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JS	SECURITY VULNERABILITIES – BROWSER EXTENSIONS

*EmPoWeb:	Empowering	Web	Applications	with	Browser	Extensions, Dolière Francis Somé,	2019

Browser	extensions are	often	implemented	directly	in		JavaScript		
• Browser	extensions	execute	with	elevated	privileges	
• Web	apps	can	communicate	with	the	extensions	

executing	in	the	browser	via	the	Browser	API
• Malicious	Web	Apps	can	exploit	browser	extension	leaks	

to	obtain	user-sensitive	data	

EmPoWeb* found	often	than	100 leaks	in	JS	browser	extensions



JS	SECURITY VULNERABILITIES – BROWSER EXTENSIONS

EmPoWeb* found	often	than	100 leaks	in	JS	browser	extensions

It	uses	a	simple	syntactic	analysis.	It	explicitly	looks	for	
expressions	with	a	fixed	form:		

chrome.cookies.getAll
chrome.cookies.remove

But there	are	multiple	other	ways	to	access	these	
values	that	would	not	be	caught	by	this	analysis	

SIMPLE SYNTACTIC ANALYSIS ARE NOT ENOUGH!



OBFUSCATED JS	LEAK

Implicit	Information	flow	via	a	property	descriptor

Leaking	1	bit



OBFUSCATED JS	LEAK

Implicit	Information	flow	via	prototype	inheritance

Leaking	1	bit



OBFUSCATED JS	LEAK

Bit	by	bit,	we	can	leak	all	bits	



OBFUSCATED JS	LEAK

And	now	we	can	learn:
chrome.cookies.remove



OBFUSCATED JS	LEAK

Take-home	message	

Malicious	code can	exploit	corner	case behaviors of	the	
JavaScript semantics	to	encode	sophisticated	information	flow

We	need	to	do	better	than	
a	simple	syntactic	analysis!
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VERIFICATION VS BUG-FINDING
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Program	property =	set	of	“behaviors”		

Verification:	verifying	a	given	program	P	with	respect	to	
a	given	property	S	means	proving	that	all	the	behaviors	
of	P are	contained	in	S
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Program	property =	set	of	“behaviors”		

Bug	Finding:	debugging	a	program	P	with	respect	to	a	given	
property	S	means	finding	a	behavior	of	P	that	is	not	in	S



VERIFICATION VS BUG-FINDING
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Verification

Hard:	for/all

Bug-finding

Easy:	exists
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Question:	How	do	we	define	the	set	of	behaviors?	

?
Depending	on	how	we	define	the	set	of	allowed	
behaviors,	we	get	different	classes	of	properties.		
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Safety	Properties:	Nothing	bad ever	happens

Leslie
Lamport

Liveness	Properties:	Something	good	eventually	happens
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Liveness	Properties:	Something	good	eventually	happens

Safety	Properties:	Nothing	bad ever	happens
• Type	Safety
• Memory	Safety	(no	null	pointer	exceptions)
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Liveness	Properties:	Something	good	eventually	happens
• Termination	
• Absence	of	memory	leaks	

Safety	Properties:	Nothing	bad ever	happens
• Type	Safety
• Memory	Safety	(no	null	pointer	exceptions)
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Program	property =	set	of	“behaviors”		

Traces

Trace	property =	set	of	program	traces

HOW DO WE FORMALLY DEFINE PROGRAM TRACES?



OPERATIONAL SEMANTICS - WHILE LANGUAGE

Syntax of While

Gordon
Plotkin

Small-Step
Operational	
Semantics



OPERATIONAL SEMANTICS - WHILE LANGUAGE

Syntax of While Small-step	Transition

State	=	Variable	Store
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A	SIMPLE WHILE LANGUAGE - SEMANTICS
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Division	by	0	generates	
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Trace	property =	set	of	program	traces

Program	Trace =	?
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Trace	property =	No	division	by	0
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Trace	property =	Termination
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Tx0 =	Programs	that	terminate	with	x	set	to	0

T0 =	Programs	that	terminate	with	a	all variables	set	to	0
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Trace	Properties

Safety	Properties

State	Properties

Liveness	Properties
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J.	Meseguer

J.	Goguen

Security	Labeling Security	Labeling
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Non-Interference	is	a	2-trace property



INFORMATION FLOW BUG
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A	pair	of	stores															that	prove	that:	



HYPER-PROPERTIES
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2-Trace	Properties:	Properties	of	2	traces
• Non-Interference
• Dependency

N-Trace	Properties:	Meta-dependencies

F.	Schneider



PROGRAM PROPERTIES - SUMMARY
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Trace	Properties

Safety	Properties

State	Properties

Liveness	Properties

Hyper	Properties
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SELF-COMPOSITION – THE MAIN IDEA
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Idea:	Reduce	non-interference	to	a	safety	property by	
transpiling the	given	program

- a	safety	property that	only	depends	on	Γ

- a	transpiler that	computes	the	self-composition	of	s	

G.	Barthes

P.	D’Argenio

T.	Rezk
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Idea:	Reduce	non-interference	to	a	safety	property by	
transpiling the	given	program

Why?	We	can	use	an	existing	analysis	to	check	the	
safety	property		instead	of	building	a	new	analysis	from	
scratch	to	check	non-interference!

