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Lúıs M. S. Russo⋆, Arlindo L. Oliveira

INESC-ID/IST
e-mail: {lsr,aml}@algos.inesc-id.pt

The date of receipt and acceptance will be inserted by the editor

Abstract A compressed full-text self-index for a text T , of size u, is a data structure used to
search for patterns P , of size m, in T , that requires reduced space, i.e. space that depends on
the empirical entropy (Hk or H0) of T , and is, furthermore, able to reproduce any substring of
T . In this paper we present a new compressed self-index able to locate the occurrences of P in
O((m + occ) log u) time, where occ is the number of occurrences. The fundamental improvement
over previous LZ78 based indexes is the reduction of the search time dependency on m from O(m2)
to O(m). To achieve this result we point out the main obstacle to linear time algorithms based on
LZ78 data compression and expose and explore the nature of a recurrent structure in LZ-indexes,
the T78 suffix tree. We show that our method is very competitive in practice by comparing it
against other state of the art compressed indexes.

1 Introduction and related work

The exact matching problem consists in searching for a short sequence P (the pattern) in a longer
sequence T (the text). Naive and linear time solutions for this problem can be found in under-
graduate computer science textbooks [4]. This problem has outgrown its initial motivation, text
editing subroutines. Text databases storing large amounts of information such as pitch sequences,
DNA or protein sequences, large natural texts, program code, etc, need fast pattern matching
algorithms. With the increasing amount of digital information available, on-line approaches to the
problem are no longer viable. The study of index data structures, that are able to reduce the time
it takes to locate the occurrences of P , has been the focus of the string processing community for
several years. Classical indexes, however, have a tendency to be space intensive. This constitutes
a severe problem, since not being able to store indexes in main memory limits their usage.

In recent years a new and extremely successful approach to this problem has emerged. Com-
pressed full-text indexes, which use data compression techniques to produce data structures that
are less space demanding have been proposed by several researchers [5, 10, 13, 21, 27]. Compressed
indexes consist of a careful combination of text compression and succinct data structures with in-
dexing data structures. Navarro and Mäkinen presented a comprehensive survey on compressed
full-text indexes [20].

A text compression technique is a way to encode the text in a format that requires less space
than that of the original raw sequence and that still represents the original text. By representation
we mean that we can consult any part of the original text, even if this implies that first we
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decompress the whole string. The idea is that an index based on the compressed format may
also require less space. In fact, it turns out that data compression algorithms explore the internal
structure of a string much in the same way that indexes do. It should be clear that we wish to
recover exactly the original text, i.e. we are interested only in “lossless” data compression methods.
Text compression therefore provides a trade-off between the size necessary to store the text and the
time it takes to consult a part of the text. This trade-off might be advantageous for storing a text
or for transmitting it, such as over the Internet, from secondary memory to main memory or from
main memory to cache. Storing compressed files saves storage space. Transmitting compressed
files saves time when the overall time to encode, transmit and decode the file is smaller than the
time to transmit the original text. Therefore applications such as gzip or bzip2 became popular
for compressing and decompressing texts.

Text compression cannot compress a string by an arbitrary amount. In fact a simple argument
proves that even if we had enough computational power available, it is not possible to compress
every text by 1 bit. A lower bound on how much a string generated by a given source can be
compressed was given by Shannon. In Shannon’s theory different strings are grouped together
into ergodic sources. Observe that for every text, individually, it is possible to find a program
that outputs it. To avoid this pathological solution we can use Kolmogorov complexity which
considers the size of the program that generates the string as part of the complexity of the string.
The fundamental problem with Kolmogorov complexity is that it is not computable. In this work
we use a more pragmatic approach. We do not wish to make any assumptions on how the text
was generated. Moreover we are not so much interested in how much a text can be compressed
in theory as we are in how much it can be compressed by a class of “good” compressors. We
will use the notion of k-th order empirical entropy Hk(T ) given by Manzini [16]. The k-th order
empirical entropy gives a lower bound on the best compression ratio that can be applied to T ,
if, when compressing a character of T , we consider only the context of the k characters that
precede it in T . Obviously the larger the context we consider, the better the compression should
be, i.e. 0 ≤ Hk(T ) ≤ . . . ≤ H0(T ) ≤ log σ (where by log we mean log2). Therefore the size of
the compressed text will range from uHk(T ) to uH0(T ) depending on the compressor we use.
Moreover, empirical entropy provides a measure of the complexity of T taken as a finite object.
This is opposed to the classical notion of entropy by Shannon. State of the art compressed indexes
consider T as finite and organize it globally. In a way, our contribution is to organize globally
Ziv-Lempel compressed indexes that were only locally organized.

A succinct data structure representation of a data structure is a compact representation of it.
Trees are a recurrent data structure in computer science and, in particular, play a central role in
full-text indexing theory. It is therefore natural to consider succinct representations of trees. Clearly
the less space we need to represent a tree, the less space our indexes will require. Jacobson [12]
was the first to study succinct data structures, such as trees and bitmaps (strings of 1’s and 0’s).
Trees are commonly implemented with pointers which may not be the most space efficient way
to store them. A tree, can, for example, be represented as a string of left and right parentheses.
This representation does not support by itself common operations efficiently, such as moving to a
father node or to a child node, but it does represent the tree. Therefore, a tree with n nodes can be
represented with 2n bits. The work presented by Jacobson showed how to simulate tree traversals
efficiently using only o(n) extra bits. Clearly this kind of results is relevant for producing smaller
full-text indexes.

The fundamental tools supporting these kinds of data structures are the Rank and Select

operations over bitmaps. The Rank operation counts the number of 1’s up to a given position in the
bitmap. The Select operation returns the location of the i-th 1 in the bitmap. Jacobson showed
how to compute Rank in constant time, with only o(n) extra bits. Later on, Munro and Clark [17]
obtained constant-time solutions for Select, with o(n) extra bits. The set of operations provided
by succinct trees has been successively enlarged and improved by several researchers; including
Munro et al. [19], Benoit et al. [2] and Geary et al. [7]. The Rank and Select operations also
proved to be useful for representing permutations [18]. Trees and permutations play a central role
in full-text indexing theory. Hence, this kind of results account for a significant part of the success
of compressed indexes.
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Producing compressed indexes lead to new discoveries about full-text indexes. A surprising such
discovery was self-indexing. Basically it turned out that with a negligible amount of information,
it is possible to make full-text indexes capable of reproducing any substring of T without storing
T explicitly. Another important discovery is backward searching, which is the operating principle
behind the FM-Index [5].

Compressed suffix arrays [10, 27] and the FM-index [5] are the main trends of compressed
indexes. This is partially due to the fact that LZ-indexes [5, 13, 21] require a considerable amount
of time to determine the number of occurrences of P in T , denoted by occ. In fact, the in-
dex of Kärkkäinen et al. [13], which was not a self-index, required O(m2 + (m + occ) log u) time
and Navarro’s [21] index required O((m3 log σ) + (m + occ) log u) which was recently improved to
O((m2 log m) + (m + occ) log u) by Arroyuelo et al. [1]. It can be seen that in all these approaches
the dependency on m is at least O(m2). The only LZ based index that was able to achieve O(m)
time was presented by Ferragina et al. [5]. However, this index requires a considerable amount of
space, O(uHk(T ) logǫ u) + o(u) bits, ignoring the dependency on σ. In fact, the index presented
by Ferragina et al. has not been implemented. The structure we propose is very similar to the one
given by Ferragina et al. In fact we use essentially the same structures they do. However the oper-
ations permitted and the representation used are new. If they used the same range data structure
we use, their structure would not have a logǫ u dependency on the space complexity. However, since
their approach is heavily dependent on the FM-Index, it may lead to alphabet related problems,
i.e. large hidden σ dependencies. This problem, however, has been recently addressed [6, 8] and
is, therefore, solvable. Nevertheless our approach is simpler and alphabet independent.

The Ziv-Lempel algorithm is a dictionary based compression method. In essence, the idea is
that, given T , the algorithm infers a suitable dictionary and encodes T accordingly. The problem
with compressed indexes based on this approach is that the encoding of T is not suitable for
pattern matching. In fact the dictionary generated by the Ziv-Lempel algorithm is dynamically
updated at the same time that T is processed. This means that the same string may be encoded in
several different ways, since the dictionary changes from one occurrence, of the string, to another.
This results in an undesirable encoding. The solution to this problem forces us to destroy the
on-line property of the Ziv-Lempel algorithm. Our algorithm runs in two phases: in the first one
we use the LZ78 algorithm to infer a dictionary; in the second one we organize T in an off-line
way, using the inferred dictionary.

We start our exposition with some basic concepts and a general description of our index, based
on generic dictionaries. Afterwards, we show how to use the information from the LZ78 algorithm
to produce a suitable dictionary and prove that we obtain a compressed full-text self-index. Next
we describe some of the practical decisions that were taken to implement our algorithm. Finally,
we show some experimental results and conclusions.

