
Parallel and Distributed Compressed Indexes ⋆

Lúıs M. S. Russo1, Gonzalo Navarro2, and Arlindo L. Oliveira3

1 CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia, FCT,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. lsr@di.fct.unl.pt

2 Dept. of Computer Science, University of Chile. gnavarro@dcc.uchile.cl
3 INESC-ID, R. Alves Redol 9, 1000 Lisboa, Portugal. aml@algos.inesc-id.pt

Abstract. We study parallel and distributed compressed indexes. Com-
pressed indexes are a new and functional way to index text strings. They
exploit the compressibility of the text, so that their size is a function of
the compressed text size. Moreover, they support a considerable amount
of functions, more than many classical indexes. We make use of this
extended functionality to obtain, in a shared-memory parallel machine,
near-optimal speedups for solving several stringology problems. We also
show how to distribute compressed indexes across several machines.

1 Introduction and Related Work

Suffix trees are extremely important for a large number of string processing prob-
lems, in particular in bioinformatics, where large DNA and protein sequences are
analyzed. This partnership has produced several important results, but it has
also exposed the main shortcoming of suffix trees. Their large space requirements,
plus their need to operate in main memory to be useful in practice, renders them
inapplicable in the cases where they would be most useful, that is, on large texts.

The space problem is so important that it has originated a plethora of re-
search, ranging from space-engineered suffix tree implementations [1] to novel
data structures to simulate them, most notably suffix arrays [2]. Some of those
space-reduced variants give away some functionality. For example suffix arrays
miss the important suffix link navigational operation. Yet, all these classical ap-
proaches require O(n log n) bits, while the indexed string requires only n log σ
bits4, being n the size of the string and σ the size of the alphabet. For example the
human genome can be represented in 700 Megabytes, while even a space-efficient
suffix tree on it requires at least 40 Gigabytes [3], and the reduced-functionality
suffix array requires more than 10 Gigabytes. This problem is particularly evi-
dent in DNA because log σ = 2 is much smaller than logn.

These representations are also much larger than the size of the compressed
string. Recent approaches [4] combining data compression and succinct data

⋆ Funded in part by Millennium Institute for Cell Dynamics and Biotechnology
(ICDB), Grant ICM P05-001-F, Mideplan, and Fondecyt grant 1-080019, Chile (sec-
ond author).

4 In this paper log stands for log2.

structures have achieved spectacular results on what we will call generically
compressed suffix arrays (CSAs). These require space close to that of the com-
pressed string and support efficient indexed searches. For example the most
compact member of the so-called FM-Index family [5], which we will simply call
FMI, is a CSA that requires nHk + o(n log σ) bits of space and counts the num-
ber of occurrences of a pattern of length m in time O(m(1+ log σ

log log n)). Here nHk

denotes the k-th order empirical entropy of the string [6], a lower bound on the
space achieved by any compressor using k-th order modeling. Within that space
the FMI represents the text as well, which can thus be dropped.

It turns out that it is possible to add a few extra structures to CSAs and
support all the operations provided by suffix trees. Sadakane was the first to
present such a compressed suffix tree (CST) [3], adding 6n bits to the size of
the CSA. This Θ(n) extra-bits space barrier was recently broken by the so-
called fully-compressed suffix tree (FCST) [7] and by another entropy-bounded
CST [8]. The former is particularly interesting as it achieves nHk + o(n log σ)
bits of space, asymptotically the same as the FMI, its underlying CSA.

Distributing CSAs have been studied, yet focusing only on pattern matching.
For example, Mäkinen et al. [9] achieved optimal speedup in the amortized sense,
that is, when many queries arrive in batch.

In this paper we study parallel and distributed algorithms for several stringol-
ogy problems (with well-known applications to bioinformatics) based on com-
pressed suffix arrays and trees. This is not just applying known parallel algo-
rithms to compressed representations, as the latter have usually richer function-
ality than classical ones, and thus offer unique opportunities for parallelization
and distributed representations. In Section 4 we present parallel shared-memory
algorithms to solve problems like pattern matching, computing matching statis-
tics, longest common substrings, and maximal repeats. We obtain near-optimal
speedups, by using sophisticated operations supported by these compressed in-
dexes, such as generalized branching. Optimal speedups for some of those prob-
lems (and for others, like all-pairs suffix-prefix matching) have been obtained
on classical suffix trees as well [10]. Here we show that one can obtain similar
results on those problems and others, over a compressed representation that
handles much larger texts in main memory. In Section 5 we further mitigate
the space problem by introducing distributed compressed indexes. We show how
CSAs and CSTs can be split across q machines, at some price in extra space and
reasonable slowdown. The practical effect is that a much larger main memory is
available, and compression helps reducing the number of machines across which
the index needs to be distributed.

