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ABSTRACT

There has been a growing interest, over the last few years, in the

topic of automated program repair applied to fixing introductory

programming assignments (IPAs). However, the datasets of IPAs

publicly available tend to be small and with no valuable annotations

about the defects of each program. Small datasets are not very useful

for program repair tools that rely on machine learning models.

Furthermore, a large diversity of correct implementations allows

computing a smaller set of repairs to fix a given incorrect program

rather than always using the same set of correct implementations

for a given IPA. For these reasons, there has been an increasing

demand for the task of augmenting IPAs benchmarks.

This paper presentsMultIPAs, a program transformation tool

that can augment IPAs benchmarks by: (1) applying six syntactic

mutations that conserve the program’s semantics and (2) applying

three semantic mutilations that introduce faults in the IPAs. More-

over, we demonstrate the usefulness of MultIPAs by augmenting

with millions of programs two publicly available benchmarks of

programs written in the C language, and also by generating an

extensive benchmark of semantically incorrect programs.
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1 INTRODUCTION

The increasing demand for programming education has given rise

to all kinds of online evaluations, such as Massive Open Online

Courses (MOOCs) [5] focused on introductory programming as-

signments (IPAs). Providing feedback to novice students in IPAs

requires substantial effort and time by the faculty. Therefore, au-

tomated program repair has become crucial to provide automatic

personalized feedback to each student [22]. Over the last few years,

several program repair tools [4, 5, 9, 21, 23] have exploited previ-

ously enrolled students to obtain diverse correct implementations

for each IPA. Given an incorrect student submission, these frame-

works find the most similar correct submission from previous years

to provide a minimal set of repairs to the student. Typically, having

a similar correct implementation allows computing a smaller set of

repairs to fix a given incorrect program rather than always using the

set of repairs needed to make the incorrect submission semantically

equivalent to a fixed reference solution. Furthermore, an increasing

body of research has focused on applying machine learning (ML)

models to automated program repair [2, 3, 6ś8, 11, 14, 16, 17, 20, 22].

These ML-based tools depend greatly on the existence of many

correct/incorrect programs to train their repair models. However,

in most cases, the publicly available benchmark sets [13, 18] of

students’ submissions for IPAs are small, i.e., only hundreds of sub-

missions. Hence, these benchmarks might not be sufficient to effec-

tively train an ML model. Additionally, another problem with some

real-world IPAs datasets is that sometimes there is no knowledge

about the number and types of defects present in each incorrect

student program, which can also negatively impact the training of

ML-based program repair tools.

Hence, there is an increasing demand for data augmentation

of program benchmarks to (1) achieve minimal sets of program

patches by having a more diverse collection of syntactically differ-

ent correct solutions and (2) have a more representative dataset of

programs to train ML-based program repair tools with labelled in-

correct programs. This data augmentation task aims to enlarge the

real-world datasets of students’ programs with more semantically

correct implementations for each IPA by syntactically mutating ex-

istent correct students’ submissions and to create a labelled dataset

of incorrect programs with the information about the number and

the type of the bugs present in each incorrect program.

Thus, this paper presentsMultIPAs, a tool that performs data

augmentation by syntactically mutating and/or semantically muti-

lating IPAs written in the C programming language. The main goal

of MultIPAs is to augment IPAs benchmarks with: (1) more seman-

tically correct implementations by applying six different syntactic

mutations to pre-existent correct implementations and (2) new se-

mantically incorrect programs by mutilating pre-existent correct
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implementations. MultIPAs stores the variable mapping between

the original correct implementation and the newmutated/mutilated

program. Moreover, for the newly generated set of incorrect pro-

grams, MultIPAs also stores the information about the bugs in

these programs. Later, these bug(s) annotations can be used to train

ML models.

Experimental results show thatMultIPAs can augment small-

sized publicly available benchmarks of IPAs, ITSP [23] and C-Pack-

IPAs [13], generating millions of mutated/mutilated programs. To

summarize, this paper makes the following contributions:

• We present MultIPAs, a program transformation framework

capable of augmenting small imperative program benchmarks

by performing six different syntactic program mutations and

three semantic program mutilations;

• MultIPAs is publicly available on GitHub: https://github.com/p-

morvalho/MultIPAs, with a demo video at https://arsr.inesc-

id.pt/ pmorvalho/MultIPAs-demo.html.