2 Basic Concepts and Notation

For basic concepts related to strings and suffix trees we refer the reader to one of the many good
references available, e.g. Gusfield [11]. We use the following conventions: strings are sequences
of letters from the alphabet Σ, of size σ, and start at index position 0; prefixes, substrings and
suffixes are denoted respectively as S[..i], S[i..j], S[j..];a set C is suffix/prefix if any suffix/prefix
of an element of C is also an element of C; m is the size of the pattern string P , u is the size
of the text string T and occ is the number of occurrences of P in T . By suffix tree we refer to
a generalized suffix tree. The terminator symbols are not considered as part of the edge-labels.
The suffix trie is the uncompressed version of the suffix tree, i.e. it contains a node between any
two letters in a label. A point is a node in the suffix trie. We refer indifferently to points in a
suffix tree and to their path-labels. Sdep(p) is the string depth of point p. Father(v) is the father
node of node v. SuffixLink(v) is the node pointed by the suffix link of node v. Letter(v, i)
equals v[i], i.e. the i-th letter of the path-label of node v. Descend?(p, c) is true iff it is possible
to descend from point p with c and Descend(p, c) returns the resulting point. In a suffix tree
the first letters of every edge are referred to as branching letters. By Dfs(v) we refer to the
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Fig. 1 (top-right) Suffix tree for strings {a, b, ba, bd, cba, cbd, d}. Suffix link from cb to b shown by a dashed
arrow. Nodes show their Dfs value in T . (top-left) Reverse tree of the suffix tree on the right. Nodes show
their Dfs value in T R. The R mapping is shown and R(3) is indicated by a bold arrow. (bottom-left)
Sparse suffix tree of T , nodes show their DfsST values. Weak descent W (RootST , 2′) shown in bold
rectangle. (bottom-right) Linking points over spaces supported by Dfs’ and DfsST values. Orthogonal
range query [5*,5*]:[5,8].

depth-first time-stamp [4] of a node v in a suffix tree and by Dfs’(p) to the depth-first time-stamp
of a point p in a suffix trie.

Definition 1 The range I(p) of a point p of a suffix tree T is the interval of the Dfs’ values of
the points that are descendants of p.

As a running example consider T = cbdbddcbababa and T as the suffix tree in Figure 1 (top-right).
In our example Dfs(c) is undefined, Dfs(cb) = 5, Dfs’(c) = 5, Dfs’(cb) = 6 and I(c) = [5, 8].
Table 1 presents the main symbols used throughout this paper.

2.1 Descend and Suffix Walk

Descend and suffix walks are classical algorithms over suffix trees but since they constitute an
important component of our method we will briefly explain them here.

An element that is responsible for the flexibility of suffix trees is the suffix link. The suffix-link
of a node v of a suffix tree is a pointer to node v[1..], denoted by SuffixLink(v). We define in an
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Table 1 Main symbols used

Symbol Meaning

T Text string
u Original length of text string in characters, i.e. |T |
P Pattern string
m Length of pattern string in characters, i.e. |P |
Σ Alphabet for P and T
σ Alphabet size, σ = |Σ|
occ, occ1, occ>1 Number of occurrences of the pattern in the text,

inside a block and spanning more than one block respectively
occ′ occurrences determined by an orthogonal range query
Hk k-th order entropy of a text character
i, j counters in the Descend and Suffix Walk algorithm or generic indexes
Zi Ziv-Lempel block
n Number of LZ78 blocks of the text
ǫ either the empty string or a small positive real number
T78 Ziv-Lempel suffix tree, dictionary
d, t number of nodes/points in the Ziv-Lempel suffix tree,
t the tree depth in the FOR variant
ST 78 Ziv-Lempel sparse suffix tree
d′ number of nodes in the Ziv-Lempel sparse suffix tree
T78(T ) T78-maximal parsing
f size of the T78-maximal parsing
R reverse mapping between trees
V Descend and Suffix walk variant and block bitmap

artificial way Suffix Link(Root) as a node that descends to the root by every letter including
terminator symbols. Several suffix tree algorithms use suffix links. One such algorithm is a greedy
traversal of the tree, greedy in the sense that the algorithm traverses the tree trying to maximize
the string depth at all times. Suppose we are given pattern P and a suffix tree T . A greedy traversal
of P in T consists in trying to read a string P by starting from the root and descending as much
as possible. When it is impossible to descend any further, we follow suffix-links until descending
becomes possible again.

Definition 2 The descend and suffix walk of a string P over a suffix tree T is the sequence
p0 . . . p2m of points of T computed by Algorithm 1, i.e. the sequence of values taken by the variable
point.

It is important to notice that Algorithm 1 starts by appending to P a new terminator character
$′ that fails to match with any other character. The following lemma explains why, for each value
of i, the point values at line 5 correspond to the largest suffix of P [..i − 1] that is a point in T .

Lemma 1 (For Invariant) Before any execution of line 5 of Algorithm 1, it is always true that
for any j′ < j we have that P [j′..i − 1] is not a point in T .

Proof First it should be obvious that, except in line 10, point = P [j..i− 1], since the SuffixLink

(resp. Descend) and j++ (resp. i++) instructions are consecutive.

The lemma is proved by induction on i. The base is trivial. We assume that before line 7
is executed if j′ < j then P [j′..i] is not a point in T . Our result follows immediately from this
property by observing that the point and i are updated before reaching line 5 again.

The previous property can be proved by induction on the number of times the while loop ran
on an iteration of the for loop. The base follows from the induction hypotheses of the lemma, by
observing that, since T is suffix closed, if point P [j′..i − 1] is not in T , neither is point P [j′..i].
Finally assume that the while’s guard is true, i.e. NOT Descend?(P [j..i − 1], P [i]). Therefore
P [j..i] is not a point in T . Hence if j′ < j + 1 then P [j′..i] is also not a point in T . �
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Algorithm 1 Descend and Suffix Walk Algorithm

1: procedure Descend&Suffix(P )
2: P ← P.$′

3: j ← 0
4: point ← Root

5: for i← 0, i < |P |, i++ do

6: trace left[i] ← point
7: while NOT Descend?(point, P [i]) do

8: trace right[j] ← point
9: j++

10: point ← SuffixLink(point)
11: end while

12: point ← Descend(point, P [i])
13: end for

14: end procedure

i 0 1 2 3 4 5 6 7

P[i] c b d b d d c $’

trace left[i] ǫ c cb cbd b bd d c

DFS’(father left[i]) 0 0 6 8 2 4 9 0

DFS’(trace left[i]) 0 5 6 8 2 4 9 5

DFS’(child left[i]) 0 6 6 8 2 4 9 6

trace right[i] cbd bd d bd d d c ǫ

DFS’(father right[i]) 8 4 9 4 9 9 0 0

DFS’(trace right[i]) 8 4 9 4 9 9 5 0

I(trace right[i]) [8,8] [4,4] [9,9] [4,4] [9,9] [9,9] [5,8] [0,9]

DFS’(child right[i]) 8 4 9 4 9 9 6 0

P[i..] cbd.bd.d.c bd.bd.d.c d.bd.d.c bd.d.c d.d.c d.c c ǫ

tail(P[i..]) c c c c c c c ǫ

H(P[i..]) 748 448 848 48 88 8 ǫ ǫ

R(H(P[i..])) 6’7’8’ udef udef 6’7’ 6’6’ 6’ ǫ ǫ

|father left[i]| == i FALSE TRUE TRUE FALSE FALSE FALSE FALSE

W(R(H(P[i..])), R(father left[i])) ∅ [5*,5*] ∅ ∅ ∅ ∅

I(tail(P[i..])) [5,8] [5,8] [5,8] [5,8] [5,8] [5,8] [0,9]

occ’ 0 1 0 0 0 0

Table 3 (Top) Descend and suffix walk of cbdbddc in T . (Bottom) Values for locating type > 1 occurrences.

This lemma shows that the value of the point in line 6 is left maximal, i.e. no P [j′..i − 1] with
j′ < j is a point of the suffix tree. Likewise the points in line 8 are right maximal, since the while’s
guard has just evaluated true. This gives a way to classify the points that were reached by the
descend and suffix walk.

Definition 3 The left and right traces of a string P over a suffix tree T are the sub-sequences
of the descend and suffix walk given respectively by lines 6 and 8 of Algorithm 1.

By father right[i] (resp. father left[i]), we refer to the lowest ancestor of trace right[i] (resp.
trace left[i]) that is a node of T and by child right[i] (resp. child left[i]), to the highest descen-
dant of trace right[i] (resp. trace left[i]) that is a node of T . Table 3 (top) shows the descend
and suffix walk of cbdbddc in T .

We will now explain why Algorithm 1 runs in O(m) time. First it should be clear that Algo-
rithm 1 does terminate.
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Fig. 2 Sample bitmap that represents the suffix tree T in Figure 1 (top-right)

Theorem 1 Expression V (i) = 3m − i − 2j − t is a variant of the for loop, where t is the tree
depth of the point. Therefore Algorithm 1 terminates.