2 Basic Concepts

Fig. 1 illustrates the concepts in this section. We denote by T a string; by Σ the
alphabet of size σ; by T [i] the symbol at position (i mod n) (so the first symbol
of T is T [0]); by T.T ′ the concatenation; by T = T [..i − 1].T [i..j].T [j + 1..]
respectively a prefix, a subtring, and a suffix of T .

The path-label of a node v, in a tree with edges labeled with strings over
Σ, is the concatenation of the edge-labels from the root down to v. We refer
indifferently to nodes and to their path-labels, also denoted by v. A point in T
corresponds to any substring of T ; this can be a node in T or a position within
an edge label. The i-th letter of the path-label is denoted as Letter(v, i) = v[i].
The string-depth of a node v, denoted SDep(v), is the length of its path-label,
whereas the tree depth in number of edges is denoted TDep(v). SLAQ(v, d) is
the highest ancestor of node v with SDep ≥ d, and TLAQ(v, d) is its ancestor
of tree depth d. Parent(v) is the parent node of v, whereas Child(v,X) is
the node that results of descending from v by the edge whose label starts with
symbol X , if it exists. FChild(v) is the first child of v, and NSib(v) the next
child of the same parent. Ancestor(v, v′) tells whether v is an ancestor of v′,
and LCA(v, v′) is the lowest common ancestor of v and v′.

The suffix tree of T is the deterministic compact labeled tree for which the
path-labels of the leaves are the suffixes of T $, where $ is a terminator symbol
not belonging to Σ. We will assume n is the length of T $. The generalized
suffix tree of T and T ′ is the suffix tree of T $T ′# where # is a new termina-
tor symbol. For a detailed explanation see Gusfield’s book [11]. The suffix-link
of a node v 6= Root of a suffix tree, denoted SLink(v), is a pointer to node
v[1..]. Note that SDep(v) of a leaf v identifies the suffix of T $ starting at posi-
tion n − SDep(v) = Locate(v). For example T [Locate(ab$)..] = T [7− 3..] =
T [4..] = ab$. The suffix array A[0, n−1] stores the Locate values of the leaves
in lexicographical order. The suffix tree nodes can be identified with suffix array
intervals: each node corresponds to the range of leaves that descend from v.
The node b corresponds to the interval [3, 6]. Hence the node v will be repre-
sented by the interval [vl, vr]. Leaves are also represented by their left-to-right
index (starting at 0). For example by vl − 1 we refer to the leaf immediately
before vl, i.e. [vl−1, vl−1]. With this representation we can Count in constant
time the number of leaves that descend from v. The number of leaves below b
is 4 = 6 − 3 + 1. This is precisely the number of times that the string b oc-
curs in the indexed string T . We can also compute Ancestor in O(1) time:
Ancestor(v, v′) ⇔ vl ≤ v′l ≤ v′r ≤ vr. Operation Ranka(T, i) over a string
T counts the number of times that the letter a occurs in T up to position i.
Likewise, Selecta(T, i) gives the position of the i-th occurence of a in T .

2.1 Parallel Computation Models

The parallel algorithms in this paper are studied under the Parallel Random
Access Model (PRAM), which considers a set of independent sequential RAM
processors, which have a private (or local) memory and a global shared memory.
We assume that the RAMs can execute arithmetic and bitwise operations in
constant time. We use the CREW model, where several processors can read the
same shared memory cell simultaneously, but not write it. We call p the number
of processors, and study the time used by the slowest processor.

For uniformity, distributed processing is studied by dividing the processors
into q sites, which have a (fast) local memory and communicate using a (slow)

4

0 23546 1

b
a
b

b b
aa

b
a
b

b

b

b

a
b

$ $ $$ $
5 6

$
1 3

$
2

A:

b

a
b

b

b

b

b

$
b
a

#
b

$ # $
b
a

$
b
a

$$ # $
b
a

b
0

0 2 3 4 5 61 187 9 01 11 2

Fig. 1. Suffix tree T of string abbbab (right), with the leaves numbered. The arrow shows
the SLink between node ab and b. Below it we show the suffix array. The portion of
the tree corresponding to node b and respective leaves interval is highlighted with a
dashed rectangle. The sampled nodes have bold outlines. We also show the generalized
suffix tree for abbbab and abbbb (left), using the $ and # terminators respectively.

((0)(1)((2)((3)(4)))((5)(6)(7)((8)(9)(10)(11)(12))))

(0 1 (2 (3 (4))) (5)(6)(7)(8 9 10 11 12))

B : 1 0 0 1 0 1 0 10111 1011011011 0 0 0 0 0 1 1

B0: 1 0 1 0 1 0 1 111 1011 11011 0 0 1 1

B1: 1 0 1 1 10111 1 11011 11 0 0 0 1 1

Fig. 2. A parentheses representation of the generalized suffix tree in Fig. 1 (left),
followed by the parentheses representation of the respective sampled tree SC. We also
show B bitmap for the LSA operation of the sequential FCST and the Bi bitmaps for
the LSAi operations of the distributed FCST.

shared memory. The number of accesses to this slower memory are accounted
for separately, and they can be identified with the amount of communication
carried out on shared-nothing distributed models. We measure the local and
total memory space required by the algorithms.