SCALABLE PROGRAM ANALYSES ARE HARD TO
DESIGN AND IMPLEMENT,	ESPECIALLY WHEN

TARGETING REAL-WORLD LANGUAGES

WE ARE GOING TO USE SYMBOLIC EXECUTION
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l := h 
assume(l1 = l2); 
l1 := h1; 
l2 := h2; 
assert(l1 = l2)

Does	the	assertion	hold?

WE DON’T HAVE TO KNOW!	WE CAN USE
SYMBOLIC EXECUTION…

SELF-COMPOSITION – EXAMPLE 1
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l := h 

assume(l1 = l2); 
l1 := h1; 
l2 := h2; 
assert(l1 = l2)

We	are	going	to	execute	the	
generated	program	symbolically

Instead	of	using	concrete	values,	
we	use	symbolic	variables

SELF-COMPOSITION – EXAMPLE 1
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l := h 

assume(l1 = l2); 
l1 := h1; 
l2 := h2; 
assert(l1 = l2)

True, [ l1!#l1, h1!#h1, l2!#l2, h2!#h2]  

Path	Condition: conjunction	of	all	the	
expressions	on	which	the	execution	has	
branched	before	reaching	the	current	
execution	point	

Symbolic	Store

SELF-COMPOSITION – EXAMPLE 1
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l := h 

assume(l1 = l2); 
l1 := h1; 
l2 := h2; 
assert(l1 = l2)

True, [ l1!#l1, h1!#h1, l2!#l2, h2!#h2]  
assume(l1 = l2) 

#l1=#l2, [ l1!#l1, h1!#h1, l2!#l2, h2!#h2]  

#l1=#l2, [ l1!#h1, h1!#h1, l2!#l2, h2!#h2]  

l1 := h1

#l1=#l2, [ l1!#h1, h1!#h1, l2!#h2, h2!#h2]  

l2 := h2
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l := h 

assume(l1 = l2); 
l1 := h1; 
l2 := h2; 
assert(l1 = l2)

#l1=#l2, [ l1!#h1, h1!#h1, l2!#h2, h2!#h2]  

l2 := h2

assert(l1 = l2)

(#l1 = #l2) ⇒ (#h1 = #h2) Valid?
(#l1 = #l2) ∧ (#h1 ≠ #h2) SAT?
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l := h 

assume(l1 = l2); 
l1 := h1; 
l2 := h2; 
assert(l1 = l2)

#l1=#l2, [ l1!#h1, h1!#h1, l2!#h2, h2!#h2]  

l2 := h2

assert(l1 = l2)

(#l1 = #l2) ∧ (#h1 ≠ #h2) SAT?

YES! [ #l1!0, #h1!0, #l2!0, #h2!1] 



SELF-COMPOSITION – EXAMPLE 2
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if(h){ 
l := 1 

} else { 
skip

}    

assume(l1 = l2); 
if (h1) { l1 := 1 } else { skip };   
if (h2) { l2 := 1 } else { skip }; 
assert(l1 = l2)
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assume(l1 = l2); 
if (h1) { 
l1 := 1 

} else { skip };   
if (h2) { 
l2 := 1 

} else { skip }; 
assert(l1 = l2)

True, [ l1!#l1, h1!#h1, l2!#l2, h2!#h2]  

assume(l1 = l2) 

#l1=#l2, [ l1!#l1, h1!#h1, l2!#l2, h2!#h2]  
if (h1) 

#h1 = 0 #h1 ≠ 0
…

Next	Slide
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assume(l1 = l2); 
if (h1) { 
l1 := 1 

} else { skip };   
if (h2) { 
l2 := 1 

} else { skip }; 
assert(l1 = l2)

if (h1) #h1 = 0

#h1 ≠ 0

…

#l1=#l2 ∧ #h1 ≠ 0, 
[ l1!#l1, h1!#h1, l2!#l2, h2!#h2]  

l1 := 1 

#l1=#l2 ∧ #h1 ≠ 0, 
[ l1!1, h1!#h1, l2!#l2, h2!#h2]  



SELF-COMPOSITION – EXAMPLE 2
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assume(l1 = l2); 
if (h1) { 
l1 := 1 