Proof Suppose that V (i) ≤ 0. Since t ≤ i − j, then 3m − 2i − j ≤ 3m − i − 2j − t. Since j ≤ i,
then 3m − 3i ≤ 3m − 2i − j. Therefore 3m − 3i ≤ 0, hence m ≤ i and the for cycle terminates.

Except for instruction 10, it should be evident that ∆V = V (i+1)−V (i) < 0 for any i, since j
is non-decreasing and i is strictly increasing for each iteration of the FOR loop. The problem with
the Suffix Link operation is that it may cause t to decrease. However t can decrease at most by
1. The factor 2 associated with j compensates this effect. Therefore in every iteration of the while
cycle ∆V < 0. �

For now we assume that the operations Descend and Descend? are computed in constant
time and later give a more realistic analysis. The problem of analyzing the time of Algorithm 1
is that operation SuffixLink is computed for points, not just nodes, and therefore does not
necessarily run in constant time.

Lemma 2 (Skip/count trick) The Suffix Link function runs in O(∆t + 2) time, where ∆t is
the variation of tree depth.

Proof Computing the Suffix Link for the nodes of T can be done in O(1) by storing the suffix-
links in T . For a point, the idea is to first use the suffix link of its father node and then descend
until the string depth is equal to the string depth of the original point less 1. In order to descend,
it is not necessary to read the complete edge labels. The reason is that P [j + 1..i − 1] must be a
point in T since P [j..i − 1] is. Therefore we only need to check the branching letters of the nodes
we find along the way. Hence, we conclude that this procedure can be computed in O(∆t + 2)
time. �

Observe that −∆V counts all the operations executed in an iteration of the for loop, including
the time to compute Suffix Link. Therefore Algorithm 1 runs in O(V (0)) = O(m) time.

3 Succinct Data structures

By bitmap B we refer to a string over {0, 1} of length |B|. Fundamental tools to produce succinct
data structures are the Rank and Select operations over bitmaps. The operation Rank(B, i)
counts the number of 1’s in B[..i−1] and Select(B, i) returns the smallest j such that Rank(B, j+
1) = i, i.e. the position of the i-th 1. For the example bitmap in Figure 2, we have that Rank(B, 3) =
2 and Select(B, 2) = 1. Munro [17] and Clark showed how to support these operations in O(1)
time and |B| + o(|B|) bits. Succinct data structures can also be combined with data compression
techniques when B is compressible, solutions that require |B|H0(B) + o(|B|) bits may be more
adequate. This line of work was initiated by Pagh [23] and extended by Raman et al. [24].

3.1 Succinct Suffix Trees

Since our approach is based on suffix trees, we need an adequate succinct representation for them.
We have already mentioned that trees can be represented as a sequence of parentheses, i.e. can be
represented as a bitmap. For example the bitmap in Figure 2 represents the suffix tree T in Figure 1
(top-right). For example, the node with Dfs value 2 is represented by the parentheses at positions
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3 and 8 of B. The Dfs value can be obtained from B as Rank(B, 3) + B[3] − 1 = 2 + 1 − 1 = 2.
This is the computation performed by the LeftRank operation, i.e. LeftRank corresponds to
Dfs. The RightRank(v) corresponds to the largest Dfs value among the descendants of v. This
operation can be computed as Rank(B, 8) + B[8] − 1 = 5 + 0 − 1 = 4. This is consistent with
Figure 1, where the node with Dfs value 4 is the last descendant of the node with Dfs value 2.

The Rank and Select operations also proved useful for representing permutations. Munro et
al. [18] showed how to represent a permutation of d elements and its inverse in (1+ ǫ)d log d+ o(d)
bits, where ǫ is constant and 0 < ǫ ≤ 1. An element of the permutation can be computed in O(1)
and an element of the inverse in O(1/ǫ).

Geary et al. [7] presented a succinct representation of ordinal d-node trees in 2d + o(d) bits,
supporting, among others, the following operations in constant time:

– Anc(v, j) returns the j-th ancestor of node v (for example Anc(v, 1) is Father(v));
– LeftRank(v) returns Dfs(v);
– RightRank(v) returns the largest Dfs value among the descendants of v;
– Select(j) returns the node with Dfs time j;
– Child(v, j) returns the j-th child of node v;
– Deg(v) returns the number of children of node v;
– Depth(v) returns the tree depth of node v.

Definition 4 The reverse tree T R of a suffix tree T is the minimal labeled tree that, for every
node v of T , contains a node vR, where vR denotes the reverse string of v.

The tree T R is shown in Figure 1 (top-left). Observe for example that, since cbd is a node of T ,
there is a node cbdR = dbc in T R. We define a canonical mapping R that, for every node v in T ,
maps Dfs(v) to Dfs(vR) (see Figure 1). We will use R(v) to denote R(Dfs(v)). Note that since
the nodes of T form a suffix closed set, the nodes of T R form a prefix closed set.

We assume that the tree structure of T and T R are stored using the previous representation.
Arroyuelo et al. [1] proposed a way to represent the R mapping. Since R is a permutation, R
and R−1 can be stored using the representation of Munro et al. [18] in (1 + ǫ)d log d + o(d) bits,
where ǫ is fixed and 0 < ǫ ≤ 1. This way R and R−1 can be computed in O(1) and O(1/ǫ) time
respectively.

Lemma 3 A suffix tree T with d nodes can be stored in (1 + ǫ)d(log d) + 5d + o(d) bits. Let p be
a point, c a letter and v a node of T . This representation provides the operations given by Geary
et al. in O(1) time. Moreover it provides Sdep(v) in O(1) time, Suffix Link(v), Letter(v, i),
in O(1/ǫ) time and Descend?(p, c), Descend(p, c) in O((log σ)/ǫ) time.

Proof According to our notation R(v) represents SelectT R(R(LeftRank(v))). Observe that
Sdep(v) can be computed as DepthT R(SelectT R(R(LeftRank(v)))) which can be represented
as DepthT R(R(v)), since T R is prefix closed. The operation Suffix Link(v) is computed as
R−1(FatherT R(R(v))). Observe that v[0] represents the letter just below the root. For example
cbd[0] = c. We define a bitmap D to compute v[0], in a way similar to Sadakane [27]. We have
that D[0] = 1 and, for i > 0, D[i] = 0 iff Dfs(v) = i, Dfs(v′) = i + 1 and v[0] = v′[0]. In our
example D = 11001001. We can compute v[0], when v is not the Root, in O(1) as the letter in
position Rank1(D,Dfs(v)) of Σ. This requires d + o(d) bits. The operation Letter(v, i) can be
computed from R−1(AncT R(R(v), i)). This expression represents following enough suffix links to
make the letter we want appear just below the root, i.e. Letter(v, i) = R−1(AncT R(R(v), i)[0].
When p is not a node, Descend?(p, c) can be computed in O(1/ǫ) time by consulting Letter

for the point below p. If p is a node, we do a binary search among the children of p. If we find a
child that starts with c, we return true. Procedure Descend(p, c) updates the value of p. When p
is a point, this is done in O(1) time. When p is a node, we first proceed as in Descend?. �

Finally observe that with this representation we cannot compute Dfs’(v). The Dfs’ values are
essential to our algorithm because they serve as a supporting space for range queries. This result
can be obtained with a compressed bitmap.
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Lemma 4 For a suffix tree T with t points and 2n nodes, operations Dfs’(p) and I(p) can be
computed in O(1) time using tH0+O(t log log t/ log t) extra bits, where H0 is the empirical entropy
of a bitmap with (t − 2n) ones and 2n zeros.

Proof Consider the bitmap that for every point of T stores 1 if the corresponding point is a node
and 0 if it is not a node. The bitmap is sorted in DFS’ order. Using the compressed representation
of Raman et al. [24] this bitmap can be stored in tH0+O(t log log t/ log t) bits supporting Select1

in O(1) time. Observe that for a node v we have that Dfs’(v) = Select1(Dfs(v)).
For a point p, Dfs’(p) is computed as Dfs’(v) − Sdep(v) + Sdep(p), where v is the highest

node that is a descendant of p1. Also I(p) = [Dfs’(p),Dfs’(Select(RightRank(v)))]. �

3.2 Wavelet Trees

Wavelet trees are a recurrent succinct data structure. They were proposed by Grossi et al. [9]
as a structure for supporting Rank and Select for sequences over an alphabet larger than 2.
They were also proposed by Chazelle [3] for performing orthogonal range queries. Obviously the
algorithms over the structure are different. However, both use Rank and Select over bitmaps.
This description of the structure given by Chazelle was pointed out by Mäkinen et al. [20].

Consider for example the sequence 0, 3, 3, 7, 9, 4. The wavelet tree of this sequence is shown
in Figure 3. The wavelet tree is a perfect binary tree of height ⌈log σ⌉. Each node stores a sub-
sequence of the original sequence. The root stores the whole sequence. Starting from the most
significant bit, the left node stores the sub-sequence for which this bit is 0, the right node stores
the sub-sequence for which this bit is 1. In our example the left sub-sequence is 0, 3, 3, 7, 4 and the
right sub-sequence is 9. This process continues until all bits have been used. To descend from one
node to a child node we use the Rank operation. For the left node we use Rank0 and for the right
node Rank1. In our example we can track the element 4 by computing Rank0(5) = 4 at the root
node. Note that element 4 is in position 4 of the left child of the root. Obviously moving upwards
uses the inverse procedure, i.e. the Select0 operation. Every leaf of the wavelet tree represents a
type of element in the sequence. Moving from the root to a leaf allows us to compute rank for the
element associated with the leaf. Conversely, moving from a leaf to the root allows us to compute
Select for that element.