3 Overview of Sequential Fully-Compressed Suffix Trees

In this section we briefly explain the local FCST [7]. It consists of a compressed
suffix array, a sampled tree S, and mappings between these structures.

Compressed suffix arrays (CSAs) are compact and functional represen-
tations of suffix arrays [4]. Apart from the basic functionality of retrieving
A[i] = Locate(i) (within a time complexity that we will call Φ), state-of-the-art
CSAs support operation SLink(v) for leaves v. This is called ψ(v) in the litera-
ture: A[ψ(v)] = A[v]+1, and thus SLink(v) = ψ(v), let its time complexity be Ψ .
The iterated version of ψ, denoted ψi, can usually be computed faster thanO(iΨ)
with CSAs, since ψi(v) = A−1[A[v]+ i]. We assume the CSA also computes A−1

within O(Φ) time. CSAs might also support operation WeinerLink(v,X) [12],

which for a node v gives the suffix tree node with path-label X.v[0..]. This is
called the LF mapping in CSAs, and is a kind of inverse of ψ. Let its time com-
plexity be O(τ). We extend LF to strings, LF(X.Y, v) = LF(X,LF(Y, v)). For
example, consider the interval [3, 6] that represents the leaves whose path-labels
start by b. In this case we have that LF(a, [3, 6]) = [1, 2], i.e. by using the LF

mapping with a we obtain the interval of leaves whose path-labels start by ab.
CSAs also implement Letter(v, i) for leaves v. Letter(v, 0) = T [A[v]] is

v[0], the first letter of the path-label of leaf v. CSAs implement v[0] in O(1)
time, and Letter(v, i) = Letter(SLinki(v), 0) in O(Φ) time. CSAs are usually
self-indexes, meaning that they replace the text: they can extract any substring
T [i..i+ℓ−1] in time O(Φ+ℓΨ) time, since T [i..i+ℓ−1] = Letter(A−1[i], 0..ℓ−1).

We will use a CSA called the FMI [5], which requires nHk + o(n log σ) bits,
for any k ≤ α logσ n and constant 0 < α < 1. It achieves Ψ = τ = O(1+ log σ

log log n)

and Φ = O(log n log logn).5 The instantiation in Table 1 refers to the FMI.

The δ-sampled tree exploits the property that suffix trees are self-similar,
SLink(LCA(v, v′)) = LCA(SLink(v),SLink(v′)). A δ-sampled tree S, from a
suffix tree T of Θ(n) nodes, chooses O(n/δ) nodes such that, for each node v,
node SLinki(v) is sampled for some i < δ. Such a sampling can be obtained
by choosing nodes with SDep(v) = 0 (mod δ/2) such that there is another

node v′ for which v = SLinkδ/2(v′). Then the following equation holds, where
LCSA(v, v′) is the lowest common sampled ancestor of v and v′:

SDep(LCA(v, v′)) = max
0≤i<δ

{i+ SDep(LCSA(SLinki(v),SLinki(v′)))} (1)

From this relation the kernel operations are computed as follows. The i in
LCA is the one that maximizes the computation in Eq. (1).
•SDep(v) = SDep(LCA(v, v)) = max0≤i<d{i+ SDep(LCSA(ψi(vl), ψ

i(vr)))},
•LCA(v, v′) = LF(v[0..i− 1],LCSA(ψi(min{vl, v

′
l}), ψ

i(max{vr, v
′
r}))),

•SLink(v) = LCA(ψ(vl), ψ(vr)).

These operations plus Parent(v), which is easily computed on top of LCA,
take time O((Ψ + t)δ). The exception is SDep, which takes O(Ψδ).

Note that we have to solve LCSA. This requires mapping nodes to their low-
est sampled ancestors in S, an operation called LSA we explain next. In addition,
each sampled node v must store its [vl, vr] interval, its ParentS and TDepT ,
and also compute LCAS queries in constant time. All this takes O((n/δ) log n)
bits. The rest is handled by the CSA.

Computing lowest sampled ancestors. Given a CSA interval [vl, vr] rep-
resenting node v of T , the lowest sampled ancestor LSA(v) gives the lowest
sampled tree node containing v. With LSA we can compute LCSA(v, v′) =
LCAS(LSA(v),LSA(v′)).

5 ψ(i) can be computed as selectT [A[i]](T
bwt, T [A[i]]) using the wavelet tree [13]. The

cost for Φ assumes a sampling step of log n log log n, which adds o(n) extra bits.