• MultIPAs keeps the information about the types and the number

of bugs present in each generated incorrect program, which can

be used to train ML-based program repair frameworks;

• MultIPAs produces a variable mapping between the original

program given as input and the mutated/mutilated program.

2 MULTIPAS

This section presentsMultIPAs, a new tool capable of augmenting

IPAs benchmark sets by applying syntactic mutations and semantic

mutilations to C programs. MultIPAs is divided into two mod-

ules: program mutator and program mutilator. The C programs are

parsed and the changes (program mutations and mutilations) hap-

pen at the AST level. Section 2.1 presents the six different syntactic

program mutations that MultIPAs can perform to change a pro-

gram syntax while preserving its semantics. Afterwards, Section 2.2

explains three different semantic program mutilations that intro-

duce semantic bugs in an IPA. Finally, Section 2.3 explains briefly the

variable mappings produced byMultIPAs.MultIPAs is publicly

available on GitHub: https://github.com/pmorvalho/MultIPAs and

there is also a demonstration video available at https://arsr.inesc-

id.pt/ pmorvalho/MultIPAs-demo.html.

2.1 Program Mutator

The goal of automated program repair when applied to IPAs is to

achieve the best possible set of repairs (i.e., program patches) to fix

a given student’s incorrect submission for a programming exercise.

The best repair is usually described as a minimal set of fixes required

to make the student’s program compliant with the test suite that de-

scribes the desired semantic behaviour for that specific IPA. To this

end, many program repair tools, such as Verifix [1, 5], try to align

the student’s submission’s control flow graph with another correct

submission’s control flow graph. Next, these frameworks propose a

set of syntactic patches to fix the incorrect program. Hence, apply-

ing program mutations to an IPAs benchmark increases the number

of different syntactic structures and allows program repair tools

to achieve smaller sets of repairs. For that reason,MultIPAs can

perform syntactic mutations to a program such that it preserves

the program semantics, i.e., both programs, the original and the

mutated, have the same behaviour.

The six syntactic program mutations available onMultIPAs are:

• M1 - Comparison Expression Mirroring (CEM):MultIPAs mirrors

one or several comparison expressions e.g. 𝑎 ≥ 𝑏 becomes 𝑏 ≤ 𝑎;

• M2 - If-else-statements Swapping (IES):MultIPAs swaps the if-

branch and the else-branch and negates the if-condition. This

operation is done only for simple if-else-statements, i.e., there

are no additional if-statements inside the else-branch;

• M3 - Increment/Decrement Operators Mirroring (IOM): MultIPAs

mirrors the two increment (and decrement) operators in the C

programming language (e.g. c++ and ++c), only when the return

value of the expression that contains the increment/decrement

operator is discarded e.g. the increment step of a for-loop;

• M4 - Variable Declarations Reordering (VDR): MultIPAs reorders

the variables’ declarations present in each code block. For this,

MultIPAs takes into account the dependencies between the

variables’ declarations, i.e. if a variable declaration depends on

other variables, this is done by computing all possible topological

orders of the variables’ declarations;

• M5 - For-2-While Translation (F2W): MultIPAs translates for-

loops into while-loops. Just in cases of for-loops that do not

contain any continue instructions;

• M6 - Variable Addition (VA):MultIPAs introduces a new dummy

variable declaration in the program. The mutated program does

not have the same set of variables as the original program.

Example 2.1. Consider the two programs in Listings 1 and 2

in the C programming language. Both programs are semantically

equivalent since both programs sum all the natural numbers from

1 to 𝑛 and print the current accumulated value in each iteration.

The program in Listing 2, the mutated program, is the result of

applying all the program mutations available onMultIPAs to the

program in Listing 1, the original program. Note that the compari-

son expression in the for-loop condition was mirrored (mutation

(1)). Mutation (2) is not applicable since there is no if-else-statement.

Regarding mutation (3), one can see that the increment step of the

for-loop was also mirrored, line 6 (resp. 9) in the original (resp. mu-

tated) program. Furthermore, the mutated program has a different

variable declaration order than the original program (mutation (4)).