The tree structure is only conceptual. In fact the only information that is stored are the bitmaps
highlighted in Figure 3. Further Rank and Select operations can be used to delimit the bits
that correspond to a given node of the tree.

The wavelet tree can also be used to compute orthogonal range queries. Consider a grid [1, f ]×
[1, f ] with f points inside. An orthogonal range query consists in determining the points inside
a rectangle (see Figure 1). Provided that the points are all distinct in the first coordinate they
can stored in a wavelet tree, by building a list of the second coordinate values ordered by the
first coordinate. In the example of Figure 1 the resulting sequence is 0, 3, 3, 7, 9, 4. This requires
f log f(1+o(1)) bits. In fact it is easy to extend the space of the second coordinate, i.e. extend the
space to [1, f ]× [1, f ′]. This will require f log f ′(1 + o(1)) bits instead. To compute a range query
[i, i′]× [j, j′] we start by locating the range [i, i′] at the root of the wavelet tree. When we descend
we track the elements i and i′. The idea is to track every path that is contained in the [j, j′] range.
Obviously we can avoid descending by nodes for which the corresponding range [i, i′] is empty.
Therefore whenever a leaf is reached an occurrence is found, i.e. it takes O((1 + occ′) log f ′) time
to report occ′ occurrences. A simpler procedure can be used to count the number of occurrences
in range [i, i′] × [j, j′]. The procedure consists in descending by j and j′, the total of occurrences
associated with the non-shared part of these paths gives the number of occurrences. This takes
O(log f ′) time.

The ranges we are going to use are obtained from other structures in our index, and, in
particular, from suffix trees.

1 Note that we assume that v is part of the representation of p.
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Fig. 3 Wavelet tree for sequence 0, 3, 3, 7, 9, 4.

4 A Full-Text Index Using Suffix Tree Dictionaries

In this section we explain the main contribution of this paper. Our data structure is very similar
to an inverted file. We will use this similarity to provide insight into the algorithm.

4.1 Generic Inverted Index

Throughout section 3 we assume that we are given an arbitrary suffix tree T with d nodes, that
we will use as a dictionary. We consider as dictionary words the path-labels of the nodes of T . The
first thing we should do is to organize T according to our dictionary T , much like what is done in
inverted files when given a lexicon.

Definition 5 The T -maximal parsing of string T is the sequence of nodes v1, . . . , vf , whose
concatenated path-labels compose T , i.e. T = v1 . . . vf , and for every j, vj is the largest prefix of
vj . . . vf that is a node of T .

We assume that T is appropriate for T , i.e. that it is possible to parse T in a maximal way. In
our example, the T -maximal parsing of a string T is the sequence cbd, bd, d, cba, ba, ba. We refer
to the elements of the T -maximal parsing of T as blocks. Note that the strings in the dictionary
appear in the T -maximal parsing. We denominate them as words when referring to the dictionary
and as blocks when referring to the T -maximal parsing. We will store the T -maximal parsing of
T in compact form as a string of numbered blocks.

Definition 6 The translation V (v1, . . . , vf ) of a sequence v1, . . . , vf of nodes is the string
Dfs(v1) . . .Dfs(vf ).

We denote by T (T ) the translation of the T -maximal parsing of T . Since the T -maximal parsing
of T is the sequence cbd, bd, d, cba, ba, ba, its translation is the string T (T ) = 748633. Note that
word ba is associated with two blocks, v5 and v6.

Inverted files usually store a list of occurrences for every word of the dictionary. To play
this role we will use a stronger indexing structure, a sparse suffix tree. For reasons that will
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become clear in Section 5 we must reverse the string T (T ). This is achieved by extending the
canonical mapping R to sequences in the following way: R(v1 . . . vf ) = R(vf ) . . . R(v1). In our
example R(T (T )) = R(748633) = R(3)R(3)R(6)R(8)R(4)R(7) = 2′2′3′6′7′8′. This corresponds to
the notion of reverse string, because the concatenation of the path-labels of R(T (T )) in T R is
ab.ab.abc.d.db.dbc = T R.

Definition 7 The sparse suffix tree2 ST of a string T and a suffix tree T is the suffix tree of
R(T (T )).

The sparse suffix tree of our example is shown in Figure 1 (bottom-left). We can descend in the
sparse suffix tree in the usual way with DescendST . However, since T R provides the alphabet
for ST , we can also take that into consideration when descending.

Definition 8 The weak descent W (p, vR) for a point p in ST and a node vR in T R is the
interval of DfsST values of the nodes below the following points:

{p.DfsT R(v′) | v′ is a descendant of vR in T R}
Note that by p.DfsT R(v′) we are referring to the points whose path labels result from concate-
nating the letter DfsT R(v′) with the path-label of point p.

For example, W (RootST , 2′) = [1∗, 4∗], since this contains the DfsST values for the nodes
below 2′, 3′ in ST (see Figure 1). This can be computed in O((log d)/ǫ) time. We perform two
binary searches in the children of p, searching for LeftRankT R(v) and RightRankT R(v). Then
W (p, vR) = [LeftRankST (v′′),RightRankST (v′′′)], where v′′ and v′′′ are the nodes found by
the binary searches.

In order to find occurrences of strings across more than one block, we will need to store the
relations across contiguous blocks. This motivates the following two definitions.

Definition 9 The head, tail of the T -maximal parsing are respectively sequence v1, . . . , vi and
string vi+1 . . . vf such that v1, . . . , vi is the smallest sequence for which vi+1 . . . vf is a point in T .

We denote by H(T ) the translation of the head of the T -maximal parsing of T . The head of the
T -maximal parsing of T is cbd, bd, d, cba, ba and the tail is the string ba. Hence H(T ) equals 74863.
It may seem that tail is always just vf . Consider a modification T M of tree T were node cbd is
replaced by cbde and nodes bde, de, e are added to complete the suffix tree. Note that cbd is not
a node of T M, as it is only a point. The string, bcbd is parsed as b.cb.d and the tail is cb.d and,
therefore, it is not just the last block.

Next we define a set of points relating the leaves of ST with the points in T .

Definition 10 The linking points set of the T -maximal parsing v1 . . . vf of T is the following
set:

L =

{

〈Dfs(R(V (v1 . . . vi))),Dfs’(pi)〉 pi is the largest prefix of vi+1 . . . vf

that is a point in T , for 0 < i ≤ f

}

The set L is shown in Figure 1 (bottom-right) and consists of the following points:

– 〈Dfs(R(V (cbd, bd, d, cba, ba, ba))),Dfs’(ǫ)〉 = 〈Dfs(2′2′3′6′7′8′), 0〉 = 〈2∗, 0〉
– 〈Dfs(R(V (cbd, bd, d, cba, ba))),Dfs’(ba)〉 = 〈Dfs(2′3′6′7′8′), 3〉 = 〈3∗, 3〉
– 〈Dfs(R(V (cbd, bd, d, cba))),Dfs’(ba)〉 = 〈Dfs(3′6′7′8′), 3〉 = 〈4∗, 3〉
– 〈Dfs(R(V (cbd, bd, d))),Dfs’(cba)〉 = 〈Dfs(6′7′8′), 7〉 = 〈5∗, 7〉
– 〈Dfs(R(V (cbd, bd))),Dfs’(d)〉 = 〈Dfs(7′8′), 9〉 = 〈6∗, 9〉
– 〈Dfs(R(V (cbd))),Dfs’(bd)〉 = 〈Dfs(8′), 4〉 = 〈7∗, 4〉

To compute orthogonal range queries we use the wavelet tree as described. As referred, this
structure requires f log f ′(1 + o(1)) bits and can compute orthogonal range queries in the space
[1, f ]× [1, f ′] in O((1+ occ′) log f ′) time. We need to store points in the [0, d′−1]× [0, t−1] space,
where d′ is the number of nodes of ST . We only need to store f points. Therefore we must reduce
the support space to the rank space. The space [0, d′ − 1] can be reduced to [1, f ] in O(1) time,

2 Similar to a concept defined by Kärkkäinen et al. [14].
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with Rank over a bitmap of d′ + o(d′) bits. The second reduction is obtained by setting f ′ to t
and, therefore, time to report occurrences is O((1 + occ′) log t).

We propose an index data structure composed of the dictionary T , the sparse suffix tree ST
and the linking points L. We will now explain how to use this index to solve the exact matching
problem. Our search algorithm proceeds differently depending on whether the pattern is completely
contained inside a block or spans more than one block. We refer to this as type 1 and type > 1
occurrences.