Table 1. Comparing local and distributed FCST representations. The operations are
defined in Section 2. Time complexities, but not space, are big-O expressions. The
dominant terms in the distributed times count slow-memory accesses. We give the
generalized performance and an instantiation using δ = log n log log n, assuming σ =
O(polylog(n)), and using the FMI [5] as the CSA.

Local Distributed

Space in bits |CSA| +O((n/δ) log n)
= nHk + o(n log σ)

|CSA|+O((n/δ) log n+n log(1+q/δ))
= nHk + o(n log σ) +O(n log q)

SDep Ψδ = log n log log n (log q + Ψ + τ)δ
= log q log n log log n

Count 1 = 1 log q = log q

Ancestor 1 = 1 1 = 1

Parent/ FChild/
NSib/ SLink/ LCA

(Ψ + τ)δ = log n log log n (log q + Ψ + τ)δ
= log q log n log log n

SLinki Φ+ (Ψ + τ)δ
= log n log log n

Φ+ (log q + Ψ + τ)δ
= log q log n log log n

Letter(v, i) Φ = log n log log n Φ = log n log log n

Child Φ log δ+(Ψ+τ)δ+log(n/δ)
= log n(log logn)2

Φ log δ + (Ψ + τ)δ + log(n/δ)
= log n(log log n)2

TDep (Ψ + τ)δ2

= (logn log logn)2
(log q + Ψ + τ)δ2

= log q (log n log log n)2

TLAQ log n+ (Ψ + τ)δ2

= (logn log logn)2
log n+ (log q + Ψ + τ)δ2

= log q (log n log log n)2

SLAQ log n+ (Ψ + τ)δ
= log n log log n

log n+ (log q + Ψ + τ)δ
= log q log n log log n

WeinerLink τ = 1 τ = 1

The key component for these operations is a bitmap B that is obtained by
writing a 1 whenever we find a ’(’ or a ’)’ in the parentheses representation of the
sampled tree S and 0 whenever we find a leaf of T , see Fig. 2. Then the LSA is
computed via Rank/Select on B. As B containsm = O(n/δ) ones and n zeros,
it can be stored in m log(n/m)+O(m+n log logn/ logn) = O((n/δ) log δ)+o(n)
bits [14]. We now present a summary of the FCST representation.

Theorem 1. Using a compressed suffix array (CSA) that supports ψ, ψi, T [A[v]]
and LF in times O(Ψ), O(Φ), O(1), and O(τ), respectively, it is possible to rep-
resent a suffix tree with the properties given in Table 1 (column “local”).

4 Parallel Compressed Indexes

In this section we study the situation where the index resides in main memory
and we want to speed up its main search operations. We start by studying exact
matching, matching statistics and longest common substrings over CSAs and
FCSTs, and finish with maximal repeats (only over FCSTs).

The CSA’s basic operations, such as ψ, LF , A[i] and A−1[i], seem to be intrin-
sically sequential. However using generalized branching we can speed up several
algorithms. The generalized branching Child(v1, v2), for suffix tree points v1 and
v2, is the point with path label v1.v2 if it exists. This operation was first consid-
ered by Huynh et al. [15], who achieved O(Φ log n) time over a CSA. Russo et
al. [16] achieved O((Ψ + τ)δ+Φ log δ+ log(n/δ)) time on the FCST. The proce-
dure binary searches the interval of v1 for the subinterval where ψSDep(v1) ∈ v2.
With the information stored at sampled nodes, only an interval of size δ is binary
searched this way; the other O(log(n/δ)) steps require constant-time accesses.

These binary searches can be accelerated using p processors. Instead of divid-
ing the interval into two pieces we divide it into p and assign each comparison to a
different processor. The time complexity becomes Π(p) = O((Ψ+τ)δ+Φ logp δ+
logp(n/δ)). The CSA-based algorithm also improves to Π(p) = O(Φ logp n).

Pattern matching. Assume we want to search for a pattern P of size m. We
divide P into p parts and assign one to each processor. Each piece is searched
for, like in the FMI, with the LF operation. This requires O(mτ/p) time. We
then join the respective intervals with a binary tree of generalized Child oper-
ations. Assume for simplicity that m/p is a power of 2. We show a flow-graph
of this procedure in Fig. 3. We first concatenate the p/2 pairs of leaves, us-
ing 2 processors for the generalized branching operation, using time Π(2). We
then concatenate the p/4 pairs of nodes of height 1, using 4 processors for the
generalized branching, using time Π(4). We continue until merging the two
halves of P using p processors. The overall time of the hierarchical concate-
nation process is O((Ψ + τ)δ log p + (Φ log δ + log(n/δ)) log log p) on the FCST
and O(Φ log n log log p) on the bare FMI. Using the same instantiation as in
Table 1 this result becomes O(m/p + logn log logn(log p + log logn log log p))
time on the FCST and O(m/p + log2 n log logn log log p) on the FMI, both in
nHk + o(n log σ) bits of index space. The speedup is linear in p, except for the
polylogarithmic additive term. On the other hand, there is no point in using
more than m processors; the optimum is achieved using less than m.