Moreover, the for-loop was translated into a similar while-loop

corresponding to mutation (5). Lastly, a dummy variable y was

introduced in line 3 of the mutated program (mutation (6)).

1 int main(){

2 int n;

3 int i, s;

4 scanf("%d", &n);

5 s=0;

6 for(i=1; i<=n; i++){

7 s = s+i;

8 printf("%d\n",s);

9 }

10

11 printf("%d\n",s);

12 return 0;

13 }

Listing 1: Original program.

1 int main(){

2 int n, s, i, y;

3 scanf("%d", &n);

4 s=0;

5 i = 1;

6 while(n>=i){

7 s = s+i;

8 printf("%d\n",s);

9 ++i;

10 }

11 printf("%d\n",s);

12 return 0;

13 }

Listing 2: Mutated program.
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2.2 Program Mutilator

In the development of program repair tools, there are two main

concerns on using incorrect programs of IPAs datasets: (1) usually,

there is no knowledge of howmany errors are present in each buggy

student program; and (2) since the number of semantic errors on

each program is unknown, repair framework’s developers cannot

divide the set of the incorrect programs into subsets of programs

with a specific number of semantic errors (e.g., a subset for programs

with one semantic error, another subset for programs with two

semantic errors, etc.). Furthermore, dividing the dataset of incorrect

IPAs into subsets of different numbers or types of bugs can be

important to train ML-based program repair tools [2, 3, 11, 20].

Therefore, having a program mutilator that creates a dataset of

programs with a specific number of semantic bugs and only certain

kinds of bugs becomes crucial. This way, developers of program

repair tools’ can evaluate the scalability of their frameworks in

terms of the number of semantic errors present in each program

and train their tools to repair specific families of bugs.

Thus MultIPAs also contains a program mutilator module. This

program mutilator takes a set of students’ submissions for a given

IPA and alters each program to introduce 𝑛 errors, 𝑛 being passed

as a parameter by the user. The errors introduced byMultIPAs are

semantic mutilation which modifies the programs’ semantics. The

following three different program mutilations (bugs) are available

on MultIPAs:

• B1 - Wrong Comparison Operator (WCO): MultIPAs swaps an

expression’s comparison operators for some syntactically similar

operator. For example, swaps the operator < for <=.MultIPAs

can also swap > for >=, <= for <, >= for >, == for =, and != for ==;

• B2 - Variable Misuse (VM): MultIPAs swaps a variable in the

program by another variable of the same type. The resulting

mutilated program can be compiled successfully sinceMultIPAs

ensures that both variables are of the same type;

• B3 - Assignment Deletion (AD): MultIPAs deletes an assignment

expression in the program.

1 int main(){

2 int n;

3 int i, s;

4 scanf("%d", &n);

5 s=0;

6 for(i=1; i<=n; i++){

7 s = s+i;

8 printf("%d\n",s);

9 }

10

11 printf("%d\n",s);

12 return 0;

13 }

Listing 3: Original program.

1 int main(){

2 int n;

3 int i, s;

4 scanf("%d", &n);

5

6 for(i=1; i<n; i++){

7 s = s+i;

8 printf("%d\n",i);

9 }

10

11 printf("%d\n",s);

12 return 0;

13 }

Listing 4: Mutilated program.

Example 2.2. Consider the two programs in Listings 3 and 4

written in the C programming language. The program in Listing 3,

hereafter the original program, has been already presented in List-

ing 1. The program in Listing 4, hereafter the mutilated program,

is the result of applying all the program mutilations available in

MultIPAs. The first mutilation is located in line 6 of the mutilated

program where the operator <= was swapped by the operator <.

Furthermore, the variable misuse mutilation was performed in line

8. Lastly,MultIPAs removed the assignment expression of value

zero to variable s (line 5).

The first class of bugs, wrong comparison operator, is common

among novice programmers [18] and has been used to evaluate

ML-based program repair tools [3, 17]. The second family of bugs,

variable misuse, is also common among students as well as among

experienced programmers [10, 19]. This specific task has received

a lot of attention from the ML research community [2, 3, 20, 25].

Lastly, the assignment deletion bug is also common among stu-

dents [18]. In the previous example, it is likely for a novice student

to forget to initialize variable s.

