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Abstract. Suffix trees are by far the most important data structure
in stringology, with myriads of applications in fields like bioinformatics,
data compression and information retrieval. Classical representations of
suffix trees require O(nlogn) bits of space, for a string of size n. This is
considerably more than the nlog, o bits needed for the string itself, where
o is the alphabet size. The size of suffix trees has been a barrier to their
wider adoption in practice. A recent so-called fully-compressed suffix
tree (FCST) requires asymptotically only the space of the text entropy.
FCSTs, however, have the disadvantage of being static, not supporting
updates to the text. In this paper we show how to support dynamic
FCSTs within the same optimal space of the static version and executing
all the operations in polylogarithmic time. In particular, we are able to
build the suffix tree within optimal space.

1 Introduction and Related Work

Suffix trees are extremely important for a large number of string processing prob-
lems. Their many virtues have been described by Apostolico [1] and Gusfield [2].
The combinatorial properties of suffix trees have a profound impact in the bioin-
formatics field, which needs to analyze large strings of DNA and proteins with
no predefined boundaries. This partnership has produced several important re-
sults, but it has also exposed the main shortcoming of suffix trees. Their large
space requirements, together with their need to operate in main memory to be
useful in practice, renders them inapplicable in the cases where they would be
most useful, that is, on large texts.

The space problem is so important that it originated a plethora of research
results, ranging from space-engineered implementations [3] to novel data struc-
tures that simulate suffix trees, most notably suffix arrays [4]. Some of those
space-reduced variants give away some functionality in exchange. For example
suffix arrays miss the important suffix link navigational operation. Yet, all these
classical approaches require O(nlogn) bits, while the indexed string requires
only nlogo bits (we write log for log, ), n being the size of the string and o the
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size of the alphabet. For example the human genome requires 700 Megabytes,
while even a space-efficient suffix tree on it requires at least 40 Gigabytes [5],
and the reduced-functionality suffix array requires more than 10 Gigabytes. This
is particularly evident in DNA because log o = 2 is much smaller than logn.

These representations are also much larger than the size of the compressed
string. Recent approaches [6] combining data compression and succinct data
structures have achieved spectacular results for the pattern search problem. For
example Ferragina et al. [7] presented an index that requires nHj, + o(nlogo)
bits and counts the occurrences of a pattern of length m in time O(m(1 +
(log, logn)~1)). Here nHj, denotes the k-th order empirical entropy of the string
[8], a lower bound on the space achieved by any compressor using k-th order
modeling. As that index is also able of reproducing any text substring, its space
is asymptotically optimal in the sense that no k-th order compressor can achieve
asymptotically less space to represent the text.

It turns out that it is possible to use this kind of data structures, that we
will call compressed suffiz arrays (CSAs)?, and, by adding a few extra structures,
support all the operations provided by suffix trees. Sadakane presented the first
compressed suffiz tree (CST) [5], adding 6n bits on top of the CSA. Recently
Russo et al. [9] achieved a fully-compressed suffiz tree (FCST), which works over
the smallest existing CSA [7], adding only o(n log o) bits to it. Hence the FCST
breaks the @(n) extra-bits space barrier and retains asymptotic space optimality.

Albeit very interesting as a first step, the FCST has the limitation of being
static, and moreover of being built from the uncompressed suffix tree. CSAs
have recently overcome this limitation, starting with the structure by Chan et
al. [10]. In its journal version this work included the first dynamic CST, which
builds on Sadakane’s (static) CST [5] and retains its @(n) extra space penalty.
On the other hand, the smallest existing CSA [7] was made dynamic within the
same space by Mékinen et al. [11], which was recently improved by Gonzdlez et
al. [12] so as to achieve logarithmic time slowdown. In this paper we make the
FCST dynamic by building on this latter dynamic CSA. We retain the optimal
space complexity and polylogarithmic time for all the operations.

A comparison between Chan et al.’s CST and our FCST is shown in Table 1.
Our FCST is not significantly slower, yet it requires much less space (e.g. one can
realistically predict 25% of Chan et al.’s CST space on DNA). For the table we
chose the smallest existing dynamic CSA, so that we show the time complexities
that can be obtained within the smallest possible space for both CSTs.

All these dynamic structures, as well as ours, indeed handle a collection of
texts, where whole texts are added/deleted to/from the collection. Construction
in compressed space is achieved by inserting a text into an empty collection.

2 Basic Concepts

Fig. 1 illustrates the concepts in this section. We denote by T" a string; by X' the
alphabet of size o; by T'[i] the symbol at position (¢ mod n) (so the first symbol

4 These are also called compact suffix arrays, FM-indexes, etc., see [6].



Table 1. Comparing compressed suffix tree representations. The operations are defined
along Section 2. Time complexities, but not space, are big-O expressions. We give the
generalized performance (assuming ¥,¢,® > logn) and an instantiation using 6 =
(log, logn)logn. For the instantiation we also assume o = O(polylog(n)), and use the
dynamic FM-Index variant of Gonzdlez et al. [12] as the compressed suffix array (C'SA),
for which the space holds for any k < alog,(n) — 1 and any constant 0 < a < 1.

|Chan et al. [10] |Ours
Space in bits |CSA| + O(n) + o(n) |CSA|+ O((n/d)logn)
=nHy + O(n) + o(nlog o) =nHy + o(nlog o)
SDEP o3 = (log, logn) log” n|¥é = (log, logn)log”n
COUNT/ ANCESTOR |logn =logn|l =1
PARENT logn =logn|(¥ +t)d = (log, logn)log® n
SLINK 4 =logn|(¥ +t)d = (log, logn)log”n
SLINK' b = (log, logn)log”n|® + (¥ +t)§ = (log, logn)log® n
LETTER / LOCATE |® = (log, logn) log” n|® = (log, logn)log”n
LCA logn = logn|(¥ +t)d = (log, logn)log®n
FCHiLD/ NSIB logn =logn|(¥ + )6 + Plog é + (logn)log(n/d)
= ((log, log n) log? n) log log n
CHILD dlogo = (loglogn)log”n|(¥ + t)§ + ®log § + (logn)log(n/d)
= ((log, log n) log? n) log log n
WEINERLINK t = logn|t =logn
INSERT(T') / |T|(¥ +t)o |T|(¥ +t)§ = |T|(log, logn)log”n
DELETE(T) = |T|(log, logn)log®n

is T[0]); by T.T' concatenation; by T = T[..i — 1].T'[¢..j].T[j + 1..] respectively
a prefix, a susbtring and a suffix; by PARENT(v) the parent node of node v;
by TDEP(v) its tree-depth; by ANCESTOR(v,v’) whether v is an ancestor of v';
by LCA(v,v") the lowest common ancestor.

The path-label of a node v in a labeled tree is the concatenation of the
edge-labels from the root down to v. We refer indifferently to nodes and to their
path-labels, also denoted by v. The i-th letter of the path-label is denoted as
LETTER(v, i) = v[i]. The string-depth of a node v, denoted by SDEP(v), is the
length of its path-label. CHILD (v, X) is the node that results of descending from
v by the edge whose label starts with symbol X, if it exists. The suffix tree of T’
is the deterministic compact labeled tree for which the path-labels of the leaves
are the suffixes of T'. We assume that T ends in a terminator symbol $ that does
not belong to X. The generalized suffix tree of a collection C of texts is the
tree that results from merging the respective suffix trees. Moreover each text is
assumed to have a distinct terminator. For a detailed explanation see Gusfield’s
book [2]. The suffix-link of a node v # ROOT of a suffix tree, denoted SLINK(v),
is a pointer to node v[1..]. Note that SDEP(v) of a leaf v identifies the suffix of T
starting at position n—SDEP(v) = LOCATE(v). For example T[LOCATE(ab$)..] =
T[T —3.] = T[4..] = ab$. The suffix array A[0,n — 1] stores the LOCATE
values of the leaves in lexicographical order. Note that in a generalized suffix
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tree LOCATE must also identify the text to which the suffix corresponds. When
we use arithmetic expressions involving A and A~! they are computed within
a given text, i.e. they do not jump to another text. Moreover for simplicity we
use only one text in our example and hence omit the text identifier. The suffiz
tree nodes can be identified with suffix array intervals: each node corresponds to
the range of leaves that descend from v. The node b corresponds to the interval
[3,6]. Hence the node v will be represented by the interval [v;, v,.]. Leaves are also
represented by their left-to-right index (starting at 0). For example by v; — 1 we
refer to the leaf immediately before vy, i.e. [v;—1,v;—1]. With this representation
we can COUNT in constant time the number of leaves that descend from v. The
number of leaves below b is 4 = 6 — 3 + 1. This is precisely the number of times
that the string b occurs in the indexed string 7'. We can also compute ANCESTOR
in O(1) time: ANCESTOR(v,v") < v <v] <) < v,.