Matching statistics. The matching statistics m(i) indicate the size of the
longest prefix of P [i..] that is a substring of T . Consider for example the string
P = abbbbabb, using the running example suffix tree T , right of Fig. 1. The
corresponding matching statistics are 4, 3, 5, 4, 3, 3, 2, 1. To compute these values
we will again resort to the generalized Child operation. As before the idea is
to first compute a generalized branch tree, which is the tree in the flow-graph
of Fig. 3. This tree contains the intervals over CSA that correspond to strings
P [2jk..2j(k+1)−1], where j will indicate the level in the tree and k the position
in the level. The levels and the positions start at 0. Notice that constructing this
tree can be done exactly as for pattern matching, except that we do not stop the
tree at pieces of length m/p but continue up to length 1. Since the subtrees for
pieces of size m/p must be handled sequentially by one processor, they require
additional time O(mτ/p + (m/p)Π(2)). Note each node of this branching tree

a b b b

bbab

abbb

b b ba

ba bb

Null

Null

Fig. 3. The flow-graph for parallel exact matching and matching statistics is a tree of
generalized Child operations for pattern P = abbbbabb and p = 4 processors. Matching
statistics use all the operations in the tree, whereas exact matching performs only the
operations above the line and the search below the line is computed with LF operations.

stores the suffix tree point (or suffix array interval plus length) that corresponds
to its substring, if it exists, and Null otherwise.

After building the tree we traverse it m times, once for each P [i..]. For each
such i we find m(i) by traversing the tree path that covers P [i..i + m(i) − 1]
with the maximal nodes. This describes a path that ascends and then descends,
touching O(logm) nodes of the branching tree. We start at the ith leaf x of
the branching tree, which corresponds to the letter P [i], with v = P [i] the
current point of T , and move up to the parent z of x. If x is the right child
of z, we do nothing more than x ← z. If x is the left child of z, we do a
generalized Child(v, u) operation, where u is the point of T that is stored in y,
the right child of z. If the resulting point is not Null we set v to this new point,
v ← Child(v, u), and continue moving up, x ← z. Otherwise we start moving
down on y, x← y. While we are moving down we compute the generalized Child

operation between v and the point u in the left child y of x. If the resulting point
is still Null we move to the left child of x, x ← y. Otherwise we set v to this
new point, v ← Child(v, u), and move to the right child z of x, x ← z. The
value m(i) is obtained by initializing it at zero and adding 2j to it each time we
update v at level j of the branching tree.

For example, assume we want to compute m(2), i.e. we want to determine
the longest prefix of bbbabb that is a substring of T . We start on the third leaf of
the tree in Fig. 3 and set v = b. Then move up. Since we are moving from a left
child we compute Child(b, b) and obtain v = bb. Again we move up but this time
we are moving from a right child so we do nothing else. We move up again. Since
the interval on the right sibling is Null the Child operation also returns Null.
Therefore we start descending in the right sibling. We now consider the left
child of that sibling, and compute Child(v, ba) = Child(bb, ba) = bbba. Since
this node is not Null we set v to it and move to the node labeled bb. Considering
its left child we compute Child(bbba, b) = bbbab. Since it is not Null we set v to
it and move to rightmost leaf. Finally we check whether Child(bbbab, b) 6= Null

since this is that case we know that we should consider the rightmost leaf as part
of the common substring. This means that m(2) = 5 = 20 +20 +21 +20 = 7−2.

Traversing the tree takes O(Π(2) logm) time per traversal, thus with p pro-
cessors the time is O((m/p)Π(2) logm). By considering that only p ≤ m pro-
cessors are useful, we have that the traversal time dominates the branching
tree construction time. Using the instantiation in Table 1 this result becomes
O((m/p) logm logn(log logn)2) on the FCST and O((m/p) logm log2 n log logn)
on the FMI. The total space is O(m logm) + nHk + o(n log σ) bits. This time
the linear speedup is multiplied by a polylogarithmic factor, since the sequential
algorithm can be made O(m) time.

Longest common substring. We can compute the longest common substring
between P and T by taking the maximum matching statistic m(i) in additional
negligible O(m/p+ log p) time.