4.2 Occurrences Lying Inside a Single Block

The algorithm for finding occurrences inside a single block starts by identifying all the words in
the dictionary T that contain P as a substring. Since T is a suffix tree, it is possible to achieve
this in a simple way.

– Descend by P in T . If this is impossible then there are no type 1 occurrences of P.
– Start a depth-first traversal of the sub-tree below P .
– For each node v reached compute the range query W (RootST , R(v)) : [0, t].

The search in T consists in considering words that start with P and appending some letters.
The weak descend and the range query consist in prepending some letters to the words found
on the search in T . For example, consider P = b. By reading b, we reach node 2 of T (see
Figure 1). The search on T returns nodes 2, 3, 4, hence it leads us to consider words b, ba, bd.
This originates the following weak descends: W (RootST , 4′) = ∅, W (RootST , 2′) = [1∗, 4∗],
W (RootST , 7′) = [6∗, 7∗]. We do not need to consider words that start with b, since they do not
correspond to blocks; there may be occurrences of ba or cba because of ba; there may be occurrences
of bd and cbd because of bd. The range queries return no occurrences for b, occurrences 2∗, 3∗ and
4∗ for ba and occurrences 6∗ and 7∗ for bd. This corresponds to occurrences cbd.bd.d.cba.ba.ba,
cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba for ba and occurrences cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba,
for bd.

Theorem 2 The above procedure is correct and complete.

Proof (Correct) Clearly every reported block is α.P.β for some α,β and hence it contains an
occurrence of P . (Complete) Suppose block vi = α.P.β. Hence α.P.β is a node in T . Since T is a
suffix tree, P.β is also a node in T . Node P.β is reached by the search in T , since it starts by P .
Every node v of ST for which v[0] = Dfs((α.P.β)R) has its DfsST time in W (RootST , (P.β)R).
Hence block vi is found in the range query. �

This algorithm was essentially presented by Navarro [21], except for the fact that the range queries
were computed as depth-first searches in a trie similar to T R. In Navarro’s algorithm, each node
of that trie stored one block. Therefore the time of these searches was bounded by the number of
type 1 occurrences of P , denoted by occ1. We do not have a direct correspondence between the
nodes of T R and the blocks of T -maximal parsing, which means that this approach has no worst
case guarantees. In essence, the problem is that we may be executing more range queries than the
number of occurrences found.

Definition 11 A spurious entry for string T in the suffix tree T is a leaf v of T such that vR is
a leaf of T R and v is not a block in the T -maximal parsing of T .

For a dictionary T without spurious entries, we can guarantee that some orthogonal range queries
must return occurrences.

Lemma 5 Assuming T has no spurious entries for T and v is a leaf of T , then the query
W (RootST , vR) : [0, t] returns at least one linking point.

Proof There is some α such that (α.v)R is a leaf in T R. Since T is a suffix tree and v is a leaf of T ,
then α.v is also a leaf of T . Hence, at least one linking point will be found by W (RootST , vR) :
[0, t], since DfsST ((α.v)R) ∈ W (RootST , vR). �
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Spurious entries may be safely removed from the dictionary. Removing spurious entries can be
done by considering T and T R as a DAG, a node w in the DAG represents simultaneously v and
vR; there is an edge from w to w′ if that edge exists in T or in T R. To remove spurious entries
we perform a DFS over this DAG. We remove nodes that do not have blocks and are sinks or
unary and the edge comes from T . The nodes are checked and removed in their finishing time
(see Cormen et al. [4] for definitions). This procedure runs in O(d) time. Note that the resulting
structure remains a suffix tree.

4.3 Occurrences Spanning more than a Single Block

In this section we focus on finding occurrences that span two or more consecutive blocks, i.e. type
> 1. The ideas presented in this section are similar to those of Kärkkäinen et al. [14] and related
with the approach proposed by Ferragina et al. [5].

We are now faced with the problem of retrieving the words in our dictionary that appear
concatenated in T (T ) and have P as a substring. Suppose that P = cbdbddc and that we split P
in two as cbdbdd and c. We will now search for c in T and for cbdbdd in ST . The point c in T
induces the range I(c) = [5, 8]; on the other hand, string cbdbdd is parsed into cbd, bd, b and hence
will be translated into 748. To search on the sparse suffix tree, we need R(748) = 6′7′8′. This will
induce the range [5∗, 5∗]. Finally, to solve our problem we perform the orthogonal range query
[5∗, 5∗] : [5, 8] over the linking points L. This corresponds to the question: is the string cbdbdd,
parsed as cbd.bd.d, ever followed by a block that starts by c? The answer is yes, since there is a
linking point in [5∗, 5∗] : [5, 8]. This point corresponds to cbd.bd.d.cba.ba.ba.

Observe that in this procedure we are using one suffix tree (T ) in the usual way, to search the
text from right to left, and another suffix tree (ST ) to search the text in the opposite direction.
Thus we are able to search for P by starting the search from the middle of the pattern. We “cross”
the results, by using orthogonal range queries, to obtain the occurrences of P .

We will now explain how to determine in which points to break P . The pattern should be
separated in the head and tail of P [i..], for every 0 < i < m, to account for every possible
translation that can occur. These points can be located using the following dynamic programming
equations:

tail(P [i..]) =

{

trace right[i] , if |trace right[i]| = m − i
tail(P [i + |father right[i]|..]) , otherwise

(1)

H(P [i..]) =

{

ǫ , if |trace right[i]| = m − i
father right[i].H(P [i + |father right[i]|..]) , otherwise

We use Algorithm 2 to locate points R(H(P [i..])) in ST . We can use a similar procedure to compute
tail(P [i..]). Whenever it is not possible to descend by a letter, the DescendST procedure returns
the udef state. See table 3 (bottom) for an example of this computation. Assume that the descend
and suffix walk of P is already computed. Hence, the arguments of DescendST are available when
DescendST is executed. Therefore, Algorithm 2 runs in O((m/ǫ) log d) time, since it runs m times
the DescendST operation, which requires O((log d)/ǫ) time.

Notice the importance of using the T -maximal parsing of T , instead of the original LZ78
parsing. By using a maximal parsing we have the guarantee that the notion of head is well defined.
This means that to every P [i..] we associate at most one point R(H(P [i..])) in ST . If we were
using the original LZ78 parsing there could be O(m) points in ST that corresponded to a given
suffix P [i..]. Locating all those points would raise the overall complexity to O(m2).

Having located tail(P [i..]) in T and R(H(P [i..])) in ST , we know where to break the pattern.
Now, all that we need are the ranges for the range query. The range for T is simply I(tail(P [i..])).
Whenever P [..i − 1]R is a node of T R, the range for ST is W (R(H(P [i..])), P [..i − 1]R).

Let us consider, for example, the case of i = 3. We have that H(P [3..]) = 48 and R(H(P [3..])) =
6′7′. Hence W (6′7′, (cbd)R) = [5∗, 5∗], since 8′ is the only descendant of itself in T R. This means
that, when we are extending bd.d to the left by prepending a word from our dictionary that
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Algorithm 2 Locate R(H(P [i..])) Algorithm

1: procedure Locate HPI
2: for i← m− 1, 0 < i do

3: R(H(P [i..]))← RootST

4: if |trace right[i]| < m− i then

5: R(H(P [i..]))← DescendST (R(H(P [i + |father right[i]|..])), father right[i])
6: end if

7: end for

8: end procedure

terminates in cbd, the only such word is cbd. Therefore, we end up considering only the node
cbd.bd.d.

Our algorithm for finding type > 1 occurrences of P proceeds as follows:

– Compute the descend and suffix walk of P in T .
– Compute tail(P [i..]) from the descend and suffix walk of P .
– Locate the R(H(P [i..])) points in ST (see Algorithm 2).
– If |father left[i]| = i then P [..i − 1]R = R(father left[i]),

compute W (R(H(P [i..])), R(father left[i])).
– Compute I(tail(P [i..])) from tail(P [i..]) (see Lemma 4 and Equation 1).
– Compute the orthogonal range queries W (R(H(P [i..])), R(father left[i])) : I(tail(P [i..])).

An example of our algorithm is shown in Table 3 (bottom). The only range query that finds
occurrences (occ’) is the [5∗, 5∗] : [5, 8] query, as we have explained in this section.

Theorem 3 This procedure is correct and complete.

Proof (Correct) Algorithm 2 locates points R(H(P [i..])) points in ST . These points correspond
to substrings P [i..j] of P . The weak descents extend this substrings into prefixes P [..j]. Then
tail(P [i..]) gives the corresponding suffix P [j + 1..]. The orthogonal range query “crosses” these
information and returns positions where the string P [..j] is followed by P [j + 1..]. Hence P occurs
in these positions. (Complete) Suppose that P occurs in T = v1 . . . vf in the blocks vj .vj+1 . . ..
Hence there is some i such that P [i..] is a prefix of vj+1 . . . vf and P = father left[i].P [i..] (see
Algorithm 1 and Definition 5). The strings corresponding to father left[i] and head of P [i..]
are contained in the range W (R(H(P [i..])), R(father left[i])) and the strings corresponding to
tail(P [i..]) in the range I(tail(P [i..])). Therefore, P is found by the orthogonal range query. �

5 A Compressed Self-Index based on LZ78 Dictionaries

We found it interesting to present this work in a general form, since it seems relevant to explore
other techniques for inferring dictionaries, given a text T . We will now give a concrete instantiation
of the above algorithm, using the Ziv-Lempel 78 algorithm [29].