Bug mapping. For each mutilated program generated,MultIPAs

stores the information about the location and the types of the bugs

introduced in the program. This information can help train ML-

based program repair frameworks.

2.3 Variable Mapping

Typically, semantic program repair tools [1, 5] repair an incorrect

program using a correct implementation for the same IPA. In order

to compare two programs, it is required a relation between both

sets of variables. For example, consider the programs presented

in Listings 3 and 4. In this case, having a mapping between both

programs’ variables lets the repair framework reason about which

program modifications it should perform to fix the faulty program.

Program modifications include the same variable being used in a

different comparison expression, the variable being initialized in

one program but not in the other one, etc. Moreover, the variable

mapping can also be helpful for the task of code adaption where the

repair framework tries to adapt all the variable names in a pasted

snippet of code, copied from another program or a Stack Overflow

post to the surrounding preexisting code [11].

Thus, every timeMultIPAs mutates or mutilates a program, a

mapping between the original program’s set of variables and the

mutated/mutilated program’s sets of variables is generated. This

variable mapping can help a program repair framework [5, 11] to

find a minimal repair.

Example 2.3. MultIPAs would produce the following variable

mapping between the set of variables of the programs in List-

ings 1 and 2: {int i: int i; int n : int n; int s : int s;

int y : UNK_VAR}. Moreover, for the program in Listings 3 and 4

the variable mapping would be: {int i: int i; int n : int

n; int s : int s}.

3 EVALUATION

The experimental results presented in this Section show the evalua-

tion of MultIPAs on two publicly available small-sized datasets of

IPAs: ITSP [23] and C-Pack-IPAs [13]. The evaluation consists of

usingMultIPAs to augment both benchmark sets by mutating or

mutilating all correct programs. Table 1 shows the overall results

of our evaluation. The first two columns in Table 1 show, for each

dataset and for each lab class, the number of IPAs (#IPAs column)
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Table 1: Number of programs that can be generated by MultIPAs using each different mutation or mutilation for two different

small datasets of IPAs: ITSP [23] and C-Pack-IPAs [13].

Mutations Mutilations (Bugs)

ITSP

Dataset [23]
#IPAs

#Correct

Submissions
M1 (CEM) M2 (IES) M3 (IOM) M4 (VDR) M5 (F2W) M6 (VA)

All

Mutations
B1 (WCO) B2 (VM) B3 (AD)

All

Bugs

Lab3 4 67 1.25E+03 9.90E+01 6.70E+01 4.74E+05 6.70E+01 1.34E+02 6.03E+06 1.86E+02 4.51E+03 1.51E+02 4.71E+04

Lab4 8 125 3.99E+04 2.22E+02 3.15E+02 8.02E+05 2.41E+02 2.30E+02 1.90E+11 9.93E+02 1.20E+04 4.16E+02 7.12E+05

Lab5 8 90 1.06E+04 1.59E+02 5.13E+02 3.78E+05 4.45E+02 1.80E+02 3.07E+12 5.24E+02 4.43E+03 3.78E+02 1.52E+05

Lab6 8 87 1.94E+04 1.29E+02 5.36E+03 1.12E+06 1.45E+03 1.74E+02 9.75E+13 5.52E+02 6.32E+03 5.70E+02 4.02E+05

Total 28 369 7.12E+04 6.09E+02 6.25E+03 2.77E+06 2.20E+03 7.18E+02 1.01E+14 2.26E+03 2.73E+04 1.52E+03 1.31E+06

Cx-Pack-IPAs

Dataset [13]
#IPAs

#Correct

Submissions
M1 (CEM) M2 (IES) M3 (IOM) M4 (VDR) M5 (F2W) M6 (VA)

All

Mutations
B1 (WCO) B2 (VM) B3 (AD)