Maximal repeats. For this problem we need a FCST, and cannot simulate it
with a CSA as before. A maximal repeat in T is a substring S, of size ℓ, that
occurs in at least two positions i and i′, i.e. S = T [i..i+ ℓ− 1] = T [i′..i′ + ℓ− 1],
and cannot be extended either way, i.e. T [i−1] 6= T [i′−1] and T [i+ℓ] 6= T [i′+ℓ].
The solution for this problem consists in identifying the deepest internal nodes v
of T that are left-diverse, i.e. the nodes for which there exist letters X 6= Y such
that X.v and Y.v are substrings of T [11]. Assume v = [vl, vr]. Then FMIs allow
one to access Letter(vl,−1) = T [vl − 1] in O(τ) time6. Hence node v is left-
diverse iff Count(LF(Letter(vl,−1), v)) 6= Count(v). This can be verified in
O(τ) time, moreover this verification can be performed independently for every
internal node of T . At each step the algorithm chooses p nodes from T and
performs this verification. A simple way to choose all internal nodes (albeit with
repetitions, which does not affect the asymptotic time of this algorithm) is to
compute LCA([i, i], [i + 1, i + 1]) for all 0 ≤ i < n − 1. Hence this procedure
requires O((n/p)(Ψ + τ)δ) time, plus negligible O(n/p + log p) time to find the
longest candidates. Using the same instantiation as in Table 1 the result becomes
O((n/p) log n log logn) time within optimal nHk + o(n logσ) overall bits. This is
an optimal speedup, if we consider the polylogarithmic penalty of using a FCST.

The speedups in this section are similar to the results obtained for “classical”
uncompressed suffix trees by Clifford [10], which do not speed up exact matching
because they do not use a generalized Child operation. Clifford speeds up the
longest common substring problem and the maximal repeats, among others.

5 Distributed Compressed Indexes

In this section we study distributed CSAs and FCSTs, mainly to obtain support
for large string databases. In this case we assume we have a collection C of q texts
of total length n, distributed across q machines. Hence distributed FCSTs are
always generalized suffix trees, and likewise for CSAs. In fact, the local text of
each machine could also be a collection of smaller texts, and the whole database

6 This is an access to the Burrows-Wheeler transform.

could be a single string arbitrarily partitioned into q segments: CSAs and CSTs
treat both cases similarly. The only difference is whether the SLink of the last
symbol of a text sends one to the next text or it stays within that text, but either
variant can be handled with minimal changes. We choose the latter option.

Various data layouts have been considered for distributing classical suffix
trees and arrays [17, 9, 10]. One can distribute the texts and leave each machine
index its own text, or distribute a single global index into lexicographical inter-
vals, or opt for other combinations. In this paper we consider reducing the time
of a single query, in contrast to previous work [17] where the focus is on speed-
ing up batches of queries by distributing them across machines. Our approach
is essentially that of indexing each text piece in its own machine, yet we end
up distributing some global information across machines, similarly to the idea
storing local indexes with global identifiers [17].

First we study the case where the local CSAs are used to simulate a global
CSA, which can then be used directly in the FCST representation. This solution
turns out to require extra space due to the need of storing some redundant
information. Then we introduce a new technique to combine FCSTs that removes
some of those redundant storage requirements.

Distributed Compressed Suffix Arrays. Assume we have a collection C =
{Tj}

q−1
0 , and the respective local CSAs. We denote their operations with a

subscript j, i.e. as Aj , A
−1
j , ψj and LFj. The generalized CSA that results

from this collection is denoted AC . Assume we store the accumulated text sizes,
AccT [i] =

∑i−1
j=0 |Tj |, which need just O(q logn) bits.

We define the sequence IdC of suffix indexes of C, where IdC [i] = j if the
suffix in AC [i] belongs to text Tj . Consider T as T0 and T ′ as T1 in our running
example. The respective generalized suffix tree is shown in the left of Fig. 1. The
Id sequence for this example is obtained by reading the leaves, and replacing $
by 0 and # by 1. The resulting sequence is Id = 0100101010101.

If we process Id for Rank and Select queries we can obtain the oper-
ations of AC from the operations of the Aj ’s. To compute Locate we use
the equation AC [v] = AId[v][RankId[v](v − 1)] + AccT [Id[v]]. For example for
AC [4] we have that A1[Rank1(4 − 1)] + AccT [1] = A1[1] + 7 = 7. To com-
pute A−1

C we use a similar relation, A−1
C [i] = Selectj(A

−1
j [i − AccT [j]] + 1),

where j is such that AccT [j] ≤ i < AccT [j + 1]. Likewise ψC is computed as
ψC [v] = SelectId[v](ψId[v][RankId[v](v − 1)] + 1). Computing LFC(X, [vl, vr])
is more complicated: we compute LF in all the CSAs, i.e. LFj(X, [Rankj(vl −
1),Rankj(vr)−1]) for every 0 ≤ j < q. If [xvj,l, xvj,r] are the resulting intervals

then LFC(X, [vl, vr]) = [minq−1
j=0{Selectj(xvj,l + 1)},maxq−1

j=0{Selectj(xvj,r +
1)}]. Consider for example, how to compute LFC(a, [5, 12]). We compute
LF0(a, [3, 6]) = [1, 2] and LF1(a, [2, 5]) = [1, 1] and use the results to obtain
that LFC(a, [5, 12]) = [min{Select0(1+1),Select1(1+1)},max{Select0(2+
1),Select1(1 + 1)}] = [min{2, 4},max{3, 4}] = [2, 4]. This requires O(log q) ac-
cesses to slow memory to compute minima and maxima in parallel.

