
Efficient Generation of Super Condensed

Neighborhoods

Lúıs M. S. Russo 1, Arlindo L. Oliveira

INESC-ID/IST, R. Alves Redol 9, 1000 LISBOA, PORTUGAL

Abstract

Indexing methods for the approximate string matching problem spend a consider-
able effort generating condensed neighborhoods. Condensed neighborhoods, how-
ever, are not a minimal representation of a pattern neighborhood. Super con-
densed neighborhoods, proposed in this work, are smaller, provably minimal and
can be used to locate approximate matches that can later be extended by on-line
search. We present an algorithm for generating Super Condensed Neighborhoods.
The algorithm can be implemented either by using dynamic programming or non-
deterministic automata. The complexity is O(ms) for the first case and O(kms) for
the second, where m is the pattern size, s is the size of the super condensed neigh-
borhood and k the number of errors. Previous algorithms depended on the size of
the condensed neighborhood instead. These algorithms can be implemented using
Bit-Parallelism and Increased Bit-Parallelism techniques. Our experimental results
show that the resulting algorithms are fast and achieve significant speedups, when
compared with the existing proposals that use condensed neighborhoods.

Key words: Suffix trees, edit distance, approximate string matching

1 Introduction and Related Work

Approximate string matching is an important subject in computer science,
with applications in text searching, pattern recognition, signal processing and
computational biology.

The problem consists in locating all occurrences of a given pattern string in
a larger text string, assuming that the pattern can be distorted by errors. If

Email address: lsr@algos.inesc-id.pt (Lúıs M. S. Russo).
1 Supported by FCT, grant SFRH/BD/12101/2003 in project POCI 2010, Project
BIOGRID POSI/SRI/47778/2002 and the Orient Foundation.

Preprint submitted to Elsevier Science 26 October 2006

the text string is long it may be infeasible to search it on-line, and we must
resort to an index structure. This approach has been extensively investigated
in recent years [1–3,5,10,11,15,19,20].

State of the art algorithms are hybrid, and divide their time into a neighbor-
hood generation phase and a filtration phase [11,14].

The neighborhood generation phase is based on algorithms that traverse a
suffix tree using dynamic programming to find the pattern matches [1,5,19].
For hybrid algorithms, however, the search space can be reduced. This is the
idea of the Condensed neighborhood: a set of strings that compactly repre-
sent the whole neighborhood. In this work we propose an even more compact
representative, the super condensed neighborhood.

The filtration phase uses the idea of filtration, a technique used for the on-line
version of the problem. It consists in eliminating text areas, by guaranteeing
that there is no match at a given point, using techniques less expensive than
dynamic programming. Since this approach has the obvious drawback that
it cannot exclude all such areas, the remaining points have to be inspected
with other methods. In the indexed version of the problem, filtration can be
used to reduce the size of neighborhoods, hence speeding up the algorithm.
The most common filtration technique splits the pattern and later on tries to
expand it around potential matches. The way the pattern is split determines
the balancing point for the hybrid algorithm. Myers [11] and Baeza-Yates and
Navarro [14] presented a detailed treatment of this subject. They also describe
the limitations of the method, including the fact that above a given error level
the complexity of the method becomes linear.

This paper is organized as follows: in section 2 we define the basic notation
and the concept of strings and edit distance. In section 3 we present a high
level description of hybrid algorithms for indexed approximate pattern match-
ing and the notion of Super Condensed Neighborhood. In section 4 we present
a high level description and complexity analysis of the algorithm for gener-
ating Super Condensed Neighborhoods. In section 5 we describe bit-parallel
implementations of our algorithm. Section 6 presents the experimental results
obtained with our implementations, and section 7 presents the conclusions.

2 Basic Concepts and Notation

We denote by ǫ the empty string; by |S| the size of string S; by S[i] the symbol
at position i and by S[i..j] the sub-string from position i to position j.

Definition 1 The edit or Levenshtein distance, ed(S, S ′), between two strings

2

Table 1
Table D[i, j] for abbaa and ababaac.

col 0 1 2 3 4 5 6 7

row a b a b a a c

0 0 1 2 3 4 5 6 7

1 a 1 0 1 2 3 4 5 6

2 b 2 1 0 1 2 3 4 5

3 b 3 2 1 1 1 2 3 4

4 a 4 3 2 1 2 1 2 3

5 a 5 4 3 2 2 2 1 2

is the smallest number of edit operations that transform S into S ′. We consider
as operations insertions (I), deletions (D) and substitutions (S).

For example: D S I

abcd

ed(abcd, bedf) = 3 bedf

The edit distance between strings S and S ′ can be computed by filling up
a dynamic programming table D[i, j] = ed(S[1..i], S ′[1..j]), constructed as
follows:

D[i, 0] = i, D[0, j] = j

D[i + 1, j + 1] = D[i, j], if S[i + 1] = S ′[j + 1]

1 + min{D[i + 1, j], D[i, j + 1], D[i, j]}, otherwise

Table 1 shows an example of the dynamic programming table D.