All

Bugs

Lab02 10 316 1.04E+04 4.49E+02 4.88E+02 3.64E+06 4.07E+02 6.32E+02 1.72E+07 9.68E+02 9.71E+03 1.11E+03 2.93E+05

Lab03 7 145 3.21E+05 3.20E+02 1.09E+03 4.93E+04 6.07E+02 2.90E+02 1.48E+10 1.02E+03 4.94E+03 8.07E+02 3.94E+05

Lab04 8 192 2.83E+04 2.85E+02 1.97E+03 8.72E+03 1.28E+03 3.80E+02 1.93E+11 1.07E+03 5.58E+03 1.08E+03 2.39E+05

Total 25 653 3.59E+05 1.05E+03 3.54E+03 3.70E+06 2.29E+03 1.30E+03 2.08E+11 3.06E+03 2.02E+04 2.99E+03 9.26E+05

and the number of correct students’ submissions (#Correct Sub-

missions column). All of the experiments were conducted on an

Intel(R) Xeon(R) Silver computer with 4210R CPUs @ 2.40GHz,

using a memory limit of 64GB.

Mutating Programs. Table 1 shows the number of programs that

can be generated by MultIPAs when applying each individual

mutation described in Section 2.1. One can see that all the program

mutations are able to augment at least 100% of both benchmarks.

Furthermore, both mutations M1 (CEM), comparison expression

mirroring, and M4 (VDR), variable declarations reordering, are able

to augment both benchmarks with thousands of mutated programs.

These program mutations produce so many programs since the

IPAs in both benchmarks use more than one variable, and in several

programming exercises, the students need to compare the values

of different variables (comparison expressions). Hence,MultIPAs

computes all possible mirroring combinations of the comparison

expressions and all possible re-orderings of the variable declarations

that are valid. Lastly, if the user asksMultIPAs to perform all six

program mutations on both benchmarks, the number of mutated

programs reaches several billions of programs.

Mutilating Programs. Regarding the program mutilations, the

right-hand side of Table 1 shows the number of programsMultIPAs

can generate using each differentmutilation described in Section 2.2,

or all of them together. All the program mutilations are able to

generate a dataset with several thousands of incorrect programs.

Mutilation B2 (VM), variable misuse, is the mutilation that is able to

generate more incorrect programs since typically there are many

possibilities when MultIPAs is changing a variable occurrence for

another variable.

User Configuration. The number of programs that can be gener-

ated by MultIPAs can reach several million. Therefore, MultIPAs

has three flags available related to the total number of programs

that can be generated. By default, MultIPAs generates only 20%

of those programs. The user can choose a different percentage of

programs to be generated using the flag -p | –percentage_total-

_progs. Instead of generating all the programs, MultIPAs chooses

a sample of size p. The user can ask MultIPAs, with flag -info, to

print the total number of mutated/mutilated programs for a given

configuration of program mutations/mutilations.MultIPAs only

outputs the number of programs without generating them. If the

user desires all the programs and has the time and memory to gen-

erate all the possible mutated/mutilated programs, this can be done

using the flag -ea | –enumerate_all.

4 RELATED WORK

In the last few years, there has been a growing interest in data aug-

mentation by program transformation. Yu et al. [24] proposed to

apply several program transformations for big code data augmenta-

tion based on a pre-defined set of syntax-based rules to mutate pro-

grams written in Java. Liu and Zhong [12] proposed to extract Java

code samples from Stack Overflow, and mine repair patterns from

the extracted code samples. DeepBugs [17] also uses rule-based

mutations to build, and not to augment, a dataset of programs from

scratch to train its ML-based program repair tool. BugLab [3] is a

Python program repair framework that learns how to detect and fix

minor bugs. In order to train BugLab, Allamanis et al. [3] applied

four program mutations and four program mutilations, different

thanMultIPAs’s program mutations and mutilations, in order to

augment their benchmark of Python programs.

5 CONCLUSION

This paper introducesMultIPAs, an open-source framework for

augmenting benchmarks of introductory programming assignments

(IPAs). MultIPAs can generate semantically equivalent programs

by applying up to six different syntax mutations to a given program.

Furthermore,MultIPAs can also produce semantically incorrect

programs using three semantic program mutilations. Moreover,

MultIPAs saves the variable mappings between the original pro-

gram and the mutated/mutilated one and the information about

the bugs introduced in each program. Experiments on two publicly

available datasets of IPAs show that MultIPAs can augment with

millions of programs small-sized benchmarks of IPAs.

6 DATA AVAILABILITY STATEMENT

MultIPAs is publicly available in the ACM Digital Library [15].
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