A problem with this approach is the space necessary to store sequence Id
and support Rank and Select. An efficient approach is to unfold Id into q

bitmaps, BIdj [i] = 1 iff Id[i] = j, and process each one for constant-time binary
Rank and Select queries while storing them in compressed form [14]. Then
since BIdj contains about n/q 1s, it requires (n/q) log q+O(n/q) + o(n) bits of
space. We store each BIdj in the local memory of processor j, which requires
space |CSAj | + (n/q) log q + O(n/q) + o(n) local bits. The total space usage is
|CSAC | + n log q + O(n) + o(qn) bits (if the partitions are not equal it is even
less; n log q bits is the worst case). This essentially lets each machine map its
own local CSA positions to the global suffix array, as done in previous work for
classical suffix arrays (where the global identifiers can be directly stored) [17].

In this setup, most of the accesses are to local memory. One model is that
queries are sent to all processors and the one able of handling it takes the lead.
For AC [v], each processor j looks if BIdj [v] = 1, in which case j = Id[v] and
this is the processor solving the query locally, in O(Φ) accesses to fast memory
(processor j also stores values AccT [j] and AccT [j+1] locally). For A−1

C [i], each
processor j checks if AccT [j] ≤ i < AccT [j+1] and the one answering positively
takes the lead, answering again in O(Φ) local accesses. ψC proceeds similarly to
AC , in O(Ψ) local accesses. LFC is more complex since all the processors must be
involved, each spending O(τ) local accesses, and then computing global minima
and maxima in O(log q) accesses to slow memory. Compare to the alternative of
storing CSAC explicitly and splitting it lexicographically: all the local accesses
in the time complexities become global.

The o(qn) extra memory scales badly with q (as more processors are avail-
able, each needs more local memory). A way to get rid of it is to use bitmap
representations that require n log q+ o(n log q) +O(n log log q) = O(n log q) bits
and solve Rank and Select queries within o((log logn)2) time [18]. We will
now present a new technique that directly represents global FCSTs using tuples
of ranges instead of a single suffix array range.

Distributed Fully-Compressed Suffix Trees. Consider the generalized suf-
fix tree TC of a collection of texts C = {Tj}

q−1
0 and the respective individ-

ual suffix trees Ti. Assume, also, that we are storing the Ti trees with the
FCST representation and want to obtain a representation for TC . A node of
TC can be represented all the time as a q-tuple of intervals 〈v0, . . . , vq−1〉 =
〈[v0,l, v0,r], . . . , [vq−1,l, vq−1,r]〉 over the corresponding CSAs. For example the
node abbb can be represented as 〈[2, 2], [1, 1]〉. In fact we have just explained,
in the distributed LF operation, how to obtain from these intervals the [vl, vr]
representation of node v of TC (via Select on IdC and distributed minima and
maxima). Thus these intervals are enough to represent v.

To avoid storing the Id sequence we map every interval [vi,l, vi,r] directly to
the sampled tree of FCSTC, instead of mapping it to an interval v over CSAC

and then reducing it to the sampled tree of FCSTC with LSAC(v). We use
the same bitmap-based technique for LSAC , but store q local bitmaps instead
of just a global one. The bitmaps Bj are obtained from the bitmap B of the
FCSTC by removing the zeros that do not correspond to leaves of Tj , see Fig 2.
This means that, in Bj , we are representing the O(n/δ) nodes of the global
sampled tree and the n/q leaves of Tj . As each Bj has n/q 0s and O(n/δ) 1s,

the compressed representation [14] supporting constant-time Rank and Select

requires (n/q) log(1 + q/δ) +O(n/q) + o(n/δ + n/q) bits. This is slightly better
than the extra space of CSAs, totalling O(n log(1 + q/δ)) + o(nq/δ) bits. As
before, the o(. . .) term can be removed by using the representation by Gupta et
al. [18] at the price of o((log logn)2) accesses to fast local memory. Now the same
computation for LSA carried out on Bj gives a global interval.

We then compute LSAC(v) = LCASC
(LSA0(v0), . . . ,LSAq−1(vq−1)), where

LCASC
is the LCA operation over the sampled tree of TC and LSAj(vj) is the

global LSA value obtained by processor j. This operation is computed in parallel
in O(log q) accesses to slow memory (which replaces the global minima/maxima
of the CSA). The sampled tree S and its extra data (e.g., to compute LCA in
constant time) is stored in the shared memory. Hence accesses to S are always
slow, which does not change the stated complexities. This mechanism supports
the usual representation of the global FCST.