} else { skip };   
if (h2) { 
l2 := 1 

} else { skip }; 
assert(l1 = l2)

l1 := 1 

#l1=#l2 ∧ #h1 ≠ 0, 
[ l1!1, h1!#h1, l2!#l2, h2!#h2]  

if (h2) #h2 = 0

#h2 ≠ 0

…

#l1=#l2 ∧ #h1 ≠ 0 ∧ #h2 ≠ 0, 
[ l1!1, h1!#h1, l2!#l2, h2!#h2]  
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assume(l1 = l2); 
if (h1) { 
l1 := 1 

} else { skip };   
if (h2) { 
l2 := 1 

} else { skip }; 
assert(l1 = l2)

if (h2) #h2 = 0

#h2 ≠ 0

…

#l1=#l2 ∧ #h1 ≠ 0 ∧ #h2 ≠ 0, 
[ l1!1, h1!#h1, l2!#l2, h2!#h2]  

l2 := 1 

#l1=#l2 ∧ #h1 ≠ 0 ∧ #h2 ≠ 0, 
[ l1!1, h1!#h1, l2!1, h2!#h2]  
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assume(l1 = l2); 
if (h1) { 
l1 := 1 

} else { skip };   
if (h2) { 
l2 := 1 

} else { skip }; 
assert(l1 = l2)

l2 := 1 

#l1=#l2 ∧ #h1 ≠ 0 ∧ #h2 ≠ 0, 
[ l1!1, h1!#h1, l2!1, h2!#h2]  

assert(l1 = l2)

#l1=#l2 ∧ #h1 ≠ 0 ∧ #h2 ≠ 0 ∧ 1 ≠ 1 SAT?

NO!	No	bug	found	

LET’S TRY ANOTHER PATH
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assume(l1 = l2); 
if (h1) { 
l1 := 1 

} else { skip };   
if (h2) { 
l2 := 1 

} else { skip }; 
assert(l1 = l2)

if (h2) #h2 ≠ 0

#h2 = 0

…

#l1=#l2 ∧ #h1 ≠ 0 ∧ #h2 = 0, 
[ l1!1, h1!#h1, l2!#l2, h2!#h2]  

skip

#l1=#l2 ∧ #h1 ≠ 0 ∧ #h2 = 0, 
[ l1!1, h1!#h1, l2!#l2, h2!#h2]  



SELF-COMPOSITION – EXAMPLE 2
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assume(l1 = l2); 
if (h1) { 
l1 := 1 

} else { skip };   
if (h2) { 
l2 := 1 

} else { skip }; 
assert(l1 = l2)

skip

#l1=#l2 ∧ #h1 ≠ 0 ∧ #h2 = 0, 
[ l1!1, h1!#h1, l2!#l2, h2!#h2]  

assert(l1 = l2)

#l1=#l2 ∧ #h1 ≠ 0 ∧ #h2 = 0 ∧ 1 ≠ #l2 SAT?
YES! [ #l1!0, #h1!1, #l2!0, #h2!0 ] 
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True, [ l1!#l1, h1!#h1, l2!#l2, h2!#h2]  

#h1 = 0, 
[ l1!1, h1!#h1, 
l2!#l2, h2!#h2]  

#h1 = 0

#h1 ≠ 0, 
[ l1!#l1, h1!#h1, 
l2!#l2, h2!#h2]  

#h1 ≠ 0

#h1 = 0 ∧ #h2 = 0, 
[ l1!#l1, h1!#h1, 
l2!#l2, h2!#h2]  

#h1 = 0 ∧ #h2 ≠ 0, 
[ l1!#l1, h1!#h1, 
l2!1, h2!#h2]  

#h1 = 0 ∧ #h2 = 0, 
[ l1!1, h1!#h1, 
l2!#l2, h2!#h2]  

#h1 = 0 ∧ #h2 ≠ 0, 
[ l1!1, h1!#h1, 
l2!1, h2!#h2]  

#h2 = 0 #h2 ≠ 0 #h2 = 0 #h2 ≠ 0
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#h1 = 0 
∧ 

#h2 = 0 

#h1 = 0 
∧ 

#h2 ≠ 0

#h1 ≠ 0 
∧ 

#h2 = 0 

#h1 ≠ 0 
∧ 

#h2 ≠ 0

If	we	find	a	bug,	we	know	that	
the	program	is	not	secure		

But	what	if	we	do	not	find	a	bug?	

Is	the	program	secure?	
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#h1 = 0 
∧ 

#h2 = 0 

#h1 = 0 
∧ 

#h2 ≠ 0

#h1 ≠ 0 
∧ 

#h2 = 0 

#h1 ≠ 0 
∧ 

#h2 ≠ 0

But	what	if	we	do	not	find	a	bug?	

