) 3e-4 (10) 1e-3 (9) 3e-4 (6) 1e-5 (1) 3e-7

TR 5 (2) 3e-2 (4) 5e-2 (7) 3e+0 (6) 9e-1 (3) 3e-2 (8) 3e+1 (10) 8e+1 (9) 3e+1 (5) 2e-1 (1) 2e-2

10 (2) 1e-2 (4) 2e-2 (7) 1e-0 (6) 3e-1 (3) 2e-2 (8) 9e+1 (10) 3e+2 (9) 9e+1 (5) 2e-1 (1) 9e-3

20 (2) 4e-3 (4) 5e-3 (7) 2e-1 (6) 7e-2 (3) 4e-3 (8) 2e+0 (10) 6e+0 (9) 2e+0 (5) 3e-2 (1) 2e-3

30 (2) 2e-3 (4) 3e-3 (7) 2e-1 (5) 2e-2 (3) 2e-3 (8) 2e+0 (10) 5e+0 (9) 2e+0 (6) 3e-2 (1) 9e-4

40 (2) 5e-4 (3) 1e-3 (7) 3e-2 (5) 6e-3 (4) 2e-3 (8) 2e-1 (10) 5e-1 (9) 3e-1 (6) 9e-3 (1) 2e-4

50 (2) 3e-4 (3) 1e-3 (7) 9e-3 (5) 2e-3 (4) 2e-3 (8) 7e-2 (10) 2e-1 (9) 8e-2 (6) 6e-3 (1) 7e-5

60 (2) 2e-4 (4) 2e-3 (6) 3e-3 (3) 8e-4 (5) 2e-3 (8) 2e-2 (10) 6e-2 (9) 2e-2 (7) 5e-3 (1) 3e-5

O 5 (5) 3e-7 (3) 2e-7 (2) 2e-7 (6) 2e-6 (4) 2e-7 (7) 6e-6 (8) 6e-6 (9) 1e-4 (1) 3e-9

10 (5) 3e-7 (3) 2e-7 (2) 2e-7 (6) 2e-6 (4) 2e-7 (8) 6e-6 (9) 7e-6 (7) 3e-6 (1) 4e-9

20 (5) 3e-7 (4) 2e-7 (2) 1e-7 (6) 2e-6 (3) 2e-7 (7) 6e-6 (8) 7e-6 (9) 1e-4 (1) 3e-9

30 (5) 3e-7 (3) 2e-7 (4) 2e-7 (6) 2e-6 (2) 2e-7 (7) 6e-6 (8) 7e-6 (9) 1e-4 (1) 4e-9

40 (5) 3e-7 (4) 2e-7 (3) 2e-7 (6) 2e-6 (2) 1e-7 (7) 6e-6 (8) 7e-6 (9) 1e-4 (1) 3e-9

50 (5) 3e-7 (4) 2e-7 (3) 2e-7 (6) 2e-6 (2) 1e-7 (7) 6e-6 (8) 6e-6 (9) 2e-4 (1) 3e-9

60 (5) 3e-7 (3) 2e-7 (4) 2e-7 (6) 2e-6 (2) 1e-7 (7) 6e-6 (8) 7e-6 (9) 2e-4 (1) 3e-9

TO 5 (4) 1e+0 (2) 1e+0 (5) 3e+0 (6) 1e+1 (3) 1e+0 (7) 5e+1 (8) 6e+1 (9) 6e+2 (1) 4e-2

10 (4) 6e-1 (2) 4e-1 (5) 1e+0 (6) 3e+0 (3) 4e-1 (8) 2e+2 (9) 2e+2 (7) 4e+0 (1) 2e-2

20 (4) 1e-1 (3) 9e-2 (5) 3e-1 (6) 8e-1 (2) 8e-2 (7) 4e+0 (8) 5e+0 (9) 6e+1 (1) 4e-3

30 (4) 5e-2 (3) 4e-2 (5) 2e-1 (6) 5e-1 (2) 3e-2 (7) 3e+0 (8) 3e+0 (9) 1e+1 (1) 2e-3

40 (4) 1e-2 (3) 1e-2 (5) 3e-2 (6) 1e-1 (2) 8e-3 (7) 5e-1 (8) 6e-1 (9) 6e+0 (1) 3e-4

50 (4) 5e-3 (3) 4e-3 (5) 1e-2 (6) 3e-2 (2) 3e-3 (7) 2e-1 (8) 2e-1 (9) 9e-1 (1) 1e-4

60 (2) 1e-3 (4) 2e-3 (5) 3e-3 (6) 9e-3 (3) 2e-3 (7) 4e-2 (8) 4e-2 (9) 1e+0 (1) 4e-5
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Table A.8. Time results for file dna.50MB in seconds. C is counting, R is the reporting factor, TR it the total

reporting time, O is the outputting factor and TO is the total outputting time.

m ILZI LZI NFMI CSAx8 LZI-7 SSA RL AFFMI FMI2 SAC

C 5 (10) 2e-2 (8) 7e-3 (3) 1e-6 (6) 4e-6 (9) 1e-2 (1) 5e-7 (4) 2e-6 (2) 8e-7 (7) 7e-5 (5) 2e-6

10 (10) 4e-4 (8) 2e-4 (4) 1e-6 (6) 5e-6 (9) 2e-4 (1) 7e-7 (5) 2e-6 (3) 1e-6 (7) 9e-5 (2) 1e-6

20 (6) 4e-6 (8) 1e-5 (4) 1e-6 (7) 4e-6 (9) 1e-5 (2) 6e-7 (5) 2e-6 (3) 1e-6 (10) 6e-5 (1) 5e-7

30 (6) 2e-6 (8) 1e-5 (3) 1e-6 (7) 4e-6 (9) 1e-5 (2) 6e-7 (5) 2e-6 (4) 1e-6 (10) 5e-5 (1) 3e-7

40 (5) 2e-6 (8) 1e-5 (3) 1e-6 (7) 4e-6 (9) 1e-5 (2) 6e-7 (6) 2e-6 (4) 1e-6 (10) 4e-5 (1) 2e-7

50 (5) 2e-6 (8) 1e-5 (3) 1e-6 (7) 4e-6 (2) 6e-7 (6) 2e-6 (4) 1e-6 (9) 3e-5 (1) 2e-7

60 (5) 1e-6 (8) 1e-5 (3) 1e-6 (7) 4e-6 (9) 1e-5 (2) 6e-7 (6) 2e-6 (4) 1e-6 (10) 3e-5 (1) 2e-7

R 5 (3) 4e-7 (5) 5e-7 (10) 4e-5 (7) 9e-6 (4) 4e-7 (6) 5e-6 (9) 4e-5 (8) 1e-5 (2) 3e-7 (1) 3e-7

10 (2) 4e-7 (3) 5e-7 (10) 4e-5 (7) 7e-6 (4) 5e-7 (6) 4e-6 (9) 4e-5 (8) 1e-5 (5) 2e-6 (1) 3e-7

20 (2) 4e-7 (3) 4e-7 (10) 4e-5 (7) 6e-6 (4) 8e-7 (6) 4e-6 (9) 3e-5 (8) 9e-6 (5) 3e-6 (1) 3e-7

30 (2) 4e-7 (3) 1e-6 (10) 4e-5 (8) 1e-5 (4) 1e-6 (5) 5e-6 (9) 4e-5 (7) 1e-5 (6) 9e-6 (1) 3e-7

40 (1) 4e-7 (4) 2e-6 (10) 4e-5 (8) 4e-5 (3) 1e-6 (5) 6e-6 (9) 4e-5 (6) 1e-5 (7) 2e-5 (2) 4e-7

50 (2) 5e-7 (3) 1e-6 (7) 4e-5 (9) 1e-4 (4) 7e-6 (8) 5e-5 (5) 2e-5 (6) 2e-5 (1) 5e-7

60 (2) 5e-7 (4) 5e-6 (8) 5e-5 (10) 1e-4 (3) 4e-6 (5) 7e-6 (9) 5e-5 (6) 2e-5 (7) 3e-5 (1) 5e-7

TR 5 (5) 1e-1 (3) 7e-2 (10) 3e+0 (7) 7e-1 (4) 8e-2 (6) 4e-1 (9) 3e+0 (8) 9e-1 (2) 3e-2 (1) 2e-2

10 (8) 5e-3 (4) 2e-3 (10) 2e-2 (6) 3e-3 (5) 2e-3 (2) 2e-3 (9) 1e-2 (7) 4e-3 (3) 2e-3 (1) 1e-4

20 (2) 8e-5 (6) 2e-4 (9) 8e-4 (4) 2e-4 (7) 3e-4 (3) 9e-5 (8) 7e-4 (5) 2e-4 (10) 1e-3 (1) 2e-5

30 (3) 6e-5 (8) 3e-4 (6) 2e-4 (5) 2e-4 (9) 4e-4 (2) 4e-5 (7) 2e-4 (4) 8e-5 (10) 1e-3 (1) 1e-5

40 (3) 7e-5 (8) 5e-4 (5) 1e-4 (7) 2e-4 (9) 5e-4 (2) 3e-5 (6) 1e-4 (4) 7e-5 (10) 2e-3 (1) 1e-5

50 (3) 8e-5 (8) 6e-4 (5) 1e-4 (7) 2e-4 (2) 4e-5 (6) 1e-4 (4) 8e-5 (9) 2e-3 (1) 1e-5

60 (3) 8e-5 (8) 7e-4 (5) 1e-4 (7) 3e-4 (9) 7e-4 (2) 4e-5 (6) 2e-4 (4) 9e-5 (10) 2e-3 (1) 1e-5

O 5 (2) 3e-7 (3) 3e-7 (6) 9e-7 (8) 2e-6 (4) 4e-7 (5) 5e-7 (7) 1e-6 (9) 1e-4 (1) 4e-9

10 (3) 3e-7 (2) 3e-7 (6) 9e-7 (8) 2e-6 (4) 3e-7 (5) 4e-7 (7) 1e-6 (9) 1e-4 (1) 3e-9

20 (4) 3e-7 (2) 3e-7 (6) 8e-7 (8) 2e-6 (3) 3e-7 (5) 3e-7 (7) 1e-6 (9) 2e-4 (1) 2e-9

30 (3) 3e-7 (2) 3e-7 (6) 8e-7 (8) 2e-6 (4) 3e-7 (5) 3e-7 (7) 1e-6 (9) 2e-4 (1) 4e-9

40 (2) 3e-7 (3) 3e-7 (6) 8e-7 (8) 5e-6 (5) 4e-7 (4) 3e-7 (7) 1e-6 (9) 2e-4 (1) 5e-9

50 (2) 3e-7 (4) 4e-7 (5) 8e-7 (7) 1e-5 (3) 3e-7 (6) 1e-6 (8) 2e-4 (1) 5e-9

60 (3) 3e-7 (4) 4e-7 (6) 8e-7 (8) 2e-5 (5) 5e-7 (2) 3e-7 (7) 1e-6 (9) 2e-4 (1) 6e-9

TO 5 (2) 1e+0 (3) 1e+0 (7) 7e+0 (8) 8e+0 (4) 2e+0 (5) 2e+0 (6) 6e+0 (9) 6e+2 (1) 4e-2

10 (5) 1e-2 (2) 8e-3 (7) 3e-2 (8) 4e-2 (3) 9e-3 (4) 1e-2 (6) 3e-2 (9) 2e+0 (1) 2e-4

20 (2) 4e-4 (4) 6e-4 (7) 2e-3 (8) 2e-3 (5) 7e-4 (3) 5e-4 (6) 1e-3 (9) 1e-1 (1) 2e-5

30 (3) 1e-4 (6) 4e-4 (5) 4e-4 (8) 6e-4 (7) 4e-4 (2) 1e-4 (4) 3e-4 (9) 5e-2 (1) 1e-5

40 (3) 1e-4 (7) 5e-4 (5) 2e-4 (6) 4e-4 (8) 5e-4 (2) 7e-5 (4) 2e-4 (9) 2e-2 (1) 1e-5

50 (3) 1e-4 (7) 6e-4 (5) 2e-4 (6) 4e-4 (2) 6e-5 (4) 2e-4 (8) 2e-2 (1) 1e-5

60 (3) 1e-4 (7) 7e-4 (5) 2e-4 (6) 4e-4 (8) 8e-4 (2) 6e-5 (4) 2e-4 (9) 2e-2 (1) 1e-5
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Table A.9. Time results for file english.50MB in seconds. C is counting, R is the reporting factor, TR it the total

reporting time, O is the outputting factor and TO is the total outputting time.

m ILZI LZI NFMI CSAx8 LZI-7 SSA RL AFFMI FMI2 SAC

C 5 (10) 2e-3 (8) 7e-4 (1) 1e-6 (6) 4e-6 (9) 8e-4 (2) 2e-6 (5) 3e-6 (3) 2e-6 (7) 1e-4 (4) 2e-6

10 (8) 4e-5 (7) 4e-5 (2) 1e-6 (6) 4e-6 (9) 5e-5 (3) 1e-6 (5) 3e-6 (4) 2e-6 (10) 1e-4 (1) 9e-7

20 (6) 3e-6 (8) 3e-5 (2) 1e-6 (7) 3e-6 (9) 3e-5 (3) 1e-6 (5) 3e-6 (4) 2e-6 (10) 9e-5 (1) 4e-7

30 (5) 2e-6 (9) 3e-5 (2) 1e-6 (7) 3e-6 (8) 3e-5 (3) 1e-6 (6) 3e-6 (4) 2e-6 (10) 7e-5 (1) 3e-7

40 (5) 2e-6 (8) 3e-5 (2) 1e-6 (7) 3e-6 (9) 3e-5 (3) 1e-6 (6) 3e-6 (4) 2e-6 (10) 6e-5 (1) 2e-7

50 (5) 2e-6 (9) 3e-5 (2) 1e-6 (7) 3e-6 (8) 3e-5 (3) 1e-6 (6) 3e-6 (4) 2e-6 (10) 5e-5 (1) 2e-7

60 (4) 2e-6 (9) 3e-5 (2) 1e-6 (7) 3e-6 (8) 3e-5 (3) 1e-6 (6) 3e-6 (5) 2e-6 (10) 5e-5 (1) 2e-7

R 5 (2) 3e-7 (4) 5e-7 (10) 4e-5 (6) 4e-6 (3) 4e-7 (9) 3e-5 (8) 2e-5 (7) 2e-5 (5) 2e-6 (1) 3e-7

10 (2) 3e-7 (4) 5e-7 (10) 4e-5 (5) 4e-6 (3) 4e-7 (9) 2e-5 (8) 2e-5 (7) 1e-5 (6) 4e-6 (1) 3e-7

20 (2) 3e-7 (3) 6e-7 (10) 3e-5 (5) 3e-6 (4) 2e-6 (9) 2e-5 (8) 2e-5 (7) 1e-5 (6) 4e-6 (1) 3e-7

30 (3) 4e-7 (1) 2e-7 (10) 3e-5 (5) 4e-6 (4) 2e-6 (9) 2e-5 (8) 2e-5 (7) 1e-5 (6) 1e-5 (2) 3e-7

40 (2) 3e-7 (3) 7e-7 (10) 4e-5 (5) 6e-6 (4) 1e-6 (9) 2e-5 (8) 2e-5 (6) 1e-5 (7) 2e-5 (1) 3e-7

50 (2) 4e-7 (4) 3e-6 (10) 4e-5 (5) 9e-6 (3) 2e-6 (9) 3e-5 (7) 2e-5 (6) 2e-5 (8) 2e-5 (1) 4e-7

60 (2) 5e-7 (3) 2e-6 (10) 4e-5 (4) 9e-6 (5) 9e-6 (8) 3e-5 (7) 2e-5 (6) 2e-5 (9) 3e-5 (1) 4e-7

TR 5 (4) 1e-2 (3) 9e-3 (10) 6e-1 (6) 5e-2 (2) 9e-3 (9) 4e-1 (8) 3e-1 (7) 2e-1 (5) 2e-2 (1) 4e-3

10 (2) 5e-4 (3) 5e-4 (10) 8e-3 (5) 9e-4 (4) 6e-4 (9) 6e-3 (8) 4e-3 (7) 3e-3 (6) 2e-3 (1) 7e-5

20 (2) 8e-5 (6) 6e-4 (9) 1e-3 (3) 2e-4 (8) 7e-4 (7) 6e-4 (5) 5e-4 (4) 3e-4 (10) 2e-3 (1) 2e-5

30 (2) 7e-5 (8) 9e-4 (7) 3e-4 (3) 1e-4 (9) 9e-4 (5) 2e-4 (6) 2e-4 (4) 2e-4 (10) 2e-3 (1) 1e-5

40 (2) 8e-5 (8) 1e-3 (7) 2e-4 (5) 1e-4 (9) 1e-3 (4) 1e-4 (6) 2e-4 (3) 1e-4 (10) 2e-3 (1) 1e-5

50 (2) 9e-5 (9) 2e-3 (5) 2e-4 (6) 2e-4 (8) 2e-3 (3) 1e-4 (7) 2e-4 (4) 1e-4 (10) 3e-3 (1) 1e-5

60 (2) 1e-4 (8) 2e-3 (5) 2e-4 (6) 2e-4 (9) 2e-3 (3) 1e-4 (7) 2e-4 (4) 1e-4 (10) 3e-3 (1) 1e-5

O 5 (3) 4e-7 (4) 4e-7 (2) 3e-7 (7) 1e-6 (5) 5e-7 (6) 1e-6 (8) 2e-6 (9) 2e-4 (1) 3e-9

10 (3) 3e-7 (4) 3e-7 (2) 2e-7 (7) 1e-6 (5) 4e-7 (6) 1e-6 (8) 1e-6 (9) 2e-4 (1) 2e-9

20 (5) 3e-7 (4) 3e-7 (2) 2e-7 (7) 9e-7 (3) 3e-7 (6) 8e-7 (8) 1e-6 (9) 3e-4 (1) 2e-9

30 (5) 3e-7 (4) 3e-7 (2) 2e-7 (7) 9e-7 (3) 3e-7 (6) 8e-7 (8) 1e-6 (9) 3e-4 (1) 3e-9

40 (3) 3e-7 (4) 4e-7 (2) 2e-7 (7) 1e-6 (5) 4e-7 (6) 9e-7 (8) 1e-6 (9) 3e-4 (1) 4e-9

50 (3) 4e-7 (4) 4e-7 (2) 2e-7 (8) 1e-6 (5) 5e-7 (6) 9e-7 (7) 1e-6 (9) 4e-4 (1) 3e-9

60 (3) 4e-7 (4) 4e-7 (2) 2e-7 (8) 1e-6 (5) 5e-7 (6) 9e-7 (7) 1e-6 (9) 4e-4 (1) 4e-9

TO 5 (2) 3e-1 (3) 4e-1 (5) 8e-1 (6) 1e+0 (4) 4e-1 (7) 2e+0 (8) 2e+0 (9) 2e+2 (1) 6e-3

10 (2) 5e-3 (3) 5e-3 (5) 1e-2 (6) 1e-2 (4) 6e-3 (7) 1e-2 (8) 2e-2 (9) 1e+0 (1) 1e-4

20 (2) 6e-4 (3) 1e-3 (5) 1e-3 (6) 2e-3 (4) 1e-3 (7) 2e-3 (8) 2e-3 (9) 2e-1 (1) 2e-5

30 (2) 2e-4 (7) 1e-3 (3) 4e-4 (4) 6e-4 (8) 1e-3 (5) 6e-4 (6) 7e-4 (9) 6e-2 (1) 1e-5

40 (2) 2e-4 (7) 1e-3 (3) 2e-4 (4) 4e-4 (8) 1e-3 (5) 4e-4 (6) 4e-4 (9) 1e-1 (1) 1e-5

50 (2) 2e-4 (7) 2e-3 (3) 2e-4 (5) 3e-4 (8) 2e-3 (4) 3e-4 (6) 3e-4 (9) 9e-2 (1) 1e-5

60 (2) 1e-4 (7) 2e-3 (3) 2e-4 (6) 3e-4 (8) 2e-3 (4) 3e-4 (5) 3e-4 (9) 6e-2 (1) 1e-5
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Table A.10. Time results for file pitches in seconds. C is counting, R is the reporting factor, TR it the total

reporting time, O is the outputting factor and TO is the total outputting time.

m ILZI LZI NFMI CSAx8 LZI-7 SSA RL AFFMI FMI2 SAC

C 5 (9) 3e-4 (7) 1e-4 (1) 1e-6 (4) 3e-6 (8) 1e-4 (3) 2e-6 (5) 3e-6 (6) 1e-4 (2) 2e-6

10 (6) 3e-5 (7) 4e-5 (2) 1e-6 (4) 3e-6 (8) 4e-5 (3) 2e-6 (5) 3e-6 (9) 9e-5 (1) 8e-7

20 (6) 1e-5 (7) 3e-5 (2) 1e-6 (4) 3e-6 (8) 3e-5 (3) 1e-6 (5) 3e-6 (9) 7e-5 (1) 4e-7

30 (6) 8e-6 (7) 3e-5 (2) 1e-6 (4) 2e-6 (8) 3e-5 (3) 1e-6 (5) 3e-6 (9) 6e-5 (1) 3e-7

40 (6) 7e-6 (7) 3e-5 (2) 1e-6 (4) 2e-6 (8) 3e-5 (3) 1e-6 (5) 2e-6 (9) 6e-5 (1) 2e-7

50 (6) 6e-6 (8) 3e-5 (2) 1e-6 (4) 2e-6 (7) 3e-5 (3) 1e-6 (5) 2e-6 (9) 5e-5 (1) 2e-7

60 (6) 5e-6 (8) 3e-5 (2) 1e-6 (4) 2e-6 (7) 3e-5 (3) 1e-6 (5) 2e-6 (9) 5e-5 (1) 1e-7

R 5 (4) 3e-7 (5) 5e-7 (9) 2e-5 (7) 2e-6 (2) 3e-7 (6) 2e-6 (8) 3e-6 (3) 3e-7 (1) 3e-7

10 (4) 3e-7 (5) 5e-7 (9) 2e-5 (7) 2e-6 (3) 3e-7 (6) 2e-6 (8) 3e-6 (2) 3e-7 (1) 3e-7

20 (4) 3e-7 (5) 5e-7 (9) 2e-5 (7) 2e-6 (2) 3e-7 (6) 2e-6 (8) 2e-6 (3) 3e-7 (1) 3e-7

30 (4) 3e-7 (5) 5e-7 (9) 2e-5 (7) 2e-6 (3) 3e-7 (6) 2e-6 (8) 2e-6 (2) 3e-7 (1) 2e-7

40 (4) 3e-7 (5) 5e-7 (9) 2e-5 (7) 2e-6 (2) 3e-7 (6) 2e-6 (8) 2e-6 (3) 3e-7 (1) 3e-7

50 (4) 3e-7 (5) 5e-7 (9) 2e-5 (7) 2e-6 (3) 3e-7 (6) 1e-6 (8) 2e-6 (2) 3e-7 (1) 3e-7

60 (4) 3e-7 (5) 5e-7 (9) 2e-5 (7) 2e-6 (2) 3e-7 (6) 2e-6 (8) 2e-6 (3) 3e-7 (1) 3e-7

TR 5 (4) 4e-3 (5) 5e-3 (9) 7e-2 (7) 2e-2 (2) 3e-3 (6) 1e-2 (8) 2e-2 (3) 3e-3 (1) 2e-3

10 (3) 2e-3 (5) 3e-3 (9) 6e-2 (7) 1e-2 (2) 2e-3 (6) 9e-3 (8) 1e-2 (4) 3e-3 (1) 2e-3

20 (2) 2e-3 (5) 3e-3 (9) 6e-2 (7) 9e-3 (3) 2e-3 (6) 6e-3 (8) 9e-3 (4) 3e-3 (1) 1e-3

30 (2) 2e-3 (4) 3e-3 (9) 6e-2 (7) 9e-3 (3) 2e-3 (6) 6e-3 (8) 1e-2 (5) 3e-3 (1) 1e-3

40 (2) 2e-3 (4) 3e-3 (9) 6e-2 (7) 7e-3 (3) 2e-3 (6) 5e-3 (8) 8e-3 (5) 3e-3 (1) 1e-3

50 (2) 2e-3 (4) 3e-3 (9) 4e-2 (7) 7e-3 (3) 3e-3 (6) 5e-3 (8) 8e-3 (5) 4e-3 (1) 1e-3

60 (2) 1e-3 (4) 3e-3 (9) 5e-2 (7) 7e-3 (3) 3e-3 (6) 5e-3 (8) 7e-3 (5) 4e-3 (1) 9e-4

O 5 (4) 3e-7 (2) 2e-7 (7) 6e-7 (6) 5e-7 (3) 2e-7 (5) 3e-7 (8) 4e-6 (1) 8e-10

10 (5) 3e-7 (2) 2e-7 (7) 6e-7 (6) 4e-7 (3) 2e-7 (4) 2e-7 (8) 2e-4 (1) 8e-10

20 (5) 3e-7 (2) 1e-7 (7) 6e-7 (6) 4e-7 (3) 2e-7 (4) 2e-7 (8) 2e-4 (1) 1e-9

30 (5) 3e-7 (2) 1e-7 (7) 7e-7 (6) 4e-7 (3) 2e-7 (4) 2e-7 (8) 3e-4 (1) 2e-9

40 (5) 3e-7 (2) 1e-7 (7) 7e-7 (6) 4e-7 (3) 2e-7 (4) 2e-7 (8) 8e-5 (1) 2e-9

50 (5) 3e-7 (2) 1e-7 (7) 7e-7 (6) 4e-7 (3) 2e-7 (4) 2e-7 (8) 4e-4 (1) 1e-9

60 (5) 3e-7 (2) 1e-7 (7) 7e-7 (6) 4e-7 (3) 2e-7 (4) 2e-7 (8) 3e-5 (1) 1e-9

TO 5 (4) 8e-2 (2) 6e-2 (7) 4e-1 (6) 2e-1 (3) 6e-2 (5) 1e-1 (8) 1e+0 (1) 3e-3

10 (5) 6e-2 (2) 5e-2 (7) 2e-1 (6) 2e-1 (3) 5e-2 (4) 6e-2 (8) 2e+2 (1) 2e-3

20 (5) 6e-2 (2) 3e-2 (7) 2e-1 (6) 1e-1 (3) 3e-2 (4) 6e-2 (8) 2e+2 (1) 2e-3

30 (5) 6e-2 (2) 3e-2 (7) 2e-1 (6) 1e-1 (3) 4e-2 (4) 5e-2 (8) 2e+2 (1) 2e-3

40 (5) 6e-2 (2) 3e-2 (7) 2e-1 (6) 1e-1 (3) 3e-2 (4) 4e-2 (8) 7e+1 (1) 1e-3

50 (5) 4e-2 (2) 2e-2 (7) 1e-1 (6) 6e-2 (3) 3e-2 (4) 3e-2 (8) 3e+1 (1) 1e-3

60 (5) 5e-2 (2) 3e-2 (7) 2e-1 (6) 8e-2 (3) 3e-2 (4) 4e-2 (8) 1e+1 (1) 1e-3
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Table A.11. Time results for file proteins in seconds. C is counting, R is the reporting factor, TR it the total

reporting time, O is the outputting factor and TO is the total outputting time.

m ILZI LZI NFMI CSAx8 LZI-7 SSA RL AFFMI FMI2 SAC

C 5 (9) 5e-4 (7) 2e-4 (1) 1e-6 (5) 3e-6 (8) 3e-4 (2) 1e-6 (4) 3e-6 (6) 8e-5 (3) 2e-6

10 (6) 4e-6 (7) 2e-5 (2) 1e-6 (5) 3e-6 (8) 2e-5 (3) 1e-6 (4) 3e-6 (9) 6e-5 (1) 8e-7

20 (4) 2e-6 (7) 2e-5 (2) 1e-6 (6) 3e-6 (8) 2e-5 (3) 1e-6 (5) 3e-6 (9) 5e-5 (1) 4e-7

30 (4) 2e-6 (7) 2e-5 (2) 1e-6 (6) 3e-6 (8) 2e-5 (3) 1e-6 (5) 3e-6 (9) 4e-5 (1) 3e-7

40 (4) 2e-6 (7) 2e-5 (2) 1e-6 (6) 3e-6 (8) 3e-5 (3) 1e-6 (5) 3e-6 (9) 4e-5 (1) 2e-7

50 (4) 2e-6 (7) 2e-5 (2) 9e-7 (6) 3e-6 (8) 3e-5 (3) 1e-6 (5) 3e-6 (9) 4e-5 (1) 2e-7

60 (4) 2e-6 (7) 2e-5 (2) 9e-7 (6) 3e-6 (8) 3e-5 (3) 1e-6 (5) 3e-6 (9) 3e-5 (1) 2e-7

R 5 (2) 4e-7 (4) 5e-7 (9) 2e-5 (6) 4e-6 (3) 5e-7 (5) 4e-6 (8) 9e-6 (7) 4e-6 (1) 3e-7

10 (2) 3e-7 (3) 5e-7 (9) 2e-5 (6) 4e-6 (4) 9e-7 (5) 3e-6 (8) 7e-6 (7) 7e-6 (1) 3e-7

20 (1) 2e-7 (3) 8e-7 (8) 2e-5 (5) 6e-6 (4) 4e-6 (6) 8e-6 (7) 1e-5 (2) 4e-7

30 (2) 4e-7 (4) 3e-6 (9) 2e-5 (6) 7e-6 (3) 2e-6 (5) 4e-6 (7) 9e-6 (8) 1e-5 (1) 4e-7

40 (2) 5e-7 (4) 3e-6 (9) 2e-5 (7) 1e-5 (3) 3e-6 (5) 5e-6 (6) 1e-5 (8) 2e-5 (1) 4e-7

50 (1) 4e-7 (3) 2e-6 (9) 2e-5 (6) 1e-5 (4) 5e-6 (5) 5e-6 (7) 1e-5 (8) 2e-5 (2) 5e-7

60 (2) 5e-7 (3) 2e-6 (9) 2e-5 (7) 1e-5 (4) 4e-6 (5) 5e-6 (6) 1e-5 (8) 2e-5 (1) 4e-7

TR 5 (9) 2e-3 (6) 1e-3 (8) 1e-3 (3) 3e-4 (7) 1e-3 (2) 3e-4 (4) 7e-4 (5) 7e-4 (1) 3e-5

10 (3) 4e-5 (7) 2e-4 (6) 1e-4 (4) 6e-5 (8) 2e-4 (2) 3e-5 (5) 7e-5 (9) 7e-4 (1) 1e-5

20 (3) 5e-5 (7) 4e-4 (4) 8e-5 (5) 8e-5 (2) 3e-5 (6) 8e-5 (8) 1e-3 (1) 1e-5

30 (3) 6e-5 (7) 7e-4 (4) 7e-5 (6) 1e-4 (8) 7e-4 (2) 4e-5 (5) 1e-4 (9) 1e-3 (1) 1e-5

40 (3) 7e-5 (7) 9e-4 (4) 8e-5 (6) 1e-4 (8) 1e-3 (2) 5e-5 (5) 1e-4 (9) 2e-3 (1) 1e-5

50 (4) 8e-5 (7) 1e-3 (3) 8e-5 (5) 1e-4 (8) 1e-3 (2) 6e-5 (6) 1e-4 (9) 2e-3 (1) 1e-5

60 (4) 1e-4 (7) 1e-3 (3) 9e-5 (5) 2e-4 (8) 2e-3 (2) 7e-5 (6) 2e-4 (9) 2e-3 (1) 1e-5

O 5 (2) 3e-7 (3) 5e-7 (5) 7e-7 (7) 1e-6 (4) 6e-7 (6) 8e-7 (8) 3e-4 (1) 2e-9

10 (2) 3e-7 (3) 4e-7 (6) 6e-7 (7) 1e-6 (4) 5e-7 (5) 6e-7 (8) 3e-4 (1) 4e-9

20 (2) 3e-7 (3) 4e-7 (6) 6e-7 (7) 1e-6 (4) 5e-7 (5) 6e-7 (8) 3e-4 (1) 4e-9

30 (2) 3e-7 (3) 4e-7 (5) 6e-7 (7) 1e-6 (6) 6e-7 (4) 6e-7 (8) 4e-4 (1) 5e-9

40 (2) 3e-7 (3) 5e-7 (5) 6e-7 (7) 2e-6 (6) 7e-7 (4) 5e-7 (8) 4e-4 (1) 5e-9

50 (2) 3e-7 (4) 5e-7 (5) 5e-7 (7) 2e-6 (6) 7e-7 (3) 5e-7 (8) 5e-4 (1) 4e-9

60 (2) 3e-7 (5) 6e-7 (4) 5e-7 (7) 2e-6 (6) 8e-7 (3) 5e-7 (8) 5e-4 (1) 5e-9

TO 5 (4) 4e-3 (2) 3e-3 (6) 4e-3 (7) 5e-3 (5) 4e-3 (3) 4e-3 (8) 1e+0 (1) 4e-5

10 (2) 2e-4 (5) 3e-4 (4) 3e-4 (6) 4e-4 (7) 4e-4 (3) 2e-4 (8) 9e-2 (1) 1e-5

20 (2) 1e-4 (6) 5e-4 (4) 2e-4 (5) 3e-4 (7) 6e-4 (3) 2e-4 (8) 5e-2 (1) 1e-5

30 (2) 1e-4 (6) 7e-4 (4) 2e-4 (5) 2e-4 (7) 8e-4 (3) 1e-4 (8) 5e-2 (1) 1e-5

40 (2) 1e-4 (6) 1e-3 (4) 1e-4 (5) 2e-4 (7) 1e-3 (3) 1e-4 (8) 5e-2 (1) 1e-5

50 (3) 1e-4 (6) 1e-3 (4) 1e-4 (5) 2e-4 (7) 1e-3 (2) 1e-4 (8) 4e-2 (1) 1e-5

60 (3) 1e-4 (6) 1e-3 (4) 1e-4 (5) 2e-4 (7) 2e-3 (2) 1e-4 (8) 5e-2 (1) 1e-5
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Table A.12. Time results for file sources.50MB in seconds. C is counting, R is the reporting factor, TR it the

total reporting time, O is the outputting factor and TO is the total outputting time.

m ILZI LZI NFMI CSAx8 LZI-7 SSA RL AFFMI FMI2 SAC

C 5 (10) 9e-4 (8) 4e-4 (1) 1e-6 (6) 3e-6 (9) 4e-4 (3) 2e-6 (5) 3e-6 (4) 2e-6 (7) 1e-4 (2) 2e-6

10 (10) 1e-4 (7) 6e-5 (2) 1e-6 (6) 3e-6 (8) 7e-5 (3) 2e-6 (5) 3e-6 (4) 2e-6 (9) 1e-4 (1) 9e-7

20 (7) 2e-5 (8) 3e-5 (2) 1e-6 (6) 3e-6 (9) 3e-5 (3) 2e-6 (5) 3e-6 (4) 2e-6 (10) 9e-5 (1) 4e-7

30 (7) 6e-6 (8) 3e-5 (2) 1e-6 (6) 3e-6 (9) 3e-5 (3) 2e-6 (5) 3e-6 (4) 2e-6 (10) 8e-5 (1) 3e-7

40 (7) 4e-6 (8) 3e-5 (2) 1e-6 (6) 3e-6 (9) 3e-5 (3) 1e-6 (5) 3e-6 (4) 2e-6 (10) 7e-5 (1) 2e-7

50 (5) 3e-6 (8) 3e-5 (2) 1e-6 (7) 3e-6 (3) 1e-6 (6) 3e-6 (4) 2e-6 (9) 6e-5 (1) 2e-7

60 (5) 2e-6 (8) 3e-5 (2) 1e-6 (7) 3e-6 (3) 1e-6 (6) 3e-6 (4) 2e-6 (9) 6e-5 (1) 1e-7

R 5 (2) 3e-7 (4) 5e-7 (9) 4e-5 (6) 4e-6 (3) 3e-7 (10) 3e-4 (7) 2e-5 (8) 2e-5 (5) 1e-6 (1) 3e-7

10 (3) 3e-7 (4) 5e-7 (9) 4e-5 (6) 3e-6 (2) 3e-7 (10) 2e-4 (7) 1e-5 (8) 2e-5 (5) 1e-6 (1) 3e-7

20 (3) 3e-7 (4) 5e-7 (9) 4e-5 (6) 3e-6 (2) 3e-7 (10) 2e-4 (7) 1e-5 (8) 1e-5 (5) 8e-7 (1) 2e-7

30 (3) 3e-7 (4) 5e-7 (9) 4e-5 (6) 3e-6 (2) 3e-7 (10) 2e-4 (7) 1e-5 (8) 1e-5 (5) 6e-7 (1) 3e-7

40 (2) 3e-7 (4) 5e-7 (9) 4e-5 (6) 3e-6 (3) 4e-7 (10) 2e-4 (7) 1e-5 (8) 1e-5 (5) 6e-7 (1) 2e-7

50 (2) 3e-7 (3) 4e-7 (8) 4e-5 (5) 3e-6 (9) 2e-4 (6) 1e-5 (7) 2e-5 (4) 9e-7 (1) 3e-7

60 (2) 3e-7 (3) 4e-7 (8) 4e-5 (5) 3e-6 (9) 2e-4 (6) 1e-5 (7) 2e-5 (4) 1e-6 (1) 2e-7

TR 5 (3) 1e-2 (4) 1e-2 (9) 7e-1 (6) 1e-1 (2) 1e-2 (10) 2e+0 (7) 5e-1 (8) 5e-1 (5) 3e-2 (1) 7e-3

10 (3) 3e-3 (4) 4e-3 (9) 2e-1 (6) 2e-2 (2) 3e-3 (10) 7e-1 (7) 1e-1 (8) 2e-1 (5) 7e-3 (1) 2e-3

20 (2) 9e-4 (4) 1e-3 (9) 9e-2 (6) 5e-3 (3) 1e-3 (10) 6e-1 (7) 2e-2 (8) 3e-2 (5) 3e-3 (1) 4e-4

30 (2) 4e-4 (4) 1e-3 (9) 3e-2 (5) 2e-3 (3) 1e-3 (10) 3e-1 (7) 8e-3 (8) 1e-2 (6) 3e-3 (1) 2e-4

40 (2) 3e-4 (4) 1e-3 (9) 2e-2 (5) 1e-3 (3) 1e-3 (10) 2e-1 (7) 5e-3 (8) 7e-3 (6) 3e-3 (1) 1e-4

50 (2) 2e-4 (4) 2e-3 (8) 6e-3 (3) 7e-4 (9) 3e-2 (5) 2e-3 (6) 3e-3 (7) 3e-3 (1) 7e-5

60 (2) 2e-4 (6) 2e-3 (8) 4e-3 (3) 4e-4 (9) 2e-2 (4) 1e-3 (5) 2e-3 (7) 3e-3 (1) 3e-5

O 5 (4) 3e-7 (3) 3e-7 (2) 2e-7 (6) 1e-6 (5) 3e-7 (8) 5e-6 (7) 1e-6 (9) 2e-4 (1) 2e-9

10 (4) 3e-7 (5) 3e-7 (2) 2e-7 (6) 1e-6 (3) 3e-7 (8) 4e-6 (7) 1e-6 (9) 3e-4 (1) 2e-9

20 (5) 3e-7 (4) 3e-7 (3) 2e-7 (6) 8e-7 (2) 2e-7 (8) 4e-6 (7) 9e-7 (9) 2e-4 (1) 2e-9

30 (4) 3e-7 (5) 3e-7 (3) 2e-7 (6) 8e-7 (2) 2e-7 (8) 4e-6 (7) 9e-7 (9) 2e-4 (1) 2e-9

40 (4) 3e-7 (5) 3e-7 (3) 2e-7 (6) 7e-7 (2) 1e-7 (8) 5e-6 (7) 8e-7 (9) 2e-4 (1) 1e-9

50 (4) 3e-7 (3) 2e-7 (2) 2e-7 (5) 7e-7 (7) 3e-6 (6) 8e-7 (8) 3e-4 (1) 1e-9

60 (4) 3e-7 (3) 2e-7 (2) 1e-7 (5) 7e-7 (7) 5e-6 (6) 8e-7 (8) 3e-4 (1) 2e-9

TO 5 (3) 5e-1 (2) 5e-1 (6) 9e-1 (7) 1e+0 (4) 5e-1 (8) 1e+1 (5) 9e-1 (9) 9e+1 (1) 1e-2

10 (2) 2e-1 (3) 2e-1 (5) 3e-1 (7) 4e-1 (4) 2e-1 (9) 2e+0 (6) 4e-1 (8) 1e+0 (1) 3e-3

20 (4) 3e-2 (3) 3e-2 (6) 1e-1 (5) 1e-1 (2) 2e-2 (8) 6e-1 (7) 1e-1 (9) 4e+0 (1) 6e-4

30 (3) 1e-2 (4) 1e-2 (6) 4e-2 (5) 4e-2 (2) 1e-2 (8) 5e-1 (7) 7e-2 (9) 5e+1 (1) 3e-4

40 (3) 8e-3 (4) 1e-2 (5) 2e-2 (6) 2e-2 (2) 5e-3 (8) 4e-1 (7) 3e-2 (9) 1e+0 (1) 1e-4