Definition 12 The LZ78 parsing of a string T is the sequence Z1, . . . , Zn of strings such that
T = Z1 . . . Zn and for every i, Zi = Zjc where Zj is the largest prefix of Zi . . . Zn among the
Z1, . . . , Zi−1.

The strings Z1 . . . Zn are referred to as blocks. Given a string T , we proceed as follows: compute
the LZ78 parsing of T R = Z1 . . . Zn, then consider the suffix tree for strings {ZR

1 , . . . , ZR
n } as

our dictionary, denoted by T78. In our example T R is parsed into a, b, ab, abc, d, db, dbc and the
resulting dictionary can be seen in Figure 1 (top-right). The following lemmas expose why the
dictionary we propose is adequate in terms of space.

Lemma 6 If the number of blocks of the LZ78 parsing of T is n then T78 has at most 2n nodes,
i.e. d ≤ 2n.
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Proof Observe that every suffix of a ZR
i is a ZR

j for some j. Therefore the set {ZR
1 , . . . , ZR

n } is

suffix closed. Hence a suffix tree based on {ZR
1 , . . . , ZR

n } will have at most 2n nodes. �

Lemma 7 If the number of blocks of the LZ78 parsing of T is n then the T78-maximal parsing of
T has at most n blocks, i.e. f ≤ n.

Proof The idea is to show that if a block vi of the T78-maximal parsing is a substring of some
ZR

j then it is a suffix. Suppose that vi is a substring of ZR
j . We have that ZR

j = α.vi.β. Since the

dictionary is a suffix tree and ZR
j is a node, viβ is also a node and hence a dictionary word. Since

the parsing is maximal, we have that vi.β = vi, i.e. that vi is a suffix of ZR
j . �

5.1 Space and Time Complexity

With the previous results we will now determine the space and time complexity of our algorithm
using an LZ78 dictionary.

Lemma 8 The Dfs’78 operation can be supported over T78 in O(1) time with o(u log σ) bits.

Proof This result is obtained from lemma 4. Observe that t, the number of points of T78, can be at
most u. Moreover the largest value of uH0 can be at most 2u/ logσ u since the number of 1’s in the
bitmap is at most 2n and Ziv et al. [29] showed that n ≤ (u/ logu) log σ. A few calculations show
that the space occupied by this bitmap is at most 2u logσ(log log u/ logu) + o(u log log u/ logu)
bit, which is o(u log σ). �

We will refer to the index that uses LZ78 dictionaries as the Inverted-LZ-Index. The next theo-
rem gives an overview of the space/time complexity of this structure. A previous version of this
result [25], required more space.

Theorem 4 Let d and d′ be the number of nodes of T78 and ST 78 respectively. Let t be the number
of points of T78. Let f be the size of the T78-maximal parsing of T . The space/time trade-off of the
Inverted-LZ-Index can be summarized as follows:

Space in bits [ d
n (1 + ǫ) + d′

n (1 + ǫ) + f
n ]uHk + o(u log σ)

≤ (5 + 4ǫ)Hk + o(u log σ)
Time to count O((occ + m/ǫ) logn)
Time to locate free after counting
Time to display l chars O(l/ǫ), improvable to O(l/(ǫ logσ u)) with u extra bits
Conditions k = o(logσ u), σ = O(n), 0 < ǫ ≤ 1, ǫ is constant

Proof (Space) The space requirements come from adding up the space of T78, ST 78 and the range
data structure. The T78 suffix tree requires at most (1+ǫ)d log d+5d+o(d), according to lemma 3.
Moreover, to support Dfs’78 we need o(u log σ) extra bits. The ST 78 sparse suffix tree requires
(1 + ǫ)d′ log d′ + 5d′ + o(d′) bits, according to lemmas 3. The range data structure (wavelet tree)
requires another f log f(1 + o(1)) bits. The dominant factors are the ones associated with log u.
According to lemmas 6 and 7 these are the factors of log d, log d′ and log f . Hence the overall log
factor is d(1 + ǫ) + d′(1 + ǫ) + f . Ziv et al. [29] showed that

√
u ≤ n ≤ u/ logσ u, and, therefore

n = o(u log σ), which means that all remaining requirements are o(u log σ). The relation between
n and Hk was established by Kosaraju et al. [15] who showed that n log u = uHk + o(u log σ) for
k = o(logσ u). Therefore, the expression in the theorem accounts for the space requirements of the
ILZI.

(Count/Locate) We have already seen that Algorithm 1 runs in O((m/ǫ) log σ) time. The time
to find occurrences of type 1 is O((1 + occ1) log n). Observe that the number of queries computed
is less than or equal to twice the number of leaves below P . By lemma 5 we know that the queries
at the leaves must return occurrences. Therefore the total time amortizes to O((1 + occ1) log n).
The time to find occurrences of type > 1 is the time of Algorithm 2, plus m weak descents and
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m range queries. Therefore the total time for occurrences of type > 1 is O((occ>1 + m/ǫ) logn),
where occ>1 is the number of type > 1 occurrences.

(Display) Observe that even though we do not store R(T78(T )) explicitly, we have O(1/ǫ) access
time to it. The idea is to store a pointer to the leaf of ST 78 with path-label R(T78(T )), denoted by
FirstLeafST . Therefore R(T78(T ))[i] = LetterST (FirstLeafST , i). Hence, we can compute
the j-th letter of R(T78(T ))[i] as Letter(LetterST (FirstLeafST , i), j), in O(1/ǫ) time. To
achieve optimal O(l/(ǫ logσ u)) time we use an approach based on the work of Sadakane [28],
similar to Arroyuelo et al. [1]. We define a new bitmap D′, similar to bitmap D, used to retrieve
the first log u bits of a node v instead of the first letter. This requires d + o(d) bits. We also need
a bitmap Q that indicates which sequences of log u/2 bits do appear as the first bits of some v.
By (i)2 we denote the binary representation of i, with log u/2 bits. The Q bitmap is defined as
Q[i] = 1 iff (i)2 is the prefix of some (v)2 padded with zeros. Bitmap Q contains 2log u/2 =

√
u bits

and can therefore be stored in o(u) bits. With these bitmaps we are able to retrieve log u/2 bits
from a block in O(1) time, i.e. logσ u/2 letters. We repeat these bitmaps for ST 78 and hence are
able to retrieve log u/2 bits from consecutive blocks. Finally we need another bitmap to be able
to skip blocks. We use a bitmap V that marks the beginnings of the blocks in R(T78(T )). This
requires u + o(u) bits. As pointed out by Arroyuelo et al. [1], this bitmap can be used to report
the occurrences of P as positions in T instead of as a block and an offset. �

The worst-case of the space expression is (5 + 4ǫ)Hk + o(u log σ). However the worst example we
were able to find, based on De Bruijn cycles, yielded (4 + 3ǫ)Hk + o(u log σ) bits. In the next
section we show concrete values for the space expression.

Finally note that the bound by Kosaraju et al. [15] concerns Hk(T ) not Hk(T R). This makes
little difference. In theory Ferragina et al. [5] showed that uHk(T ) − O(log u) ≤ uHk(T R) ≤
uHk(T ) + O(log u). In practice, Hk(T ) and Hk(T R) can also be shown to be similar. Moreover,
we can switch the roles of T and T R in our approach and search for PR instead of P . In fact our
prototype works precisely in this way. However we believe this would have made the exposition
more complex and it would make it harder to point out the importance of the T R

78 suffix tree.