A different, yet related, approach for the computation of the edit distance is
to use a non-deterministic automaton (NFA). We can use a NFA, denoted Nk

P ,
to recognize all the words that are within edit distance k from another string
P . Figure 1 shows an automaton that recognizes words that are at distance at
most one from abbaa, where Σ represents any symbol. It should be clear that
the word ababaa is recognized by the automaton since ed(abbaa, ababaa) = 1.
A comprehensive survey about these algorithms is available [13], and should
be consulted for an in depth description.

Figure 2 shows the computation performed by automaton Nk
P when the input

string is ababaac.

3

- -a -b -b -a -a

?
Σ

R
ǫ, Σ

?
Σ

R
ǫ, Σ

?
Σ

R
ǫ, Σ

?
Σ

R
ǫ, Σ

?
Σ

R
ǫ, Σ

?
Σ

-a -b -b -a -a

Fig. 1. Automaton Nk
P for abbaa with at most one error.

a

a

b

b

a 0

1

1

0

1

1

0

1

1

1

1

1

1

1

a b a b a a c

Fig. 2. Computation of ababaac using automaton Nk
P for abbaa with at most one

error (flipped horizontally and rotated 90 degrees clockwise, active states marked
in black).

Table 2
(Left)Table D′[i, j] for abbaa and ababaac. (Section 3) Improper canonical paths
are indicated by arrows, (Section 4) improper cell bits are indicated on trace-backs.
(Right) Binary representation of column 1.

col 0 1 2 3 4 5 6 7 V AL

row a b a b a a c 2 1 0

0 0 0 0 0 0 0 0 0

a ↑0 տ0 1
... 1. . . 1

... 1. . . 1. . . 1
...

1 1 0 1 0 1 0 0 1 0 0 0

b ↑0 0 ↑ տ0 1
... 1. . . 1

... 1
... 1. . .

2 2 1 0 1 0 1 1 1 0 0 1

b ↑0 0 ↑ 0 ↑ տ0 1 ... 1. . . 1 ... 1 ...

3 3 2 1 1 1 1 2 2 0 1 0

a ↑0 0 ↑ 0 ↑ տ0 1 ... 1. . . 1. . . 1

4 4 3 2 1 2 1 1 · · · 2 0 1 1

a ↑0 0 ↑ 0 ↑ 0 ↑ տ0 1
... 1. . . 1. . .

5 5 4 3 2 2 2 1 2 1 0 0

Definition 2 A cell in D is active iff its value is smaller or equal to k.

Table 1 shows inactive cells shaded, when k = 1. Observe that the columns
of Nk

P that correspond to inactive cells do not have any active state. (see
figure 1).

A useful variation of table D is table D′[i, j] = min0≤l≤j{ed(P [1..i], T [l .. j])},
computed as table D but setting D[0, j] = 0. (see table 2).

4

Σ Σ

a bb a a

a b b a a

ε, Σ Σ ε, Σ Σ ε, Σ Σ ε, Σ Σ ε, Σ

Σ

Fig. 3. Automaton N ′k
P for abbaa with at most one error.

According to the definition of D′, the last line, D′[m, j], stores the smallest
edit distance between S and a sub-string of S ′ starting at some position l
and ending at position j. Suppose we want to find all occurrences of abbaa
in ababaac with at most one error. By looking at row D′[5, j] we find out
that such occurrences can end only in position 6. In particular, there are two
such occurrences, ababaa and abaa. To compute the same result we can use
an automata N ′k

P , built by adding a loop labeled with all the character in Σ
to the initial state (see figure 3).

3 Indexed Approximate Pattern Matching

If we wish to find the approximate occurrences of P in T in sub-linear time
(with O(nα) complexity, for α < 1) we need to use an index structure for T .
Suffix arrays [14] and q-grams have been proposed in the literature [10,11]. An
important class of algorithms for this problem are hybrid in the sense that they
find a trade-off between neighborhood generation and filtration techniques.

A first and simple-minded approach to the problem consists in generating all
the words at distance k from P and looking them up in the index T . The set
of generated words is the k-neighborhood of P .

Definition 3 The k-neighborhood of S is Uk(S) = {S ′ ∈ Σ∗ : ed(S, S ′) ≤ k}

Let us denote the language recognized by the automaton Nk
P as L(Nk

P). It
should be clear that Uk(P) = L(Nk

P). Hence, computing Uk(P) is achieved by
computing L(Nk

P). This can be done by performing a DFS search in Σ∗ that
halts whenever all the states of NK

P became inactive.

The k-neighborhood, Uk(S), turns out to be quite large. In fact |Uk(S)| =
O(|S|k|Σ|k) [18]. This motivates the notion of condensed k-neighborhood [11,14].

Definition 4 The condensed k-neighborhood of S, CUk(S) is the largest sub-
set of Uk(S) whose elements S ′ verify the following property: if S ′′ is a proper
prefix of S ′ then ed(S, S ′′) > k.

5

The condensed k-neighborhood CUk(P) can be generated by algorithm 1 2 .
This algorithm can be used both with the dynamic programming method and
the automata based approach [11,14].