3 Static Fully-Compressed Suffix Trees and Our Plan

In this section we briefly explain the static FCST we build on [9]. The FCST
consists of a compressed suffix array, a J-sampled tree S, and mappings between
these structures. We also give the road map of our plan to dynamize the FCST.

Compressed suffix arrays (CSAs) are compact and functional represen-
tations of suffix arrays [6]. Apart from the basic functionality of retrieving
Ali] = LOCATE(:) (within a time complexity that we will call & = 2(logn)),
state-of-the-art CSAs support operation SLINK(v) for leaves v. This is called
¥(v) in the literature: A[p(v)] = Av] + 1, and thus SLINK(v) = 4 (v), let



its time complexity be ¥ = §2(logn). The iterated version of 1, denoted *,
can usually be computed faster than O(i¥) with CSAs. This is achieved as
Y (v) = A71[A[v] +1], let us assume that the CSA can also compute A~! within
O(®) time. CSAs might also support the WEINERLINK (v, a) operation [13]: for a
node v the WEINERLINK (v, X) gives the suffix tree node with path-label X.v[0..].
This is called the LF mapping in CSAs, and is a kind of inverse of 1, let its time
complexity be t = £2(logn). Consider the interval [3, 6] that represents the leaves
whose path-labels start by b. In this case we have that LF(a,[3,6]) = [1,2], i.e.
by using the LF mapping with ¢ we obtain the interval of leaves whose path-
labels start by ab. We extend of LF to strings, LF(X.Y,v) = LF(X,LF(Y,v)).

CSAs also implement LETTER(v, i) for leaves v. The easiest case is the first
letter of a given suffix, LETTER(v,0) = T[A[v]]. This corresponds to v[0], the
first letter of the path-label of leaf v. Dynamic CSAs implement v[0] in time
O(logn). In general, LETTER(v, i) = LETTER(SLINK'(v),0) is implemented in
O(®P) time. CSAs are usually self-indexes, meaning that they replace the text:
they can extract any substring, of size ¢, of the indexed text in O(® + ¢¥) time.

In this paper we will use a dynamic CSA for this part [12], which implements
these operations with logarithmic slowdown to its static version [7]. The dynamic
CSA actually handles a collection of texts, where insertions and deletions of
whole texts T are carried out in time O(|T|(¥ + t)).

The J-sampled tree exploits the property that suffix trees are self-similar,
SLINK(LCA (v,v")) = LCA(SLINK(v), SLINK(v')) whenever the expressions are
well defined. This means, roughly, that the tree structure below SLINK(v) con-
tains the tree structure below v. Because of this regularity it is possible to store
only a few sampled nodes instead of the whole suffix tree. A §-sampled tree S,
from a suffix tree 7 of ©(n) nodes, chooses O(n/d) nodes such that, for each
node v, node SLINK'(v) is sampled for some i < 6. Such a sampling can be
obtained by choosing nodes with SDEP(v) =s/2 0 such that there is another

node v for which v = SLINK®/?(v/). For such a sampling Lemma 1 holds, where
LCSA(v,v") is the lowest common sampled ancestor of v and v':

Lemma 1. Let v,v" be nodes such that SLINK"(LCA (v,v")) = ROOT, and let
d=min(d,r +1). Then _ _
SDEP(LCA(v,v")) = maxo<i<q{i + SDEP(LCSA(SLINK'(v), SLINK" (v')))}.

By itself however this property leads to an entangled loop of operations, because
LCA depends on SLINK and SLINK(v) = LCA(¢)(v;), ¥ (v,)) depends on LCA.
Using CSAs and observing that LCA (v, v") = LCA (min{v;, v} }, max{v,,v.}) we
can simplify this equation to SDEP(LCA (v,v")) = maxo<i<q{i + SDEP(LCSA(
¢ (min{vr, v7}), " (max{u,, v;})))}
Therefore the kernel operations can be computed as:

SDEP(v) = SDEP(LCA (v,v)) = maxo<;<q{i+SDEP(LCSA (¢ (v;), ¥ (v,)))}

LCA(v,v") = LF(v[0..i — 1], LCSA(¢*(min{v;, v} }), 3" (max{v,, v.})))
from which SLINK is obtained as well. The 7 in the last equation is the one that
maximizes SDEP(LCA (v,v")). Operation PARENT(v) is easily computed on top
of LCA. These operations take time O((¥ +t)d), except that SDEP takes O(¥?).



Note that we have to solve LCSA. This requires to solve LCAg, that is,
LCA queries on the sampled tree S, and also to map nodes to sampled nodes
using operation LSA (see later). The sampled tree also needs to solve PARENTg
and store SDEP7. The rest is handled by the CSA.

For the dynamic version, we first show how the suffix tree 7 changes upon
insertion and deletion of texts T to the collection. Then we show how to maintain
the sampling properties of S under those updates of the (virtual) 7. This will
require some more data to be stored in the sampled nodes. Finally, we will make
use of a dynamic parentheses representation for the sampled tree, which will
already give us LCAg and PARENTg, as well as a way to associate data to
nodes and insert/delete nodes. Note that we just have to show how to provide
this basic tree functionality, as the remaining operations are obtained as in the
static version.

To support TDEP, however, they add other O(n/d) nodes to the sampling,
such that for any node v the node PARENT’ (v) is sampled, for some 0 < j <
6. We have not found a way to efficiently maintain this second sampling in
a dynamic scenario. As a consequence, our dynamic FCST does not support
operation TDEP nor those that require it [9]: LAQT and LAQS. The basic
navigation operations FCHILD and NSIB also require TDEP, but we will present
a different idea that solves them together with CHILD and a generalization of it,
using just the CSA.

Mapping between the CSA and the sampled tree. For every node v of
the sampled tree we need to obtain the corresponding interval [v;,v,]. On the
other hand, given a CSA interval [v;,v,| representing node v of 7, the lowest
sampled ancestor LSA (v) gives the lowest sampled tree node containing v. With
LSA we can compute LCSA(v,v") = LCAg(LSA(v), LSA(v")).

In this paper we introduce a new method to implement these mappings that
is efficient and simpler than the one presented in the static version [9].

4 Updating the Suffix Tree and Its Sampling

In this section we explain how to modify a suffix tree to reflect changes caused
by inserting and removing a text 7" to/from the suffix tree.

The CSA of Mékinen et al. [11], on which we build, inserts 7" in right-to-left
order. It first determines the position of the new terminator® and then uses LF
to find the consecutive positions of longer and longer suffixes, until the whole
T is inserted. This right-to-left method perfectly matches with Weiner’s algo-
rithm [13] to build the suffix tree of T it first inserts suffix T'[i + 1..] and then
suffix T'[i..], finding the points in the tree where the node associated to the new
suffix is to be created if it does not already exist. The node is found by using
PARENT until the WEINERLINK operation returns a non-empty interval. This

® This insertion point is arbitrary in that CSA, thus there is no order among the texts.
Moreover, all the terminators are the same in the CSA, yet it can be easily modified
to handle different terminators.



requires one PARENT and one WEINERLINK amortized operation per symbol
of T. This algorithm has the important invariant that the intermediate data
structure is a suffix tree. Hence, by carrying it out in synchronization with the
CSA insertion algorithm, we can use the current CSA to implement PARENT
and WEINERLINK.

To maintain the property that the intermediate structure is a suffix tree,
deletion of a text 1" must proceed by first locating the node of 7 that corresponds
to T', and then using SLINKs to remove all the nodes corresponding to its suffixes
in 7. We must simultaneously remove the leaves in the CSA (Mé&kinen et al.’s
CSA deletes a text right-to-left as well, but it is easy to adapt to use ¥ instead
of LF to do it left-to-right).

We now explain how to update the sampled tree S whenever nodes are in-
serted or deleted from the (virtual) suffix tree 7. The sampled tree must main-
tain, at all times, the property that for any node v there is an i < § such that
SLINK'(v) is sampled. The following concept from Russo et al. [14] is fundamen-
tal to explain how to obtain this result.

Definition 1. The reverse tree T" of a suffix tree T is the minimal labeled
tree that, for every node v of T, contains a node v denoting the reverse string

of the path-label of v.