6 Practical Issues and Testing

6.1 Practical considerations

We implemented a prototype to test these ideas. Navarro [21] pointed out that, by using a naive
search instead of the range data structure, it was possible to build a smaller index that was faster
in practice. The naive way to compute an orthogonal range query is to choose the smallest range
and, for each point of that range, check whether the point belongs to the other range. Suppose, for
example, we wish to compute the range query W (RootST , 2′) = [1∗, 4∗] : [0, 9] = [0, t − 1]. First,
observe that, when we refer to the smallest range, we are referring to the range in the [1, f ]× [1, f ]
grid not in the [0, d′ − 1] × [0, t − 1] space. Therefore we reduce the [1∗, 4∗] : [0, 9] query to the
[1p∗, 3p∗] : [1p, 6p] query. Obviously, the smallest range is [1p∗, 3p∗]. Since, for this particular query,
the second range covers the whole space, the result is [1p∗, 3p∗], which corresponds to {2∗, 3∗, 4∗}.
We have already seen that this type of queries is used for type 1 occurrences. Therefore, using this
method, the time to compute the range queries for type 1 occurrences is O(occ1). For type > 1
occurrences this procedure has no worst case guarantees. However, in practice, this is acceptable
and more efficient. Therefore we did not implement the range data structure and we used this
approach instead. This immediately removes our capability of reducing [0, t − 1] to [1, f ], which
means that we cannot use points of T to support the linking points. This means that there is
no reason to use a compressed bitmap to support the Dfs’ operation for points that are not
nodes, as described in lemma 4. Instead we store 〈Dfs(R(V (v1 . . . vi))),Dfs(vi+1)〉 when i < f
and 〈Dfs(R(V (v1 . . . vi))), 0)〉 when i = f , since vi+1 is the largest prefix of vi+1 . . . vf that is
a node in T . Observe that the linking points in our example actually coincide exactly with this
definition, (see Figure 1 bottom-right). To find the linking points associated with a node v of
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T , we find the leaves below point R(v) in ST . Moreover, to decide which range is smaller, we
estimate the number of points in I ′(v) as the number of points in W (RootST , R(v)). In Navarro’s
approach, occurrences of type > 1 are further distinguished between type 2 and type > 2. Navarro
did not use dynamic programming, because it is possible to guarantee that there are not too many
occurrences of type > 2. Type > 2 occurrences span more than two blocks. The fundamental
argument is that, since the LZ78-blocks are all distinct, a given Zi occurs in at most one position.
Therefore the P [i..j] substrings of P occur in at most O(m2) positions. Hence there cannot be
more than O(m2) type > 2 occurrences of P in the LZ78 parsing of T . For T (T ) no such result
exists. However, even though a word v may correspond to more than one block of T (T ), in average
it does not correspond to many. Therefore we do not use dynamic programming either. Instead,
we use different procedures for type 2 and type > 2 occurrences.

There is not a very compelling reason to store ST 78 as a suffix tree when not using dynamic
programming. Inverted files store a list of occurrences for every dictionary word. These lists are
usually ordered by the position in T of the occurrences of the words. This regularity is usually
explored, for example, with delta coding, to store these lists in compressed form. This property
is also important when searching for patterns because, since the type > 1 search scans the text
sequentially, it provides better cache performance. Our implementation of ST 78 is similar to a
sparse suffix array, i.e. a suffix array for R(T (T )). However, the suffixes of R(T (T )) are only sorted
by the first block. Suffixes that start with the same block are ordered by position in R(T (T )), just
like in inverted files.

A very important aspect of our prototype is that the implementation of T78 differs considerably
from the succinct representation we presented. The fundamental reason for this fact is that the
succinct implementation would suffer from poor cache performance. Instead we opted for a more
cache aware implementation. The T78 tree is implemented in a pointer like fashion. Every node
is stored in a memory cell indexed by its breath-first time-stamp. For example, node cb will be
stored in cell 3. The Letter operation is replaced by a Head pointer, that, for every node v with
father node v[..i − 1], points to node v[i..]. This information suffices to read edge-labels, by using
suffix links. Every node v stores a Child pointer, its Dfs time, a suffix link, the string depth,
the Head pointer and pointers indicating W (RootST 78

, vR) over T78. This provides better cache
performance in several points. First, we store the information in the nodes and the topological
structure of the tree together. Second, there is no need to traverse back and forth from T78 to
T R

78 to read edge-labels or compute suffix links. Third, the Bfs ordering avoids some cache faults
in branching. Clearly, implementing T78 this way requires more space than the succinct implemen-
tation. This constitutes a severe problem. In order to solve it, we infer a smaller dictionary, i.e. a
T78 tree with less nodes. In practice, we use the following variation of the LZ78 parsing:

Definition 13 The LZ78 parsing with quorum l of a string T is the sequence Z1, . . . , Zn of
strings such that T = Z1 . . . Zn and, for every i, Zi = Zjc where c is a letter and Zj is the largest
prefix of Zi . . . Zn that appears at least l + 1 times among the Z1, . . . , Zi−1.

Clearly the LZ78 parsing with quorum 0 corresponds to the usual notion of LZ78 parsing. In
practice a quorum of 2 compensates for the space requirements of T78 without affecting performance
too much. Table 4 shows the size of the ILZI for different quorum values. Variable i represents the
size of different indexes, in bits. Therefore i/223 is the size in megabytes, i/8u is the ratio with
respect to the size of the original string and i/uHk is the ratio with respect to the size of the
compressed string. Our results show that increasing the quorum value significantly reduces the
space requirements of the ILZI while degrading the time performance only slightly. Observe that
with a quorum of 2 our index has acceptable space requirements, in practice. Our results also show
the ILZI has acceptable space requirements in theory. For example the results show that for the xml
file the practical value is 2.65uHk bits and the theoretical value is (2.49 + 1.62ǫ)uHk + o(u log σ)
bits.
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sources.50MB dblp.xml.50MB dna.50MB proteins pitches english.50MB

l i/223 i/8u i/uHk i/223 i/8u i/uHk i/223 i/8u i/uHk i/223 i/8u i/uHk i/223 i/8u i/uHk i/223 i/8u i/uHk

32 50.0 1.00 2.80 26.9 0.54 2.73 30.9 0.62 2.24 85.9 1.35 2.54 75.8 1.42 2.83 47.6 0.95 2.63
16 48.0 0.96 2.69 24.8 0.50 2.52 31.3 0.63 2.27 85.6 1.34 2.53 73.9 1.39 2.76 46.4 0.93 2.56
8 46.6 0.93 2.61 24.2 0.48 2.46 33.0 0.66 2.39 87.5 1.37 2.59 72.6 1.36 2.71 45.8 0.92 2.53
4 48.6 0.97 2.72 24.1 0.48 2.45 37.0 0.74 2.68 93.7 1.47 2.77 76.4 1.43 2.85 48.5 0.97 2.68
2 53.5 1.07 3.00 26.1 0.52 2.65 44.0 0.88 3.19 102.8 1.61 3.04 84.7 1.59 3.16 54.3 1.09 2.99
1 59.6 1.19 3.34 28.9 0.58 2.93 52.5 1.05 3.81 120.4 1.89 3.56 97.9 1.84 3.65 61.8 1.24 3.41
0 87.4 1.75 4.90 42.5 0.85 4.32 92.6 1.85 6.72 226.5 3.55 6.69 161.7 3.04 6.04 93.3 1.87 5.15

d/n d′/n f/n d/n d′/n f/n d/n d′/n f/n d/n d′/n f/n d/n d′/n f/n d/n d′/n f/n

0.60 1.19 0.90 0.54 1.08 0.87 0.92 1.20 0.97 0.85 1.22 0.98 0.76 1.25 0.94 0.64 1.33 0.94

total total total total total total

2.70 + 1.79ǫ 2.49 + 1.62ǫ 3.09 + 2.12ǫ 3.04 + 2.07ǫ 2.95 + 2.01ǫ 2.90 + 1.96ǫ

Table 4 Space requirements of the ILZI index for different quorum values. Variable l represents different
quorum values. Variable i represents the size of the different indexes in bits. Therefore i/223 gives the size
in Megabytes (MB), i/8u gives the ratio with the original string, i/uHk gives the ratio with a compressed
string, where Hk is estimated as (n log u)/u. The bottom part of the column shows empirical values for
the following ratios d/n, d′/n and f/n. Note that these values can be used to determine factor of uHk

associated with the ILZI, we present this value below total (see Theorem 4). Observe that the factor
associated with the ǫ corresponds to removing the range data structure.

6.2 Experimental Results

We compared our implementation the Inverted-Lempel-Ziv-Index (ILZI), against the implemen-
tations provided in the Pizza&Chili corpus [22]3. As texts, we used the files in the Pizza&Chili
corpus, with approximately 50 Megabytes each. The indexes were parametrized to occupy approx-
imately the same space whenever possible. The indexes used were the following: Raw is the raw
string, ILZI is the inverted-Lempel-Ziv-index using the algorithm described in this paper, LZI
Navarro’s LZ-index, LZI-1 is the improvement of the LZI by Arroyuelo et al., NFMI is an imple-
mentation of the FM-index by Navarro, CSAx8 is Sadakane’s compressed suffix array, SSA is the
succinct suffix array, RL is the run-length FM-index, AFFMI is the alphabet friendly FM-index,
FMI2 is the second version of the FM-index and SAC is the suffix array in uncompressed form,
packed in bits. We omitted the compressed compact suffix array, because it was not competitive.
We also omitted the suffix array packed in words because it was very similar to SAC.

In table 5 we show the space requirements of different compressed indexes for the sample
files. The par line gives the parameters used for indexes that require it. The parameters were
chosen so that the resulting index occupied approximately the same size as the ILZI. However,
some minimal values were used for performance reasons. For the CSArray we give the D value, for
CSAx8 we have that L = 8×D. Figures 4,5,6,7 show the time performance of different compressed
indexes. The performance of compressed indexes can be described as Θ(m.C + occ.R + out.O),
where out is the number of letters that we wish to display, C is the counting factor, R is the
reporting factor and O is the outputting factor. For some compressed indexes it is possible to run
the indexes in counting mode and the resulting time is Θ(m.C). However for Lempel-Ziv indexes
this is not possible, and our index runs in Θ(m.C + occ.R) even for counting, albeit with a smaller
R constant. We determined the factors and overall query time for all the indexes. We show the
results for different values of m in figures 4,5,6,7. To obtain these results we ran tests of 60 seconds
each with a minimal number of 5 repetitions. For counting, this means that we tested from 6×104

to 6 × 108 patterns. For reporting, we tested from 5 to 6 × 106 patterns and each pattern had at
least one occurrence. For outputting, we displayed 60 characters per occurrence.