Algorithm 1 Condensed Neighborhood Generator Algorithm

1: procedure Search(Search Point p, Current String v)
2: if Is Match Point(p) then

3: Report(v)
4: else if Extends To Match Point(p) then

5: for z ∈ Σ do

6: p′ ← Update(p, z)
7: Search(p′, v.z)
8: end for

9: end if

10: end procedure

11: Search(〈0, 1, . . . , m〉, ǫ)

In the dynamic programming approach the search point (p) is a dynamic
programming column of D associated to P . The Is Match Point predi-
cate checks whether the last cell is active. The Extends To Match Point

predicate checks whether there are active cells in p. The Update procedure
computes the dynamic programming column that results from applying a to
p.

For example, if p is column 5 of table 1, then the Is Match Point predicate
returns false, since cell D[5, 5] is inactive. The Extends To Match Point,
on the other hand, returns true, since cell D[4, 5] is active. The Update

procedure computes column 6 from column 5 and a. When p is column 6,
the Is Match Point evaluates to true and the algorithm reports ababaa as
being at distance 1 from abbaa. This means that column 7 is never evaluated.
Let us skip line 5 for z = b. If z = c and p is column 5 then the Update

procedure returns 〈6, 5, 4, 3, 2, 2〉. In this case both the Is Match Point and
the Extends To Match Point predicates fail and the search backtracks.

In the automaton approach, the search point p is a set of active states of Nk
P .

The Is Match Point predicate checks whether some state of p is a final
state. The Extends To Match Point predicate checks whether p is non-
empty. The Update procedure updates the active states of p by processing
character z with NP .

The reason why the condensed neighborhood is important is that it represents
the k-neighborhood.

2 We can shortcut the generate and search cycle by running algorithm 1 on the
index structure. For example, if the index is a suffix tree, this can be done by using
a tree node instead of v.

6

SCU1: abaa, abba, abbba,
bbaa

CU1: aabaa, ababaa, babbaa, bbbaa,
aabbaa

U1: abaaa, abbaa, abbaaa, abbaab, abbab, abbaba,
abbbaa

Fig. 4. Figure representing the one-neighborhoods of abbaa.

Lemma 5 If S ∈ Uk(S
′) then some prefix of S is in CUk(S

′).

We can generalize the idea and think of representing Uk by sub-strings in-
stead of only by prefixes. This leads to the notion of super condensed neigh-
borhood [16,17].

Definition 6 The super condensed k-neighborhood of S, SCUk(S) is the
largest subset of Uk(S) whose elements S ′ verify the following property: if S ′′

is a proper sub-string of S ′ then ed(S, S ′′) > k.

The following lemma explains why the super condensed neighborhood repre-
sents the k-neighborhood.

Lemma 7 If S ∈ Uk(S
′) then some sub-string of S is in SCUk(S

′).

Super condensed neighborhoods are, in fact, the smallest sets of strings that
represent Uk(S

′), because they are a minimal representation of Uk(S
′). The

following lemma explains this property.

Lemma 8 If C ⊆ Uk(S
′) and C represents Uk(S

′) then SCUk(S
′) ⊆ C.

Proof This follows immediately from the fact that a word in SCUk(P) can
only be represented by itself. Therefore, since C represents Uk(S

′), it must
contain SCUk(S

′). 2

In our example ababaa and abaa are in the condensed neighborhood of abbaa,
but only abaa is in the super condensed neighborhood.

Figure 4 shows an example of the 1-neighborhood, the 1-condensed neigh-
borhood and the 1-super condensed neighborhood of abbaa. Observe that
SCUk(P) ⊆ CUk(P) ⊆ Uk(P).

7

4 Computing Super Condensed Neighborhoods

We will now explain how to modify algorithm 1 to compute super condensed
neighborhoods, using either dynamic programming or automata.

Definition 9 A trace-back is a pointer from cell D′[i, j] to a predecessor
neighbor cell, given by the following conditions:

vertical D′[i + 1, j]→ D′[i, j] iff D′[i + 1, j] = 1 + D′[i, j]
diagonal D′[i + 1, j + 1]→ D′[i, j] iff

D′[i + 1, j + 1] = 1 + D′[i, j] or S[i + 1] = S ′[j + 1]
horizontal D′[i, j + 1]→ D′[i, j] iff D′[1, j + 1] = 1 + D′[i, j]

A canonical trace-back for D′[i, j] is the rightmost trace-back that D′[i, j] has,
i.e. vertical first, then diagonal and finally horizontal.

A canonical path is a path in D′ made of canonical trace-backs. We refer to a
canonical path as improper if it ends in D[0, 0] (see table 2). The idea behind
canonical paths is that they always show the rightmost starting position of a
minimal match between S and a sub-string of S ′.

Definition 10 A cell D′[i, j] is improper iff its canonical path is improper.

The denomination improper is motivated by the following lemma.

Lemma 11 If D′[i, j] is an improper cell then D[i, j] = D′[i, j].

This is a direct consequence from the observation that improper cells start
matching from the beginning of T just like the cells in D. In fact the converse
of the lemma is also true.

Computing the super condensed neighborhood can also be done by algorithm 1
but we change our search point (p) to a column of D′ and restrict our attention
to improper active cells.

Observe that, in this version of the algorithm, the string ababaa is no longer
reported. In fact it can be seen that in column 4 of table 2 there are no active
improper cells and hence neither column 5 nor column 6 need to be evaluated.

We can also compute the super condensed neighborhoods using automata. For
this purpose, we define a new automaton, N ′′k

P that results from Nk
P by adding

a new initial state with a loop labeled by all the characters of Σ linked to
the old initial state by a transition also labeled by all the characters of Σ. An
example of N ′′k

P is shown in fig. 5. The language recognized by N ′′k
P consists of

all the strings that have a proper suffix S ′′ such that ed(P, S ′′) ≤ k.

8

-

6
Σ

-Σ -a -b -b -a -a

?
Σ

R
ǫ, Σ

?
Σ

R
ǫ, Σ

?
Σ

R
ǫ, Σ

?
Σ

R
ǫ, Σ

?
Σ

R
ǫ, Σ

?
Σ

-a -b -b -a -a

Fig. 5. Automaton N ′′k
P for abbaa that matches every proper suffix.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

a

a

b

b

a 0

1

1

0

1

1

0

1

1

1

1

1

1

1

a b a b a a

Fig. 6. Computation of ababaac using automaton Nk
P (black) and N ′′k

P (Grey).

The set L(Nk
P)\L(N ′′k

P) is not a super condensed neighborhood by the following
two reasons:

prefixes Some words might still be prefixes of other words. For example both
abaa and abaaa belong to L(Nk

abbaa)\L(N ′′k
abbaa). This can be addressed when

performing the DFS traversal of the lexicographic tree, as before.
sub-strings The definition of L(Nk

P)\L(N ′′k
P) will yield the subset of L(Nk

P)
such that no proper suffix is at distance at most k from P . But this is not
what we want, since we desire a subset of L(Nk

P) that does not contain
a string and a proper sub-string of that string. In order to enforce this
requirement we must stop the DFS search whenever a final state of N ′′k

P is
reached.

A point p in the DFS search of the lexicographical tree now corresponds to two
sets of states, one for Nk

P and one for N ′′k
P . The Is Match Point predicate

checks that no active state of N ′′k
P is final and that there is one active state

of Nk
P that is final. The Extends To Match Point checks that no active

state of N ′′k
P is final and that there is one active state of Nk

P that is inactive
in N ′′k

P . The Update procedure updates both automata using letter z.

Observe that the string ababaa is also not reported. In fact the DFS search
backtracks after having reached abab. After reading abab the only active
state of Nk

P is the one corresponding to abb on the second column, because
ed(abab, abb) = 1. This state is also active in N ′′k

P since ed(ab, abb) = 1 and ab
is a proper suffix of abab (figure 6).

9

4.1 Complexity Analysis

The algorithm for generating CUk(P) runs in O(m2|CUk(P)|) for the dynamic
programming version and in O(km2|CUk(P)|) for the automata version. My-
ers [11] showed how to reduce this to O(m|CUk(P)|) and O(km|CUk(P)|)
respectively. The idea is that when all active cells of a column are equal to
k we no longer need to compute the dynamic programming table. In our ex-
ample after computing aba all active cells are equal to 1. At that point the
only possible way to extend aba into a word of CUk(P) is by a suffix of P ,
corresponding to an active cell. In our example the possible suffixes are baa,
aa and a, resulting in ababaa, abaaa and abaa. The problem is that abaaa does
not belong to CUk(P) since abaa does. Myers showed a way to solve this based
on the failure links of the Knuth-Morris-Pratt algorithm. Recently Hyyrö pre-
sented an improved version that achieves the same result in a sequential way
that is relevant for bit-parallel algorithms [8].

The algorithm for the generation of |SCUk(P)| presented in this article runs in
O(m2|SCUk(P)|) for the dynamic programming version and in O(km2|SCUk(P)|)
for the automata version. It can be improved in the same way to O(m|SCUk(P)|)
and O(km|SCUk(P)|) respectively. It was shown by Myers [11] that |CUk(P)| =
O(npow(m/k)), where:

pow(α) = log|Σ|
(α−1+

√
1+α−2)+1

(α−1+
√

1+α−2)−1
+ α log|Σ|(α

−1 +
√

1 + α−2) + α

We establish no new worst case bound for the size of the super condensed
neighborhood which means that |SCUk(P)| = O(npow(m/k)). However our re-
sults do show a practical improvement in speed, since |SCUk(P)| ≤ |CUk(P)|.

5 Bit Parallel Implementation

5.1 Bit Parallel Dynamic Programming

Myers presented a way to parallelize the computation of D and D′ [12] that re-
duces the complexity of computing a dynamic programming table to O(m⌈m/w⌉)
were w is the size of the computer word. In our application the ⌈m/w⌉ typi-
cally takes the value 1 since m = Θ(logσ n) for hybrid algorithms. This leads to
a complexity of O(m). Hyyrö presented a modification of Myers algorithm [6]
that we will now describe and extend to solve our problem.

Ukkonen was the first to notice the following properties of D and D′ [18]:

10

Diagonal Property D[i + 1, j + 1]−D[i, j] = 0 or 1
Vertical Adjacency Property D[i + 1, j]−D[i, j] = -1, 0 or 1
Horizontal Adjacency Property D[i, j + 1]−D[i, j] = -1, 0 or 1

The following bit-vectors can then be used to represent and compute columns
of D′.

Vertical Positive V P [i + 1, j] = 1 iff D[i + 1, j]−D[i, j] = 1
Vertical Negative V N [i + 1, j] = 1 iff D[i + 1, j]−D[i, j] = −1
Horizontal Positive HP [i, j + 1] = 1 iff D[i, j + 1]−D[i, j] = 1
Horizontal Negative HN [i, j + 1] = 1 iff D[i, j + 1]−D[i, j] = −1
Diagonal Zero D0[i + 1, j + 1] = 1 iff D[i + 1, j + 1] = D[i, j]
Pattern Match Vectors PMz[i] = 1 iff P [i] = z, for each z ∈ Σ

The above bit-vectors are packed in computer words along i, i.e. by columns.
In algorithm 2 we show how to compute a column of D′.

The procedure Update of algorithm 2 is essentially the algorithm explained
in the original work on bit parallelism [12,6].

We will now show how the Update Proper Cells procedure works. We
define an improper cell vector CP1 to account for improper cells.

Improper Cells CP1[i, j] = 1 iff D′[i, j] is a proper cell.

Table 2 shows an example of this computation. Since we assume the bit vectors
are of size m we can’t store this information for the cells in row 0. This is not
a big problem since, except for cell D′[0, 0], all other D′[0, j] cells are inactive.
However special care must be taken to update the proper cells of column 1.
This can be done by changing the 1 in line 26 for (V P &1).

The single purpose of line 23 is to discover whether the first improper cell
in a column will became proper in the next column. For example, in table 2,
the first improper cell of column 3 is D′[3, 3]. What line 23 does is to check
whether the canonical trace-back of D′[3, 4] is non-horizontal. An horizontal
canonical trace-back respects the condition ∼ PM& ∼ HN&V N , (see cells
D′[3, 6], D′[3, 7], D′[4, 6] and D′[4, 7]).

Line 24 of algorithm 2 adds the vertical dependencies to the list of improper
cells. If a cell has a vertical canonical trace-back to a proper cell, then it is
also proper. By introducing vertical dependencies line 24 also activates some
unnecessary bits. In order to determine which bits actually represent improper
cells we shift CP1 (line 25) and send a carry through it (line 26). The carry
stops in the last improper cell. Finally we clean up the unnecessary bits and
restore the ones eliminated by the carry by doing a xor with the previous CP1
(line 26). The ∼ CP1 provides a mask of improper cells.

11

Algorithm 2 Bit-Parallel Algorithm, bitwise operations in C-style.

1: procedure Initialize(Pattern P)
2: V P ← (1m)2

3: V N ← (0m)2

4: For z ∈ Σ Do PMz ← (0m)2

5: For 1 ≤ i ≤ m Do PMP [i] | ← 2i−1

6: CP1← 0
7: V AL0 ← (10101010 . . .)2

8: V AL1 ← (01100110 . . .)2

9:
...

10: return V P, V N, CP1, V AL0, . . . , V AL⌈log m⌉−1

11: end procedure

12: procedure Update((V P, V N, CP1, V AL0, . . . , V AL⌈log m⌉−1), z)
13: D0← (((PMz & V P) + V P)∧V P) | PMz | V N
14: HP ← V N | ∼ (D0 | V P)
15: HN ← V P & D0
16: V AL0, . . . , V AL⌈log m⌉−1 ← Carry Effect(HP, HN, V AL0, . . .)
17: V P ← (HN << 1)| ∼ (D0 | (HP << 1))
18: V N ← (HP << 1) & D0
19: CP1← Update Proper Cells(CP1, PMz, HN, V N, V P)
20: return V P, V N, CP1, V AL0, . . . , V AL⌈log m⌉−1

21: end procedure

22: procedure Update Proper Cells(CP1, PM, HN, V N, V P)
23: CP1← ((PM | HN | ∼ V N) & ((CP1 << 1) | 1)) | CP1
24: CP1 | ← V P
25: CP1← (CP1 >> 1)
26: CP1← (CP1 + 1)∧CP1
27: return CP1
28: end procedure

29: procedure Carry Effect(HP, HN, V AL0, . . . , V AL⌈log m⌉−1)
30: carry ← HP | HN
31: V AL0 ← carry∧V AL0

32: carry &← HN∧V AL0

33: V AL1 ← carry∧V AL1

34: carry &← HN∧V AL1

35:
...

36: V AL⌈log m⌉−1 ← carry∧V AL⌈log m⌉−1

37: end procedure

Keeping track of which cells are active can be done in several ways. The two
most significant are:

WHILE Keeping a pointer to the lowest active cell and moving upwards.
CARRY Storing the values of D′ in computer words.

12

The pointer solution is as far as we know the standard solution to this prob-
lem. Observe that the active improper cells of D′ appear in contiguous cells.
If from one column to the next we keep track of the lowest improper active
cell we can determine whether that cell belongs to the last line of D′, in which
case the Is Match Point procedure returns true. According to the adja-
cency properties of D′ presented above, to find the lowest active improper
cell of a column we can start at the cell that is diagonally adjacent to the
lowest active improper cell of the previous column and move upwards until
we find an active improper cell or a proper cell. If a proper cell is found,
then the Extends To Match Point procedure returns false; otherwise it
returns true. Computing a dynamic programming table with this method re-
quires O(m⌈m/w⌉ + k) time since updating the lowest active improper cell
amortizes to k. The generation of the super condensed neighborhood requires
O((m⌈m/w⌉+ k)|SCUk(P)|) time.

The idea of the CARRY solution is to store the values of D′ in an unorthodox
way. Values are stored across computer words and not in a single one. This
solution requires ⌈m/w⌉⌈log m⌉ computer words, the VAL vectors. We define
V ALk[i, j] as the (k + 1) digit in the binary representation of D′[i, j]. For an
example, see table 2.

Updating the VAL vectors is a matter of simulating the carry effect of the
ALU. This is implemented in the Carry Effect procedure. We propa-
gate the addition and subtraction carries in the same word. This requires
O(⌈m/w⌉⌈log m⌉) time.

It is enough to identify active cells whose value is k. In our example this can be
done by evaluating ∼ VAL0 & VAL1 & ∼ VAL2. With the CARRY method
a dynamic programming table can be computed in O(m⌈m/w⌉⌈log m⌉) time
and the super condensed neighborhood in O(m⌈m/w⌉⌈log m⌉|SCUk(P)|) time.

A final improvement is to adapt the previous algorithm so that it works in an
increased bit-parallelism fashion [9]. The idea of increased bit parallelism is to
tile the computer word with more than one D′ column and compute more than
one D′ column per instruction. In this approach the algorithm that is used is
essentially the same but one must redefine the “+”, “>>”, “<<” operations
to respect the column boundaries. The 1’s must also be replaced accordingly.
Our approach was to move instruction 6 of algorithm 1 to the exterior of the
for cycle (instruction 5). In this case we had to make the Update procedure
update the column for all the letters of Σ. This was done by concatenating all
the PMz vectors into a single PM vector. It is also necessary to copy the values
of the D′ column |Σ| times into the computer word just before instruction 7.
This is done by >> and | operations.

13

5.2 Bit Parallel Automata

Algorithm 3 describes the details of implementation of the necessary predicates
using an NFA.

The Fi computer words store the Nk
P automaton states for row i. The Si

computer words store the N ′′k
P automaton states for row i.

Our implementation of the Wu and Manber algorithm stores the first column
of the automaton. Furthermore, for automaton N ′′k

P , we don’t need to store
the artificial state that was inserted, since it is sufficient to initialize the Si

state vectors to zero.

Algorithm 3 Bit-Parallel version of the Algorithm. Nk
P represented by Fi and

N ′′k
P by Si. Bitwise operations in C-style.

1: procedure Is Match Point(Search Point F0, . . . , Fk, S0, . . . , Sk)
2: return Fk&&!(Sk&10m)
3: end procedure

4: procedure Extends To Match Point(F0, . . . , Fk, S0, . . . , Sk)
5: return ((F0&˜S0) | . . . | (Fk&˜Sk))&&!(Sk&10m)
6: end procedure

7: procedure Update(Search Point F0, . . . , Fk, S0, . . . , Sk, letter z)
8: F ′

0 ← (F0 << 1) & PMz

9: S ′
0 ← ((S0 << 1) | 1) & PMz

10: for i← 0, k do

11: F ′
i+1 ← ((Fi+1 << 1)&PMz) | Fi | (Fi << 1) | (F ′

i << 1)
12: S ′

i+1 ← ((Si+1 << 1)&PMz) | Si | (Si << 1) | (S ′
i << 1)

13: end for

14: return F ′
0, . . . , F

′
k, S

′
0, . . . , S

′
k

15: end procedure

Since the Update and Extends To Match Point procedures run in
O(k⌈m/w⌉) the final algorithm takes O(k⌈m/w⌉ m |SCUk(P)|). This is a
conservative bound since it is easy to modify the algorithm so that it runs in
O((k⌈m/w⌉+ m) |SCUk(P)|), using the KMP failure links.

We also implemented a version based on Navarro and Baeza-Yates [4] variation
of the NFA. The procedures are implemented in a similar way and the resulting
algorithm runs in O(⌈k(m − k)/w⌉ m |SCUk(P)|). This algorithm usually
doesn’t store the states below the first diagonal including the diagonal. We
don’t need to keep track of the states below the diagonal but we do need to
keep track of the diagonal 3 .

3 Actually this could be reduced but the gains would be marginal.

14

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

0 1 2 3 4 5 6 7 8

S
i
z
e

Errors

CUx

3

3

3

3

3
3 3

3

3

3

SCUx
+

+

+

+
+ +

+
+

+

+
1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

0 1 2 3

S
i
z
e

Errors

CUx

3

3

3

3

3

SCUx
+

+

+

+

+

Fig. 7. Average size of the condensed neighborhood versus the super condensed
neighborhood for |P | = 16 and |Σ| = 2 (left), |P | = 6 and |Σ| = 16 (right)

|Σ| = 2 |Σ| = 4

k = 2 k = 4 k = 2 k = 4

CUk 67 42 810 21430

SCUk 22 14 320 591

Table 3
Average size of CUk vs SCUk for |P | = 8.

We improved this to O((⌈k(m− k)/w⌉ + m) |SCUk(P)|) using an approach
similar to the one followed by Myers but found no difference in practice, since
O(⌈k(m− k)/w⌉) is constant for small patterns, which is the case for hybrid
algorithms.

6 Experimental Results

We investigated the ratio between the average size of the condensed neigh-
borhood versus the size of super condensed neighborhood (i.e. the number of
possible different strings). The results are shown in figure 7 and table 3. These
results were obtained by generating the neighborhoods of 50 random patterns.

We tested our NFA approach by analyzing its impact in the hybrid index [14].
Since we are only interested in the neighborhood generation phase, we set the
j option of the index to 1, preventing the pattern from getting split. This was
tested in a 800MHz Power PC G3 processor with 512K level 2 cache 640MB

15

0.05

0.1

0.15

0.2

1 2 3

t
i
m
e

errors

DNA, m=10

SCUx

3
3

3

3

CUx

+
+

+
+

0.02
0.04
0.06
0.08
0.1

0.12

1 2 3

t
i
m
e

errors

NEWS, m=10

SCUx

3

3

3

3

CUx

+

+

+
+

0.1

0.2

0.3

0.4

0.5

1 2 3 4

t
i
m
e

errors

DNA, m=15

SCUx

3 3
3

3

3

CUx

+ +

+

+

+

0.05

0.1

0.15

0.2

0.25

1 2 3 4

t
i
m
e

errors

NEWS, m=15

SCUx

3
3

3

3

3

CUx

+
+

+

+

+

0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 3 4 5

t
i
m
e

errors

DNA, m=20

SCUx

3 3 3
3

3

3

CUx

+ + +

+

+
+

0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5

t
i
m
e

errors

NEWS, m=20

SCUx

3 3 3
3

3

3

CUx

+ +
+

+

+

+

Fig. 8. Hybrid-Index. The left column shows the average time (in seconds) for search-
ing in DNA data and the right column shows the average time for searching in the
Newsgroups data. The pattern size is indicated by m.

SDRAM, Mac Os X 10.2.8 and gcc 3.3.

Our implementation was based on the original implementation of Navarro and
Baeza-Yates. The NFA is also based on the variation presented by Navarro
and Baeza-Yates [4].

For each (|P |, k) combination we tested 100 patterns randomly selected from
the text and computed the average time to search for those patterns. The
patterns were taken with sizes 10, 15 and 20. We used two source texts, an
English text [21], that consists of cleaned up newsgroups text and a DNA file
of 5.6 Mb, from the S. cerevisiae (baker’s yeast) genome. Results are shown
in figure 8.

16

|Σ| = 2 |Σ| = 4

k = 2 k = 4 k = 2 k = 4

CUk 0.036 0.013 1.038 20.459

SCUk-NFA 0.0043 0.0026 0.1048 0.171

SCUk-WHILE 0.013 0.005 0.378 0.356

SCUk-CARRY 0.012 0.004 0.297 0.312

SCUk-INC-WHILE 0.011 0.004 0.254 0.225

SCUk-INC-CARRY 0.009 0.003 0.125 0.142

Table 4
Bit-parallel and increased bit-parallel algorithms in milliseconds for |P | = 8.

In table 4 we present a comparison between the different methods of generat-
ing super condensed neighborhoods for patterns of size 8. The first row shows
the times needed to generate Condensed Neighborhoods using the bit-parallel
NFA. The next three rows show the times needed to generate Super Con-
densed Neighborhoods with our three alternatives. The two final rows show
the times needed to generate Super Condensed Neighborhoods using increased
bit parallelism. The NFA was implemented using Wu and Manber bit-parallel
algorithm. Using these results we can rank our methods in order of decreasing
performance as NFA, WHILE and CARRY. The results show that not even
the increased bit parallelism approaches were able to outperform the NFA
approach. This was expected since, as was pointed out by Navarro [13], NFA
simulation is the fastest method for short patterns, which is the case for hybrid
indexes. In fact it is also not surprising that the CARRY method outperformed
slightly the WHILE method since the actual implementation of the WHILE
method uses a higher number of branching instructions which compensate for
the O(⌈log m⌉) factor of the CARRY method.

The results clearly show the advantages of the techniques described in this
work, both in terms of the neighborhood size and the speedup obtained by
the bit parallel algorithms.

7 Conclusions

In this work, we addressed the problem of indexed approximate pattern match-
ing by restricting our attention to the generation of super condensed neigh-
borhoods. We have shown that this leads to a significant time improvement
that was verified by experimental results.

Arguments of the same nature have been used before. In fact an early exploit

17

of the Super Condensed Neighborhood idea was an heuristic used in [14]. The
idea was that it is enough to find those matches to P that begin by matching
one of its first k + 1 characters. The condition obviously guarantees that in
column 1 there will be no improper active cells. A refinement of this idea has
also been presented in [7]. Our algorithm generalizes all these cases.

More recently the authors of [10] presented the notion of artificial prefix-
stripped length-q neighborhood, that modifies the condensed neighborhood in
a way that adapts to Myers algorithm but that is not minimal. Therefore, ac-
cording to lemma 8 the super condensed neighborhood is never larger than the
artificial prefix-stripped length-q neighborhood, and in some cases it is strictly
smaller 4 . The notion of super condensed neighborhood has in fact been con-
sidered by Hyyrö and Navarro 5 but no algorithm, for computing this neigh-
borhood, was available until now.