50 (2) 4e-3 (3) 5e-3 (4) 8e-3 (5) 8e-3 (7) 6e-2 (6) 1e-2 (8) 3e-1 (1) 8e-5

60 (2) 2e-3 (3) 3e-3 (5) 4e-3 (4) 4e-3 (7) 4e-2 (6) 6e-3 (8) 2e-1 (1) 4e-5
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Table A.13. Average user time, in seconds, that the ILZI takes to find occurrences of patterns of size 30 with k

errors, using different v’s.

english.50MB

k ↓, → v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1e+0 2e-1 4e-2 2e-2 8e-3 5e-3 5e-3 6e-3 9e-3 1e-2 2e-2 2e-2 3e-2 4e-2 6e-2

2 2e+0 3e-1 9e-2 4e-2 4e-2 4e-2 4e-2 4e-2 5e-2 9e-2 1e-1 2e-1 3e-1 7e-1

3 1e+0 5e-1 1e-1 1e-1 9e-2 1e-1 2e-1 2e-1 3e-1 5e-1 8e-1 2e+0 4e+0 6e+0

4 2e+0 8e-1 4e-1 3e-1 4e-1 5e-1 7e-1 1e+0 2e+0 3e+0 6e+0 2e+1 2e+1

5 1e+1 1e+1 1e+1 1e+1 1e+1 2e+1 2e+1 2e+1 3e+1 1e+2 3e+2 3e+2 3e+2

6 2e+1 2e+1 2e+1 2e+1 2e+1 3e+1 4e+1 6e+1 2e+2 4e+2 4e+2 4e+2

dna.50MB

k ↓, → v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 6e+0 1e+0 4e-1 1e-1 3e-2 9e-3 4e-3 3e-3 3e-3 3e-3 5e-3 7e-3 8e-3 1e-2 1e-2

2 1e+1 3e+0 9e-1 2e-1 8e-2 4e-2 3e-2 3e-2 4e-2 6e-2 1e-1 2e-1 2e-1 3e-1

3 9e+0 5e+0 1e+0 5e-1 2e-1 2e-1 3e-1 4e-1 5e-1 1e+0 2e+0 2e+0 3e+0 3e+0

4 1e+1 7e+0 3e+0 1e+0 1e+0 1e+0 1e+0 3e+0 5e+0 9e+0 1e+1 2e+1 2e+1

5 2e+1 1e+1 1e+1 1e+1 1e+1 2e+1 3e+1 7e+1 1e+2 2e+2 2e+2 2e+2 2e+2

6 4e+1 3e+1 3e+1 3e+1 4e+1 6e+1 2e+2 3e+2 3e+2 3e+2 3e+2 3e+2

proteins

k ↓, → v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3e+0 1e-1 1e-2 4e-3 3e-3 3e-3 3e-3 5e-3 7e-3 1e-2 1e-2 1e-2 2e-2 3e-2 4e-2

2 3e+0 2e-1 2e-2 1e-2 2e-2 2e-2 2e-2 2e-2 5e-2 1e-1 2e-1 2e-1 6e-1 1e+0

3 2e+0 4e-1 4e-2 3e-2 3e-2 5e-2 2e-1 3e-1 5e-1 9e-1 2e+0 5e+0 1e+1 2e+1

4 3e+0 6e-1 7e-2 2e-1 4e-1 6e-1 8e-1 2e+0 4e+0 7e+0 2e+1 7e+1 1e+2

5 3e+1 3e+1 3e+1 3e+1 3e+1 4e+1 4e+1 5e+1 5e+1 1e+2 1e+3 1e+3 1e+3

6 4e+1 4e+1 4e+1 4e+1 4e+1 5e+1 6e+1 1e+2 2e+2 1e+3 1e+3 1e+3

A.2 Finding Longest Common Sub-Strings

Figure A.7 gives more extensive results for the algorithms described in chapter 5.

A.3 Approximate String Matching

The results in this section are related to algorithms described in chapter 6.
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Table A.14. Tables for m = 24, k = 9, v = 1 and q = d = x2 − x1 = 4. The table on the left refers to blocks of

type O1, i.e. prefixes of O that are suffixes of samples, and the table on the right to blocks of type Oi, i.e. samples

in the middle of O. Note that using the approach of Navarro et al. [101] in this example yields 3 errors per sample.

↓ y2 − y1 ⌈k · |O1|v⌉ − 1 ↓ y2 − y1 ⌈k · |Oi|v⌉ − 1

|O1| → 0 1 2 3 4 y1 → 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 -1 -1 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1

3 -1 -1 -1 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 -1

4 -1 -1 -1 1 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 -1 -1

5 -1 -1 -1 -1 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 -1 -1 -1

6 -1 -1 -1 -1 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 -1 -1 -1 -1

7 -1 -1 -1 -1 -1 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Table A.15. Tables for m = 24, k = 9, v = 2 and q = d = x2 − x1 = 4. The table on the left refers to blocks of

type O1, i.e. prefixes of O that are suffixes of samples, and the table on the right to blocks of type Oi, i.e. samples

in the middle of O. Note that using v = 2 is excessive since too many errors from the extremes are pushed into the

middle of O.

↓ y2 − y1 ⌈k · |O1|v⌉ − 1 ↓ y2 − y1 ⌈k · |Oi|v⌉ − 1

|O1| → 0 1 2 3 4 y1 → 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 -1 -1 -1 -1 -1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1

2 -1 -1 -1 -1 -1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 -1 -1

3 -1 -1 -1 0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 -1 -1 -1

4 -1 -1 -1 -1 1 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 -1 -1 -1 -1

5 -1 -1 -1 -1 1 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 -1 -1 -1 -1 -1

6 -1 -1 -1 -1 -1 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 -1 -1 -1 -1 -1 -1

7 -1 -1 -1 -1 -1 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1

8 -1 -1 -1 -1 -1 8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Tables A.14 and A.15 show examples of the tight backtracking bound values for q-

samples, i.e. when q = x2 − x1 = 4.
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Fig. A.7. Average user time of processing a byte for different lcss values.
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