We note we are not maintaining nor sampling 7 %, we just use it as a conceptual
device. Fig. 2 shows a reverse tree. Observe that since there is a node with path-
label ab in T there is a node with path-label ba in 7. We can therefore define
a mapping R that maps every node v to v®. Observe that for any node v of
T, except for the ROOT, we have that SLINK(v) = R~ (PARENT(R(v))). This
mapping is partially shown in Figs. 1 and 2 by the numbers. Hence the reverse
tree stores the information of the suffix links. By HEIGHT(v!?) we refer to the
distance between v and its farthest descendant leaf. For a regular sampling we
choose the nodes for which TDEP(v?) =;5,5 0 and HEIGHT(vf) > §/2. This
is equivalent to our sampling rules on 7 (Section 3): Since the reverse suffixes
form a prefix-closed set, 77 is a non-compact trie, i.e. each edge is labeled by a
single letter. Thus, SDEP(v) = TDEP(v%). The rule for HEIGHT (v%) is obviously
related to that on SLINK(v) by R. See Fig. 2 for an example of this sampling.
Likewise, stating that there is an i < § for which SLINK’(v) is sampled is the
same as stating that there is an i < ¢ for which TDEP(PARENT' (v71)) =5/2 0 and
HeicuT(PARENT' (vF)) > §/2 . Since TDEP(PARENT' (vF)) = TDEP(v) — i,
the first condition holds for exactly two #’s in [0, d[. Since HEIGHT is strictly
increasing the second condition holds for sure for the largest i. Notice that since
every sampled node has at least J/2 descendants that are not sampled, this
means that we sample at most |4n/0| nodes from a suffix tree with < 2n nodes.
Notice that whenever a node is inserted or removed from a suffix tree it never
changes the SDEP of the other nodes in the tree, hence it does not change any
TDEP in 7. This means that whenever the suffix tree is modified the only
nodes that can be inserted or deleted from the reverse tree are the leaves. In 7°
this means that when a node is inserted it does not break a chain of suffix links;



it is always added at the beginning of such a chain. Weiner’s algorithm works
precisely by appending a new leaf to a node of 7.

Assume that we are using Weiner’s algorithm and decide that the node X.v
should be added and we know the representation of node v. All we need to do
to update the structure of the sampled tree is to verify that if by adding (X.v)
as a child of v in T we increase the HEIGHT of some of ancestor, in 7%, that
will now become sampled. Hence we must scan upwards in 77 to verify if this
is the case. Notice that we already carry out this scanning as a side effect of
computing SLINK(v), which also gives us the required SDEP information. Also,
we do not need to maintain HEIGHT values. Instead, if the distance from (X.v)f
to the closest sampled node (v/)% is exactly 6/2 and TDEP((v')f) =55 0, then
we know that v' meets the sampling condition and we sample it.

Deleting a node (i.e. a leaf in 7 ®) is slightly more complex and involves some
reference counting. This time assume we are deleting node X.v, again we need to
scan upwards, this time to decide whether to make a node non-sampled. However
SDEP(v) — SDEP(v') < §/2 is not enough, as it may be that HEIGHT (v'f) > §/2
because of some other descendant. Therefore every sampled node v’ counts how
many descendants it has at distance §/2. A node becomes non-sampled only when
this counter reaches zero. Insertions and deletions of nodes in 7 must update
these counters, by increasing/decreasing them whenever inserting/deleting a leaf
at distance exactly /2 from nodes.

Hence to INSERT or DELETE a node requires O((¥ + t)d) time, plus the
time to manipulate the structure that holds the topology of S: we need to carry
out insertions/deletions of nodes, while maintaining information associated to
them (SDEP, reference counts). Section 5.2 shows that those operations do not
dominate the time O((¥ + t)d) needed to maintain the sampling conditions.

5 Dynamic Fully-Compressed Suffix Trees

In this section we present the compact data structures we use and create to
handle our dynamic structures: the CSA, the sampled tree, and the mappings.

5.1 Dynamic Compressed Suffix Arrays

To maintain a dynamic CSA we use the following result by Gonzélez et al. [12],
which is an improvement upon those of Mékinen et al. [11]:

Theorem 1. A dynamic CSA over a collection C of texts can be stored within
nHy(C) +o(nlogo) bits, for any k < alog,(n) —1 and any constant 0 < o < 1,
supporting all the operations with times t = ¥ = O(((log, logn)~! + 1)logn),
@ = O((log, logn)log® n), and inserting/deleting texts T in time O(|T|(t +W)).

Note that for a collection with p texts it is necessary to store the positions
of the texts in A. This requires O(plogn) bits but it is not an issue unless the
texts are very short [11].



Therefore, the problem of maintaining a dynamic CSA is already solved,
except that we promised to support operation CHILD7 (and some derivatives)
directly on the CSA. Indeed, CHILD7 (v, X)) can be easily computed in O(P logn)
time by binary searching for the interval of v = [v;, v,.] formed by those v" where
LETTER(v', SDEP(v) + 1) = X. Similarly, FCHILD(v) can be determined by
computing X = LETTER(v;, SDEP(v) + 1) and then CHILD7 (v, X). To compute
NS1B(v) the process is similar: If PARENT(v) = [v],v]] and v]. > v,, then we
compute X = LETTER(v). + 1, SDEP(v) + 1) and do CHILD7 (v, X). All the time
complexities are thus dominated by that of CHILD7.

Now we show how CHILD7 can be computed in a more general and efficient
way. The generalized branching for nodes v; and vy consists in determining the
node with path-label vy.v5 if it exists. A simple solution is to binary search the
interval of vy for the sub-interval of the v"’s such that )" (v") € vg, where m =
SDEP(vy1). This approach requires O(®logn) time and it was first considered
using CSA’s by Huynh et al. [15]. Thus we are able to generalize CHILD7 (v, X),
which uses vy as the sub-interval of A of the suffixes starting with X.

This general solution can be improved by noticing that we are using SLINK
at arbitrary positions of the CSA for the binary search. Recall that SLINK® is
solved via A and A~'. Thus, we could sample A and A~! regularly so as to
store their values explicitly. That is, we explicitly store the values A[jd] and
A~1Y[j4] for all j. To solve a generalized branching, we start by building a table
of ranges D[0] = vy and D[i] = LF(v1[m — i.m — 1],v2), for 1 < ¢ < 4. If
m < ¢ the answer is D[m]. Otherwise, we binary search the interval of vy,
accessing only the sampled elements of A. To determine the branching we should
compute ™ (j6) = A~L[A[jd] +m] for some 5§ values in v1. To use the cheaper
sampled A~! as well, we need that A[jd] +m be divisible by 4, thus we instead
compute ™ for m’ = | (A[j8] +m)/8]6 — A[j8]. Hence instead of verifying that
Y™(j8) € vy, we verify that ™ € D[m — m/]. After this process we still have
to binary search an interval of size O(¢), which is carried out naively.

The overall process requires time O(® + (¥ + t)J) to access the last letters
of v1 and build D, plus O((logn)log(n/d)) for binary searching the samples;
plus O(®logd) for the final binary searches. We have assumed O(logn) time to
access the sampled A and A~! values in a dynamic scenario, whereas in a static
scenario® it would be O(1).

In fact in a dynamic scenario we do not store exactly the A[jd] values; instead
we guarantee that for any k there is a k' such that k — 0 < k' < k and A[K'] is
sampled, and the same for A~'. Still the sampled elements of A and the m/ to use
can be easily obtained in O(logn) time. Those sampled sequences are not hard to
maintain. For example, Mékinen et al. [11, Sec. 7.1 of journal version] describes
how to maintain A=! (called Sc in there), and essentially how to maintain A
(called S4 in there; the only missing point is to maintain approximately spaced
samples in A, which can be done exactly as for A71).

6 This speedup immediatly improves the results of Huynh et al. [15].



5.2 Dynamic Sampled Trees

The sampled tree contains only O(n/d) nodes. As such it could be stored with
pointers using only O((n/d)logn) bits. Instead we use a dynamic parentheses
data structure given by Chan et al. [10], which already supports LCA.

Theorem 2. A list of O(n/d) balanced parentheses can be maintained in O(n/0)
bits supporting the following operations in O(logn) time:

— FINDMATCH(u), finds the matching parenthesis of u;

ENCLOSE(u), finds the nearest pair of matching parentheses that encloses u;
DOUBLEENCLOSE(u, u'), finds the nearest pair of parentheses that encloses
both uw and u';

INSERT(u, u'), DELETE(u,u’), inserts or deletes the matching parentheses
located at w,u’.

The ENCLOSE primitive computes PARENTg in the sampled tree. Likewise the
DOUBLEENCLOSE primitive computes the LCAg operation. In Section 5.3 we
explain how to update the parentheses sequence when a node becomes sampled
or non-sampled (i.e. , how to maintain the mapping with the CSA). Operations
RANK and SELECT on the sequence of parentheses S can also be used to store in-
formation on the nodes, by mapping between the parentheses sequence and their
preorder values and vice versa: RANK/(/(5,1) gives the preorder number of the
node identified by the opening parenthesis at S[i], while SELECT/(/ (S, j) identi-
fies the j-th node (in preorder) in S. RANK and SELECT over the parentheses
bitmap can be handled using the following theorem.

Theorem 3 ([11]). A bitmap of n bits supporting RANK, SELECT, INSERT and
DELETE in O(logn) time can be maintained in nHy + O(n/+/logn) bits.

Each node of S must also store its SDEP. This is not complicated because the
SDEP of the nodes of 7 does not change, at least using Weiner’s algorithm.
Thus we maintain a balanced tree where the SDEP values can be read, inserted,
and deleted, at the positions given by RANK/((S,7). When a node becomes
sampled /non-sampled we insert/delete in this sequence. A similar mechanism is
used to store the reference counts used for the sampling; in this case the stored
values can be modified as well. Thus O(logn) time suffices for simulating the
tree operations on S.

5.3 Mapping from CSA to the Sampled Tree and Back

The lowest sampled ancestor LSA is the way to map from the CSA to S. LSA
is computed by using an operation REDUCE(v), that receives the numeric rep-
resentation of leaf v and returns the position, in the parentheses representation
of the sampled tree, where that leaf should be. Consider for example the leaf
numbered 5 in Fig. 3. This leaf is not sampled, but in the original tree it appears
somewhere between leaf 4 and the end of the tree, more specifically between
parenthesis ')’ of 4 and parenthesis )’ of the ROOT. We assume REDUCE returns



the first parenthesis, i.e. REDUCE(5) = 4. In this case since the parenthesis we
obtain is a ’)” we know that LSA should be the parent of that node. Hence we
compute LSA as follows:

LSA() = {REDUCE(U) , if S[RQDUCE(v)] ="(
PARENT(REDUCE(v)) , otherwise

We present a new way to compute REDUCE in O(logn) time and o(n) bits
(cf. [9]). We use a bitmap B initiated with n bits all equal to 0. Now for every
node v = [v;, v,] we insert a 1 at SELECT( (B, v;) and after SELECT( (B, v;-), which
yields a bitmap with n 4+ O(n/é) bits. In our example it is 1000101101001, see
Fig. 3. Hence we have the following relation REDUCE(v) = RANK; (B, SELECT(
B,v+1)) — 1. We do not store B uncompressed, but rather using Theorem 3,
which requires only O((n/d)logn) bits as there are few 1’s in B. When a node
[vr, v] becomes sampled we insert matching parentheses at S[REDUCE(v;)] and
after S[REDUCE(v,)]. Also, it is necessary to insert the new 1’s in B as before.
Fig. 3 illustrates the effect of sampling b = [3, 6].

Updating S when a sampled node v becomes non-sampled is easy, as we can
obtain the parentheses u, u’ to delete. We must also delete the corresponding
1’s in Bj; note that the relative position of a 1 in a run of 1’s is irrelevant.
Therefore REDUCE can be computed in O(logn) time. According to our previous
explanation, so can LSA and LCSA, for leaves.

To map in the other direction, each node in the sampled tree must know
its corresponding interval [v;,v,.]. This is also easy to obtain from B. Let u
be the position in S of the opening parenthesis that identifies sampled node
v. The corresponding closing parenthesis is «' = FINDMATCH(u). Now v, =
RANK(B, SELECT1 (B, u + 1)) and v, = RANK((B, SELECT (B, + 1)) — 1.

6 Putting All Together

The following theorem summarizes our result.

Theorem 4. It is possible to represent the suffix tree of a dynamic text collection
within the space and time bounds given in Table 1. The space and the variables
U, @, t, can be instantiated to the values of Theorem 1 for 6 = w(log, n), or to
another dynamic CSA supporting 1, A, A=t LF, and T[A[v]], in times O(¥),
O(P), O(P), O(t), and O(log n), respectively, provided texts are inserted in right-
to-left order and deleted in left-to-right order within the given time bounds.

We note that Theorem 4 assumes that [logn] is fixed, and so is 4. This
assumption is not uncommon in dynamic data structures, even if it affects as-
sertions like that of pointers taking O(logn) bits. The CSA used in Theorem 1
can handle varying [logn] within the same worst-case space and complexities,
and the same happens with Theorem 3, which is used for the mapping bitmap
B. The only remaining part is the sampled tree. We discuss now how to cope
with it while retaining the same space and worst-case time complexities.

We use § = [logn]-[log, [logn]], which will change whenever [logn] changes
(sometimes will change by more than 1). Let us write 6 = A(¢) = ¢[log,, £]. We



maintain ¢ = [logn]. As S is small enough, we can afford to maintain three
copies of it: S sampled with 6, S~ with §— = A — 1), and ST sampled with
0t = A(l +1). When [logn] increases (i.e. n doubles), S~ is discarded, the
current S becomes S, the current ST becomes S, we build a new ST sampled
with A(¢ + 2), and ¢ is increased. A symmetric operation is done when [logn]
decreases (i.e. n halves due to deletions), so let us focus on increases from now
on. Note this can occur in the middle of the insertion of a text, which must be
suspended, and then resumed over the new set of sampled trees.

The construction of the new S* can be done by retraversing all the suffix
tree 7 deciding which nodes to sample according to the new §*. An initially
empty parentheses sequence and a bitmap B initialized with zeros would give
the correct insertion points from the chosen intervals, as both structures are
populated. To ensure that we consider each node of 7 once, we process the
leaves in order (i.e. v = [0,0] to v = [n — 1,n — 1]), and for each leaf v we
also consider all its ancestors [v, v,] (using PARENT7) as long as v, = v. For
each node [v,v,] we consider, we apply SLINK at most 6T times until either
we find the first node v/ = SLINK'([v;,v,]) which either is sampled in S*, or
SDEP(v') =5+ /2 0 and 7 > 61 /2. If v was not sampled we insert it into ST, and
in both cases we increase its reference count if i = §+/2 (recall Section 4).

All the 61 suffix links in 7 are computed in O(§1 (¥ +t)) time, as they form
a single chain. Therefore the solution maintains the current complexities, yet
only in an amortized sense.

Deamortization can be achieved by the classical method of interleaving the
normal operations of the data structure with the construction of the new ST.
By performing a constant number of operations on the new ST for each inser-
tion/deletion operation over C, we can ensure that the new S will be ready in
time. The challenge is to maintain the consistency of the traversal of 7 while
texts are inserted/deleted.

As we insert a text, the operations that update 7 consist of insertion of
leaves, and possibly creation of a new parent for them. Assume we are currently
at node [v;, v, in our traversal of 7 to update S*. If a new node [v], v/.] we are
inserted is behind the current node in our traversal order (that is, v, < v, or
v, = v, and v] > v;), then we consider [v],v]] immediately; otherwise we leave
this for the moment when we will reach [v],v]] in our traversal. Recall from
Section 4 that those new insertions do not affect the existing SDEPs nor suffix
link paths, and hence can be considered independently of the current traversal
process. Similarly, deleted nodes that fall behind the current node are processed

immediately, and the others left for the traversal to handle it.

If ¢ decreases while we are still building ST, we can discard it even before
having completed its construction. Note that in general discarding a tree when ¢
changes involves freeing several data structures. This can also be done progres-
sively, interleaved with the other operations.



7 Conclusions

We presented the first dynamic fully-compressed representation of suffix trees
(FCSTs). Static FCSTs broke the ©(n) bits barrier of previous representations
at a reasonable (and in some cases no) time complexity penalty, while retaining
a surprisingly powerful set of operations. Dynamic FCSTs permit not only man-
aging dynamic collections, but also building static FCSTs within optimal space.
Hence the way is open to practical implementations of this structure, which can
run in main memory for very large texts.

We also gave some relevant results for the static case, as we improved or
simplified the operations REDUCE and CHILD. A challenge for future work is to
obtain operations TDEP, LAQT, and LAQS, which we were not able to maintain
in a dynamic scenario.
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