We proposed an algorithm for generating super condensed neighborhoods that
adapts very well to bit-parallel and increased bit-parallel approaches and can
be implemented either by dynamic programming or using NFA’s.

The results show that the use of Super Condensed Neighborhoods speeds up
the generation of the neighborhood by a significant factor that increases with
the alphabet size and the error level.

Acknowledgments

We are grateful to Eugene Myers for providing us access to his prototype and
for suggestions, corrections and remarks. We also thank Gonzalo Navarro and
Heikki Hyyrö for suggestions and remarks. We thank Gonzalo Navarro and
Ricardo Baeza-Yates for making available their implementation of the hybrid
index.

Parts of the work reported in the article have been previously presented in
CPM [16] and SPIRE [17].

4 For example for DNA when P = atcg and k = 1 the string aatcg belongs to
the artificial prefix-stripped length-q neighborhood but not to the super condensed
neighborhood.
5 Personal communication.

18

References

[1] Ricardo A. Baeza-Yates. Text-retrieval: Theory and practice. In Jan van
Leeuwen, editor, IFIP Congress (1), volume A-12 of IFIP Transactions, pages
465–476. North-Holland, 1992.

[2] Ricardo A. Baeza-Yates. A unified view to string matching algorithms. In
Keith G. Jeffery, Jaroslav Král, and Miroslav Bartosek, editors, SOFSEM,
volume 1175 of Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

[3] Ricardo A. Baeza-Yates and Gaston H. Gonnet. A new approach to text
searching. Commun. ACM, 35(10):74–82, 1992.

[4] Ricardo A. Baeza-Yates and Gonzalo Navarro. A faster algorithm for
approximate string matching. In Daniel S. Hirschberg and Eugene W. Myers,
editors, CPM, volume 1075 of Lecture Notes in Computer Science, pages 1–23.
Springer, 1996.

[5] Archie L. Cobbs. Fast approximate matching using suffix trees. In Zvi Galil
and Esko Ukkonen, editors, CPM, volume 937 of Lecture Notes in Computer
Science, pages 41–54. Springer, 1995.

[6] Heikki Hyyrö. Explaining and extending the bit-parallel algorithm of
Myers. Technical Report A-2001-10, Department of Computer and Information
Sciences, University of Tampere, 2001.

[7] Heikki Hyyrö. Practical Methods for Approximate String Matching. PhD thesis,
University of Tampere, 2003.

[8] Heikki Hyyrö. An improvement and an extension on the hybrid index for
approximate string matching. In Alberto Apostolico and Massimo Melucci,
editors, SPIRE, volume 3246 of Lecture Notes in Computer Science, pages 208–
209. Springer, 2004.

[9] Heikki Hyyrö, Kimmo Fredriksson, and Gonzalo Navarro. Increased bit-
parallelism for approximate string matching. In Celso C. Ribeiro and Simone L.
Martins, editors, WEA, volume 3059 of Lecture Notes in Computer Science,
pages 285–298. Springer, 2004.

[10] Heikki Hyyrö and Gonzalo Navarro. A practical index for genome searching. In
Mario A. Nascimento, Edleno Silva de Moura, and Arlindo L. Oliveira, editors,
SPIRE, volume 2857 of Lecture Notes in Computer Science, pages 341–349.
Springer, 2003.

[11] Eugene W. Myers. A sublinear algorithm for approximate keyword searching.
Algorithmica, 12(4/5):345–374, 1994.

[12] Gene Myers. A fast bit-vector algorithm for approximate string matching based
on dynamic programming. In Martin Farach-Colton, editor, CPM, volume 1448
of Lecture Notes in Computer Science, pages 1–13. Springer, 1998.

19

[13] Gonzalo Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31–88, 2001.

[14] Gonzalo Navarro and Ricardo A. Baeza-Yates. A hybrid indexing method for
approximate string matching. Journal of Discrete Algorithms, 1(1):205–239,
2000.

[15] Gonzalo Navarro, Ricardo A. Baeza-Yates, Erkki Sutinen, and Jorma Tarhio.
Indexing methods for approximate string matching. IEEE Data Eng. Bull.,
24(4):19–27, 2001.

[16] Lúıs M. S. Russo and Arlindo L. Oliveira. An efficient algorithm for generating
super condensed neighborhoods. In Alberto Apostolico, Maxime Crochemore,
and Kunsoo Park, editors, CPM, volume 3537 of Lecture Notes in Computer
Science, pages 104–115. Springer, 2005.

[17] Lúıs M. S. Russo and Arlindo L. Oliveira. Faster generation of super condensed
neighbourhoods using finite automata. In Mariano P. Consens and Gonzalo
Navarro, editors, SPIRE, volume 3772 of Lecture Notes in Computer Science,
pages 246–255. Springer, 2005.

[18] Esko Ukkonen. Finding approximate patterns in strings. J. Algorithms,
6(1):132–137, 1985.

[19] Esko Ukkonen. Approximate string-matching over suffix trees. In Alberto
Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, CPM,
volume 684 of Lecture Notes in Computer Science, pages 228–242. Springer,
1993.

[20] Sun Wu and Udi Manber. Fast text searching allowing errors. Commun. ACM,
35(10):83–91, 1992.

[21] http://www.gia.ist.utl.pt/~acardoso/datasets.

20