Consider, for example, that we want to compute the SDep of node abbb.
Note that the SDep of [2, 2] in T0 is 7 and that the SDep of [1, 1] in T1 is 6.
However the SDep of abbb in TC is 4. In this example we do not have to use ψ
to obtain the result, altough in general it is necessary. By reducing the [2, 2] and
[1, 1] intervals to the sampled tree of FCSTC we obtain the node abbb and the
leaf abbbb#, see Fig. 1. The node we want is the LCA of these nodes, i.e. abbb.

Theorem 2. Given a collection of q texts C = {Tj}
q−1
0 represented by com-

pressed suffix arrays (CSAj) that support ψ, ψi, T [A[v]] and LF in times O(Ψ),
O(Φ), O(1), and O(τ), respectively, it is possible to represent a distributed suffix
tree with the properties given in Table 1 (column “distributed”).

Moreover this technique has the added benefit that we can simulate the
generalized suffix tree from any subcollection of the q texts, by using only the
intervals of the texts Tj that we want to consider. However in this case we lose
the TDep, TLAQ and SLAQ operations.

6 Conclusions and Future Work

Compressed indexes are a new and functional way to index text strings using
little space, and their parallelization has not been studied yet. We have focused
on parallel (shared RAM) and distributed suffix trees and arrays, which are the
most pervasive compressed text indexes. We obtained almost linear speedups for
the basic pattern search problem, and also for more complex ones such as com-
puting matching statistics, longest common substrings, and maximal matches.
The sequential algorithms for these problems are linear-time and easy to carry
over compressed indexes, but hard to parallelize. Thanks to the stronger func-
tionality of compressed indexes, namely the support of generalized branching,
we achieve parallel versions for all of these. Some of our solutions can do with
a compressed suffix array; others require a compressed suffix tree. We plan to
apply this idea to other problems with applications in bioinformatics [11], such
as all-pairs prefix-suffix queries.

Distributing the index across q machines further alleviates the space problem,
allowing it to run on a larger virtual memory. Our distributed suffix arrays
require O(n log q) + o(n) extra bits, whereas our suffix trees require o(nq/δ)
extra bits. Both simulate a global index with O(log q) slowdown (measured in
communication cost), so they achieve O(q/ log q) speedup on each query.

A challenge for future work is to reduce this extra space, as O(n log q) can
be larger than the compressed suffix array itself. We also plan to consider other
models models such as BSP and batched queries [17]. An exciting direction is to
convert the distributed index into an efficient external-memory representation
for compressed text indexes, which suffer from poor locality of reference.

References

1. Giegerich, R., Kurtz, S., Stoye, J.: Efficient implementation of lazy suffix trees.
Softw., Pract. Exper. 33(11) (2003) 1035–1049

2. Manber, U., Myers, E.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5) (1993) 935–948

3. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41(4) (2007) 589–607

4. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1)
(2007) article 2

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Algor. 3(2) (2007) article 20

6. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3) (2001)
407–430

7. Russo, L., Navarro, G., Oliveira, A.: Fully-Compressed Suffix Trees. In: Proc. 8th
LATIN. LNCS 4957 (2008) 362–373

8. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theor. Comp. Sci. 410(51) (2009) 5354–5364

9. Mäkinen, V., Navarro, G., Sadakane, K.: Advantages of backward searching —
efficient secondary memory and distributed implementation of compressed suffix
arrays. In: Proc. 15th ISAAC. LNCS 3341 (2004) 681–692

10. Clifford, R.: Distributed suffix trees. J. Discrete Algorithms 3(2-4) (2005) 176–197
11. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University

Press (1997)
12. Weiner, P.: Linear pattern matching algorithms. In: IEEE Symp. on Switching

and Automata Theory. (1973) 1–11
13. Lee, S., Park, K.: Dynamic rank-select structures with applications to run-length

encoded texts. In: Proc. 18th CPM. LNCS 4580 (2007) 95–106
14. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In: Proc 13th SODA. (2002) 233–242
15. Huynh, T.N.D., Hon, W.K., Lam, T.W., Sung, W.K.: Approximate string matching

using compressed suffix arrays. Theor. Comput. Sci. 352(1-3) (2006) 240–249
16. Russo, L., Navarro, G., Oliveira, A.: Dynamic Fully-Compressed Suffix Trees. In:

Proc. 19th CPM. LNCS 5029 (2008) 191–203
17. Maŕın, M., Navarro, G.: Distributed query processing using suffix arrays. In: Proc.

10th SPIRE. LNCS 2857 (2003) 311–325
18. Gupta, A., Hon, W.K., Shah, R., Vitter, J.: Compressed data structures: dictio-

naries and data-aware measures. In: In Proc. 5th WEA. (2006) 158–169