The fact that LZ-based indexes cannot operate in counting mode can be observed empirically
since the time of these indexes is not constant in the time to count graphs. As expected, when
m increases occ decreases and the time also decreases. Eventually, the overall time becomes com-
petitive with other compressed indexes. For most examples this happens when m is around 20.

3 Tested on Pentium 4, 3.2 GHz, 1 MB of L2, 1Gb of RAM, with Fedora Core 3, compiled with
gcc-3.4 -O9.
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Raw ILZI LZI NFMI CSAx8 LZI-1 SSA RL AFFMI FMI2 SAC

sources.50MB i/223 50.0 53.5 80.9 68.1 54.6 74.5 57.2 53.2 54.1 53.7 212.5
i/8u 1.00 1.07 1.62 1.36 1.09 1.49 1.14 1.06 1.08 1.07 4.25
i/uHk 2.80 3.00 4.53 3.81 3.06 4.18 3.20 2.98 3.03 3.01 11.91
par 5 7 512 26 36 0.17

dblp.xml.50MB i/223 50.0 26.1 44.5 64.9 25.8 40.9 54.6 33.6 32.9 28.7 212.5
i/8u 1.00 0.52 0.89 1.30 0.52 0.82 1.09 0.67 0.66 0.57 4.25
i/uHk 5.08 2.65 4.52 6.60 2.62 4.16 5.55 3.42 3.35 2.91 21.60
par 5 19 512 512 512 0.1

dna.50MB i/223 50.0 44.0 60.9 63.4 44.6 55.1 44.3 44.1 43.5 47.1 212.5
i/8u 1.00 0.88 1.22 1.27 0.89 1.10 0.89 0.88 0.87 0.94 4.25
i/uHk 3.63 3.19 4.42 4.60 3.23 4.00 3.21 3.19 3.16 3.42 15.41
par 5 11 24 64 24 0.17

proteins i/223 63.7 102.8 152.9 100.9 100.1 137.9 108.2 104.1 109.0 270.8
i/8u 1.00 1.61 2.40 1.58 1.57 2.16 1.70 1.63 1.71 4.25
i/uHk 1.88 3.04 4.52 2.98 2.96 4.08 3.20 3.08 3.22 8.00
par 10 6 10 12 0.27

pitches i/223 53.2 84.7 124.8 86.8 86.1 115.7 87.5 84.8 92.9 226.3
i/8u 1.00 1.59 2.34 1.63 1.62 2.17 1.64 1.59 1.74 4.25
i/uHk 1.99 3.16 4.66 3.24 3.21 4.32 3.27 3.17 3.47 8.44
par 9 5 16 12 0.26

english.50MB i/223 50.0 54.3 81.1 66.8 56.3 73.2 54.1 52.2 54.6 53.2 212.5
i/8u 1.00 1.09 1.62 1.34 1.13 1.46 1.08 1.04 1.09 1.06 4.25
i/uHk 2.76 2.99 4.47 3.69 3.11 4.04 2.99 2.88 3.01 2.94 11.73
par 5 7 64 30 24 0.17

Table 5 Table with the size of different compressed indexes for sample files. It shows the space re-
quirements of different indexes, the original string (Raw), the Inverted-LZ-Index (ILZI), Navarro’s LZ-
index (LZI), reduced LZI (LZI-1), Navarro’s implementation of the FM-index (FMI), Sadakane’s CSArray
(CSAx8), the succinct suffix array (SSA), the compressed compact suffix array (CCSA), the run-length
FM-index (RL), the alphabet friendly FM-index (AFFMI), the second version of the FM-index (FMI2),
SAC is the suffix array in uncompressed form, packed in bits. Variable i represents the size of the different
indexes in bits. Therefore i/223 gives the size in Megabytes (MB), i/8u gives the ratio with the original
string, i/uHk gives the ratio with a compressed string, where Hk is estimated as (n log u)/u. The par line
gives the parameters used for indexes that require it. For the CSArray we give the D value, for CSAx8
we have that L = 8×D.

The counting graphs also show that reducing the dependency on m from O(m2) to O(m) had
significant impact in the query time. This makes our index up to an order of magnitude faster
than LZI and LZI-1 for counting when m is large. On the contrary, for small patterns (m = 5)
it is up to 2.6 times slower than LZI and up to four orders of magnitude slower than the other
compressed indexes.

On the other hand LZ-based indexes are extremely fast at reporting occurrences. In fact they
are the only self-indexes using O(uHk) bits able to spend O(log n) time per occurrence in practice.
This is also visible in the graphs since the reporting factor of LZ-based indexes is around an order
of magnitude smaller than that of other compressed indexes.

The displaying time per character is not a very decisive factor to tell indexes apart since all of
them are very fast. The FM-index performed extremely well on natural language based files. The
LZ-based indexes had more stable performance and are among the fastest for all samples. The
suffix arrays are around two orders of magnitude faster than the compressed indexes, most likely
due to cache effects

7 Conclusions

This paper presents two fundamental observations on LZ78 based compressed indexes. The first
one is that the tree (T78) build with the reverse blocks of the LZ78 parsing is a suffix tree. This
structure was first presented by Kärkkäinen [13], but this version required T to be present and since
it was based in LZ77, it was not necessarily a suffix tree. In the work presented by Navarro [21]
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the structure is called RevTrie, but its suffix tree nature is not explored and, in fact, reading an
edge-label requires O(m2). In the work presented by Ferragina and Manzini [5] it appears as an
FM-Index of T R

$ . They present a proof that its space requirements can be related to the entropy
of the text T , in a different way from us. Moreover, its suffix tree structure is also not explored.
This observation is fundamental for our approach since it allows us to compute a descend and
suffix walk instead of having to search for all the substrings of P . The second observation is about
the way the same string appears in the LZ78 parsing. A string S may appear in O(m) different
ways as the concatenation of LZ78 blocks. This, in turn, forces algorithms based on the LZ78
parsing to have quadratic behavior. We solve this problem by discarding the original parsing and
using a maximal parsing. In the maximal parsing, a string S appears in at most one way as the
concatenation of blocks. Navarro uses the original LZ78 parsing. Ferragina and Manzini discard
the parsing and solve the problem by using an FM-index, i.e. resorting to the Burrows-Wheeler
transformation.

Our index is a significant contribution to LZ-based compressed indexes. We improved the
counting time performance of LZ-based indexes to linear time on m. At the same time, the structure
we propose is smaller than LZI, for all the files we tested. In practice, with the terms we obtained
in table 4, we can choose an ǫ to make the index smaller than 4uHk + o(u log σ). In fact it can be
seen in table 4 that our implementation of the ILZI is always smaller than the LZI. However a new
version of the LZ-index proposed by Arroyuelo et al. [1] requires only (2 + ǫ)uHk + o(u logσ) with
worst case guarantees. Without worst case guarantees it requires (1 + ǫ)uHk + o(u log σ) bits and
it has O(m2) average search time for m ≥ 2 logσ u. It is interesting to notice that Arroyuelo et al.
independently explored the suffix tree structure of T78 to reduce the time to read an edge-label to
O(m). We cannot achieve the reduced space requirements of Arroyuelo et al. essentially because
we are storing more structures. In fact, as a second contribution of this paper, we pointed out
a possible representation of suffix trees (lemma 3). This representation is not very competitive
when compared to the compressed suffix trees presented by Sadakane [26]. Nevertheless, it is
adequate for our goals. For suffix trees, in general, it requires more space than the representation
of Sadakane. In fact, the problem is the space required to store R and R−1, (1 + ǫ)n log n bits.
Arroyuelo et al. [1] showed how to reduce the space requirements of R. However, even with such
an improvement, it is still not comparable to Sadakane’s approach in terms of space. We expect
further work based on this approach to produce a competitive representation.
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Fig. 4 Time results for counting. These graphs shows the impact of our improvement. This can be
observed by comparing the ILZI and LZI indexes. The graphs also show the fact that LZ based indexes
cannot count in optimal time. However they do become competitive when m increases, causing occ to
decrease.
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Fig. 5 Time results for reporting.
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Fig. 6 Time results for reporting factor (R). This value is obtained by subtracting the counting time and
dividing by the number of occurrences found. These graphs confirm that in fact LZ based indexes are the
fastest at reporting occurrences. These results show that this factor is comparable to that of suffix arrays,
being orders of magnitude faster than the alternatives.
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Fig. 7 Time results for outputting factor (O). These results show that the ILZI is among the fastest
compressed indexes at outputting.
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