The	program	is	secure	if	we	
covered	all	the	possible	
execution	paths

How	can	we	know	that?	
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#h1 = 0 
∧ 

#h2 = 0 

#h1 = 0 
∧ 

#h2 ≠ 0

#h1 ≠ 0 
∧ 

#h2 = 0 

#h1 ≠ 0 
∧ 

#h2 ≠ 0

How	do	we	know	if	we	covered	
all	possible	execution	paths?

The	disjunction	of	all	final	path	
conditions	must	be	True

∨ ∨ ∨ = True
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z := 1;
if(h){ x := 1 }      
else { skip }; 

if(!h) { x := z }
else { skip }; 

l := x + y    

assume(l1=l2 and z1=z2 and y1=y2) 
z1 := 1;
if(h1){ x1 := 1 }      
else { skip }; 

if(!h1) { x1 := z1 }
else { skip }; 

l1 := x1 + y1;
z2 := 1;
if(h2){ x2 := 1 }      
else { skip }; 

if(!h2) { x2 := z2 }
else { skip }; 

l2 := x2 + y2;
assert(l1=l2 and z1=z2 and y1=y2)      
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#h1 = 0 
∧ 

#h2 = 0 

#h1 = 0 
∧ 

#h2 ≠ 0

#h1 ≠ 0 
∧ 

#h2 = 0 

#h1 ≠ 0 
∧ 

#h2 ≠ 0

[ l1!1+#y1, l2!1+#y2, h1!#h1, h2!#h2,
y1!#y1, y2!#y2, z1!#z1, z2!#z2 ]  

The	final	symbolic	store	is	always	
the	same!

What	is	the	SAT	query?
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Idea:	Reduce	non-interference	to	a	safety	property by	
transpiling the	given	program

- a	safety	property that	only	depends	on	Γ

- a	transpiler that	computes	the	self-composition	of	s	



SELF-COMPOSITION – FORMALLY
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SELF-COMPOSITION – FORMALLY
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CONCOLIC SYMBOLIC EXECUTION – THE MAIN IDEA
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Idea:	Execute	the	program	concretely	and	symbolically	
at	the	same	time

Why?	
• Symbolic	execution	is	often	too	expensive…
• Back-end	constraint	solvers	sometimes	(often!)	cannot	

find	the	answer:	UNKNOWN	

P.	Godefroid
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Input0 =	Pick random	vector
Coverage	=	False
i =	0
While (Inputi ≠	NULL)	{
(RESi,	PCi)=	Run	Program	with	Inputi
Coverage	=	Coverage	∨PCi
Inputi+1∈Models(￢Coverage)
i =	i+1
}

Concolic Testing:
Main	Algorithm
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z := 2*y; 
if (z = x) { 
if (x > y+10) { 
assert(false)

} else { skip };
} else { skip }  

Inputs0 = [ x!22,y!7 ]
(RES1, PC1) = (OK, (x ≠ 2*y))
Coverage = (x ≠ 2*y) 
Inputs1 = [x!2,y!1 ]  

Step	1:
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z := 2*y; 
if (z = x) { 
if (x > y+10) { 
assert(false)

} else { skip };
} else { skip }  

Inputs1 = [x!2,y!1 ]  
(RES2, PC2) = (OK,(x =	2*y)∧(x<= y+10))
Coverage = (x ≠ 2*y)∨

((x =	2*y)∧(x<= y+10))
Inputs2 = [x!30,y!15 ]  

Step	2:
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z := 2*y; 
if (z = x) { 
if (x > y+10) { 
assert(false)

} else { skip };
} else { skip }  

Inputs2 = [x!30,y!15 ]  
(RES3, PC3) = (FAIL,(x =	2*y)∧(x>y+10))
Coverage = (x ≠ 2*y)∨

((x =	2*y)∧(x<=y+10))∨
((x = 2*y)∧(x>y+10))

Inputs2 = NULL

Step	3:
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A	LOT MORE TO COVER…

1. Symbolic	execution	with	data	structures
• Lazy-Initialization	
• Data-structure	unfolding

2.	Declassification

3.	Other	Security	Properties:	Confinement	

4.	Invariants	and	verification
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Information
Flow

Control

Web	
Programs

Symbolic	
Execution

Bounded	model	checking	
for	TypeScript	via	symbolic	
execution	and	compilation

Code-stepping	regular	
expressions	in	the	browser

Building	a	symbolic	execution	
engine	for	your	favorite	
programming	language
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Information
Flow

Control

Web	
Programs

Symbolic	
Execution

Bounded	model	checking	
for	JavaScript	regular	
expressions	

Symbolically	debugging	secure	
information	flow	in	the	browser

And	more… Check	my	website:

http://web.ist.utl.pt/jose.fragoso
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Information
Flow

Control

Web	
Programs

Symbolic	
Execution

Potential	collaboratons	with:


