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Abstract
We present a dynamical Monte Carlo model for heterogeneous atomic
recombination in terms of the theory developed by Fichthorn and Weinberg
(1991 J. Chem. Phys. 95 1090) to simulate a Poisson process. The transient
and steady-state solutions for the fractional surface coverage of reversible
and irreversible sites, which hold physisorbed and chemisorbed atoms,
respectively, are compared with the results from a phenomenological mean
field model. The effects of low and high activation energies for desorption
are investigated. It is observed that the results from the Monte Carlo
simulation are in excellent agreement with those obtained from the
phenomenological model in the limit of low occupation of adsorption sites.

1. Introduction

The study of the surface kinetics of atomic species, such as N
and O atoms, and in particular of the elementary processes
leading to heterogeneous recombination, is nowadays an
important field of research, since many of the characteristics
of plasma reactors are in fact controlled by wall reactions. The
need to address the role of surface processes to understand
the behaviour of different gas discharges is therefore an issue
strongly felt by the plasma physics community. Among many
other possible examples, this has been recently pointed out
in [1,2], respectively, for the cases of ECR and DC discharges,
and in [3] for the nitrogen afterglow. Consequently, different
studies have been realized in the last few years with the purpose
of providing a physical insight into the various elementary
mechanisms that occur on the surface, while the rates of
atomic recombination on various surfaces have been studied
in many works using a variety of experimental procedures.
The recombination probability, γ , has been measured for the
most common atomic species, N, O and H, and different
surfaces such as pure silica, Pyrex glass and metal. Due
to the large number of papers appeared on the subject, any
reference given here would be merely indicative. Nevertheless,
the reader may consult, for example, the experimental study [4]
and the phenomenological papers [5, 6], which cover most of
significant aspects of this subject.

The classic approach to studying surface processes is
based upon a deterministic formulation that considers only
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average concentrations of the adsorbed species. In this mean
field approximation, the various concentrations are represented
by continuous functions of time that are ruled by a system
of differential equations. Although this method should give
an accurate solution in many situations, in some cases a
microscopic picture is desirable, in particular by including
the effects of fluctuations in density or the spatial correlations
between the positions of adsorbed species. For example,
mechanisms such as dissociative adsorption of a diatomic
molecule on a surface or the reaction rate of a bimolecular
surface reaction have an explicit dependence on the local
configuration of the surface that cannot be achieved using
a classical approach. Monte Carlo methods on a lattice
representing the adsorption sites of the different species stand
as an obvious alternative to the classical description. Many
problems related to surface kinetics have been studied using
Monte Carlo methods as computational tools, such as, e.g.
dissociative adsorption [7], surface abstraction [8] or the
simplest case of adsorption–desorption equilibrium [9].

In most of the Monte Carlo methods the time-evolution
of the system is described by a single differential-difference
equation for a grand probability function, in which time
and the populations of the different species appear all as
independent variables. This equation is usually called the
master equation and is the one to be solved by the usual Monte
Carlo simulations. The first class of Monte Carlo algorithms
for surface reactions was introduced by Ziff et al [10]. This
method is a null-event one, since a site or a pair of sites on the
lattice is randomly chosen and then it is assumed that an event
may occur or not.
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In order to eliminate null events, another class
of algorithms has been developed, the continuous-time
Monte Carlo methods. In these methods a specific
microprocess is chosen randomly first, and then a site or a
pair of sites is chosen only among the group of sites that are in
a condition to perform the chosen microprocess. The original
algorithm of this type was proposed by Bortz et al [11] for
spin prediction of an Ising model. A recent application of this
formulation to surface reactions has been presented in [12],
where a good review of the available literature related to the
Monte Carlo treatment of surface kinetics is given as well.

One delicate issue in Monte Carlo algorithms is the
connection of Monte Carlo events with real time. This is not
an important drawback when the purpose of the study is to
obtain the equilibrium properties of a certain system, but of
course the situation changes when the method is to be utilized
in the study of dynamical phenomena. The usual procedures
to consider time in Monte Carlo methods have been tested
in different situations, but the question of their accuracy is
finally answered empirically on a case-by-case basis. Real-
time Monte Carlo methods were introduced in the 1970s
by Gillespie [13, 14], for the case of spatially homogeneous
reactions. This method does not include any approximations
or assumptions, with the exception of the very fundamental
definition of the reaction parameters in terms of the transition
probabilities. The procedure does not try to solve numerically
the master equation, which is never explicitly used, and instead
simulates the elementary processes that the master equation
describes analytically.

Following this, Fichthorn and Weinberg have presented
in [9] the theoretical basis for a dynamical Monte Carlo method
able to be utilized in the study of dynamical phenomena,
provided a set of conditions are satisfied. In what concerns
the treatment of time, the method presented in [9] is similar
to that developed in [13, 14], by directly simulating the
Markov process and establishing a direct relationship between
Monte Carlo time and real time. On the other hand, this
approach is a null-event algorithm in the sense of [10], with a
similar way of selecting the microprocess to occur and the
surface sites involved in it. This dynamical Monte Carlo
method furnishes a simple and easy way to implement the
description of surface kinetics, as in [10], but with an exact
treatment of time. One of the main advantages of this method
is precisely that it ensures a priori a correct description of
the time-evolution of the system and not only of its stationary
solution. As long as the definition of the reaction parameters is
accepted, the principal source of inaccuracy is simply related
to the quality and resolution of the random number generator.

Although the dynamical Monte Carlo method presented
in [9] constitutes a powerful tool to study surface kinetics,
the system under analysis in that work was very simple,
the attainment of an adsorption–desorption equilibrium in a
lattice–gas interaction. In this paper, we develop a kinetic
model of surface reactions to investigate the application of
the dynamical Monte Carlo scheme [9] to surface atomic
recombination. Here, we will consider as the working system
the recombination of ground-state nitrogen atoms N(4S) on
silica surfaces. As before, the theoretical basis for the
dynamical Monte Carlo method is the theory of Poisson
processes, in which the time is advanced using a stochastic

algorithm in such a way that no two events may occur
simultaneously. Therefore, the method initially developed
in [9] is applied here to a much more complicated system, by
considering all elementary microscopic processes involved in
surface atomic recombination and keeping in mind the various
constraints associated with the application of the method. As
largely discussed in [9], the dynamical Monte Carlo method
is consistent with the master equation if (i) the transition
probabilities of the various microscopic events are formulated
in such a way that a dynamical hierarchy of transition rates
is established with the probabilities satisfying the detailed-
balance criterion, (ii) the time increments upon successful
events are calculated appropriately in a way that only trials
in which an event occurs are considered and (iii) the system
is sufficiently large to assure that there exists an effective
independence between the various events. In these conditions,
an unambiguous correspondence between Monte Carlo time
and real time is established and both static and dynamic
properties of the system may be obtained.

For the sake of clarity this paper is organized as follows. In
section 2, we present the structure of the kinetic model used to
study the surface atomic recombination. A phenomenological
model for heterogeneous recombination is presented in
section 2.1, whereas in section 2.2 the rates of the various
elementary processes involved in atomic recombination are
derived for the case of recombination of N(4S) atoms on silica-
base surfaces. The applicability of the dynamical Monte Carlo
method to atomic recombination is analysed and discussed in
section 3. The predicted results obtained from this method are
discussed in section 4. Finally, in section 5, we summarize the
main conclusions of this paper.

2. Modelling of surface atomic recombination

2.1. Phenomenological description of heterogeneous
recombination

Let us start by analysing the scheme of microscopic
events involved in heterogeneous atomic recombination and
the kinetic rate balance equations able to describe these
phenomena under a phenomenological approach.

It is assumed that the surface is totally covered with
adsorption sites, which can hold atoms either reversibly or
irreversibly, so that the surface can be regarded as a lattice
of adsorption cells. Adsorption in a reversible site is usually
associated with physisorption [15, 16], in which the bond
between surface and gas particles is due to van der Waals
forces, with relatively low particle–surface bond energies
(typically 10–50 kJ mole−1), so that the bond is important only
at low temperatures (∼100–300 K). As the temperature rises
the gas is removed more or less completely from the surface
through a mechanism usually termed thermal desorption. In
contrast, adsorption in an irreversible site occurs as a result
of chemisorption [15, 16] and in this case the bond formed
between the atom and the solid surface is a true chemical bond,
usually covalent. The atom remains trapped in the potential
well of the irreversible site until it may be removed by atomic
recombination.

We assume here a ∼ 10−8 cm as a typical radius of an
adsorption site, valid for either metal or silica surfaces [6,17],
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which corresponds to a surface density of reversible sites
[F ] = 1016 cm−2, and that on silica 0.2% of the surface
is covered by irreversible sites [4]. We have therefore that
the fraction, ϕ, of the surface covered by irreversible sites is
ϕ = [S]/([F ]+[S]) = 2×10−3, with [S] denoting the surface
density of irreversible sites, also termed in [4] as active sites
due to the fact that they are the only sites where recombination
may occur. Half the distance between two irreversible sites is
hence b ∼ a/

√
2 × 10−3 ∼ 2 × 10−7 cm.

Our phenomenological model takes into account the
following surface mechanisms: physical adsorption and
desorption of atoms at reversible sites (1, 2); chemisorption
on irreversible sites (3); recombination of chemisorbed atoms
with gas-phase atoms (Eley–Rideal (E–R) recombination—
(4)); surface diffusion of physisorbed atoms (5); recombination
between a physisorbed and a chemisorbed atom, when the first
atom after diffusion arrives at an occupied irreversible site
(Langmuir–Hinshelwood (L–H) recombination—(6)). The
complete list of reactions leading to surface recombination of
nitrogen atoms on silica may be written as follows:

N + Fv
k1−→ Nf , (1)

Nf
k2−→ N + Fv, (2)

N + Sv
k3−→ Ns, (3)

N + Ns
k4−→ N2 + Sv, (4)

Nf + Sv
k5−→ Ns + Fv, (5)

Nf + Ns
k6−→ N2 + Fv + Sv, (6)

where Fv and Sv denote vacant physisorption and chemisorp-
tion sites, Nf and Ns physisorbed and chemisorbed nitro-
gen atoms, and N and N2 gas-phase atoms and molecules,
respectively. We have therefore [F ] = [Fv] + [Nf ] and
[S] = [Sv] + [Ns] for the total surface density of each type
of sites, either vacant or occupied.

The appropriate rate balance equations for the fractional
surface coverage of physisorbed and chemisorbed sites, i.e.
θf = [Nf ]/[F ] and θs = [Ns]/[S], dictated by the conjoint
playing of reactions (1)–(6), take the form:

dθf

dt
= (1 − θf)[N ]k1 − θfk2 − θf(1 − θs)[S]k5 − θfθs[S]k6,

(7)

dθs

dt
= (1 − θs)[N ]k3 − θs[N ]k4 + θf(1 − θs)[F ]k5

−θfθs[F ]k6, (8)

with [N ] denoting the atomic gas-phase concentration in cm−3.
In the case where reactions (5) and (6) are ignored,

equations (7) and (8) are decoupled and they just express the
time-evolution of the fractional coverage of physisorbed and
chemisorbed sites by the attainment of adsorption–desorption
and chemisorption–recombination equilibria, respectively.

In this simplest case, we get with the initial conditions
θ0

f = θ0
s = 0 at t = 0,

θf(t) = r1

r1 + r2
(1 − e−(r1+r2)t ) (9)

and

θs(t) = r3

r3 + r4
(1 − e−(r3+r4)t ), (10)

where r1 = [N ]k1, r2 = k2, r3 = [N ]k3 and r4 = [N ]k4

denote the corresponding populating and depopulating rates in
site−1 s−1. In [9], only equation (7) with processes (1, 2) has
been considered in the discussion of the theoretical foundations
of dynamical Monte Carlo simulations in terms of Poisson
processes, while in this paper the validity of the same approach
is evaluated in a much more complex context.

2.2. Rates of elementary processes

Although the results shown in this paper have been obtained
using in certain cases modified rates for reactions (1)–(6), in
order to speed up the attainment of a steady-state equilibrium
by the dynamical Monte Carlo method, we will discuss here
the actual rates usually employed in a DC or HF nitrogen
discharge for atomic recombination of N(4S) atoms on silica-
base surfaces. In fact, the aim of this paper is to discuss
the application of the dynamical Monte Carlo simulations
to surface recombination, while in a future publication the
probabilities, γ , for recombination of N(4S) atoms will be
quantitatively evaluated and compared with experimental data
[2, 4, 5].

The sticking probabilities for adsorption in reversible or
irreversible sites are usually expressed as

k0 ′
i = k0

i exp

(
− Ei

kBTg

)
, (11)

with i = 1 for physisorption and i = 3 for chemisorption,
k0
i are the steric factors for surface processes involving gas-

phase particles, Ei are the activation energies and Tg is the gas
temperature near the wall, which we assume here to be equal
to the wall temperature, Tw. Once k0 ′

1 and k0 ′
3 are known, the

rates r1 and r3, in site−1 s−1, are simply given by

r1 = [N ]k1 = k′
1φN

[F ]
(12)

and

r3 = [N ]k3 = k′
3φN

[S]
, (13)

where φN = 〈vN 〉[N ]/4, with 〈vN 〉 = √
8KTg/πMN , denotes

the flux of N(4S) atoms to the surface, and k′
1 = k0 ′

1 (1 − ϕ)

and k′
3 = k0 ′

3 ϕ are the sticking probabilities corrected for
the fractions of the surface covered by physisorption and
chemisorption sites, respectively. Here, for the sake of
simplicity we assume as in [4] that k0

i = 1 and Ei = 0, both for
reversible and irreversible sites, so that k0 ′

1 = k0 ′
3 = 1. Note

that in this case we have r1 = r3.
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On the other hand, for thermal desorption of reversible
sites, we use

r2 = k2 = νd exp

(
− Ed

kBTw

)
, (14)

where νd = 1015 s−1 denotes the frequency factor and
Ed = 51 kJ mole−1 the activation energy for desorption of
physisorbed N atoms from pure silica [4]. As stated before
the desorption from irreversible sites does not occur.

The gas-phase atoms impinging on an occupied
irreversible site with a chemisorbed atom may react, resulting
in a recombined molecule. This is the so-called E–R
mechanism, whose rate, per second and occupied irreversible
site, is given by

r4 = [N ]k4 = r3k
′
4, (15)

where r3 is the rate for chemisorption and k′
4 is the

recombination probability,

k′
4 = k0

4 exp

(
− Er

kBTw

)
, (16)

with k0
4 = 1 and Er = 14 kJ mole−1 [4] denoting, respectively,

the steric factor and the activation energy for recombination
of N(4S) atoms. It is worth noting at this point that
according to [4] and using the model proposed in [18], the
activation energy for desorption of a chemisorbed atom is
roughly given by ∼Er/0.055 � 290 kJ mole−1, with Er

denoting the activation energy for recombination and Er/0.055
the energy of the atom–surface bond. With this binding
energy the chemisorbed atoms can desorb only at relatively
high temperatures Tw ∼ 1000 K [4], so that here we will
assume that these atoms are held irreversibly on the surface
and they may be removed only by recombination.

Let us consider now the diffusion of physisorbed atoms
on the surface under a phenomenological approach. As is well
known, if the diffusion coefficient, Ds, is independent of the
concentration, the solution to Fick’s second law is a Gaussian.
With the initial condition that at t = 0 all particles NT are
located at x = y = 0 on the surface [19], the particle density
assumes the form

n(x, y, t) = NT

4πDst
exp

(
−x2 + y2

4Dst

)
. (17)

The mean-square displacement of an atom in time t is
therefore given by �2 = 〈x2〉 + 〈y2〉 = 4Dst . Since the
distance between two neighbouring reversible adsorption sites
is twice the radius of the cell, a ∼ 10−8 cm, we obtain
with � = 2a the characteristic time for surface diffusion,
τD = a2/Ds. Using as in [4, 17] the surface diffusion
coefficient obtained from an Arrhenius plot, τD may be
written as follows:

τD = ν−1
D exp

(
ED

kBTw

)
(18)

with νD = 1013 s−1 and ED = 0.5Ed denoting the frequency
factor and the activation energy for surface diffusion of N atoms
on silica [4].

The rate of surface diffusion to an adjacent cell that should
be used in Monte Carlo simulation is simply given by τ−1

D ;
however, this rate does not correspond to the rate of reaction (5)
that must be considered in the set of rate balance equations (7)
and (8). Reaction (5) describes, in fact, the conjoint action
of two distinct events: (i) surface diffusion of a physisorbed
atom into an irreversible site localized at a farther distance;
(ii) possibility of the occurrence of recombination in the case
of occupancy of the site with a chemisorbed atom. k5[Sv]
being the rate of occupancy of a vacant irreversible site due
to diffusion, per second and physisorbed atom, the probability
of an atom being chemisorbed on an irreversible site, before
being desorbed back to the gas-phase, or recombining, is given
by k′

5 = k5[Sv]τN , where

τN = (k2 + k5[Sv] + k6[Ns])
−1 (19)

denotes the mean residence time of physically adsorbed atoms
(τN ∼ k−1

2 , for Tw > 300 K). Defining the rate of populating
an irreversible site, in site−1 s−1, due to surface diffusion as
r5 = k5[F ], and therefore the rate for depopulating a reversible
site as k5[S] = r5[S]/[F ] (see equations (7) and (8)), we get

r5 = k′
5

τN

[F ]

[Sv]
. (20)

Setting k′
D as the probability that a physisorbed atom will

diffuse to a vacant or occupied irreversible site, k′
D =

k′
5[S]/[Sv], we can still write (20) in the form

r5 = k′
D

τN

[F ]

[S]
. (21)

As a result of the Gaussian profile for the density, the mean
surface diffusion distance of a physically adsorbed atom before
desorption is given by �D = √

4DsτN , with Ds = a2/τD and
τN ∼ k−1

2 being the mean residence time of atoms on the
surface, so that using equations (14) and (18) one obtains

�2
D = 4

νD

νd
a2 exp

(
Ed − ED

kBTw

)
. (22)

The probability that atoms will reach an irreversible site by
diffusion is evaluated in [20] by solving the diffusion equation.
Here, as in [4] we may assume that each irreversible site is
surrounded by a collection zone of radius �D < b, with
b ∼ 2 × 10−7 cm denoting half the distance between two
irreversible sites, and that one-fourth of the atoms impinging
on the surface within the collection zones reach irreversible
sites before desorption. The other three-fourths of the atoms
migrate towards farther distances. We may write therefore
the probability that a physisorbed atom will diffuse to an
irreversible site as

k′
D = 1

4

�2
D − a2

b2 − a2
, (23)

where (�2
D−a2)/(b2−a2) is the probability that a physisorbed

atom has been physisorbed within the collection zone. When
�D � a, we may still write (23) using (22) in the form

k′
D � νD

νd

[S]

[F ]
exp

(
Ed − ED

kBTw

)
. (24)
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Once k′
D is known, r5 may be then calculated using

equation (21).
The rate of recombination due to the L–H mechanism,

which should be used in the set of rate balance equations (7)
and (8), can be calculated in a way similar to the calculation
of r5. The rate of arrival of physisorbed atoms at an
occupied irreversible site, per second and physisorbed atom,
and there recombining, is k6[Ns], so that the probability of this
occurrence is k′

6 = k6[Ns]τN . The rate r6 = k6[F ], defined in
this form for the same reasons as r5, is given by

r6 = k′
6

τN

[F ]

[Ns]
. (25)

Since the probability k′
6 is equal to the product of the probability

that a physically adsorbed atom will diffuse to an occupied
irreversible site and the recombination probability,

k′
6 = k′

D
[Ns]

[S]
k′

4, (26)

we still have

r6 = k′
D

τN

[F ]

[S]
k′

4. (27)

We note that r5 and r6 have been defined as k5[F ] and k6[F ],
respectively, and not making use of similar expressions with
the total surface density of irreversible sites [S], so that the rates
of time-evolution of θf are in fact r5[S]/[F ] and r6[S]/[F ] (see
equation (7)).

Finally, the mean residence time of physisorbed atoms on
the surface is a function of the partial coverage of chemisorbed
sites, θs. Using equations (21) and (27) in equation (19), we
obtain

τN =
(

k2 +
k′

D

τN

(1 − θs) +
k′

D

τN

k′
4θs

)−1

(28)

and therefore

τN = 1 − k′
D + k′

D(1 − k′
4)θs

k2
. (29)

τN has its minimum and maximum values at θs = 0 and θs = 1,
respectively, and it is of the order ∼k−1

2 .

3. Dynamical Monte Carlo method applied to
heterogeneous recombination

As discussed in [9], the dynamical Monte Carlo method
provides a description of both the static and dynamic properties
of the system. Further, a relationship between Monte Carlo
time and real time is clearly established in the framework
of this method. In order that a consistent simulation and
time correspondence are achieved, the Monte Carlo time step
must be derived from the transition probabilities of the various
microscopic events, with these probabilities formulated as rates
with physical meaning. The time-evolution is accomplished
then in a scale at which no two events occur simultaneously
and the algorithm used must be consistent with the theory of
Poisson processes.

In a Poisson process, any particular event that becomes
possible at time t can potentially occur at any later time

t + 	t , with a uniform probability based on its rate and
independent of the events before time t . Consequently,
in the dynamical Monte Carlo approach a chronological
sequence of distinct events, E = {e1, e2, . . . , ek}, separated
by certain interevent times should be created. Both the chain
of events and the corresponding inter-event times should be
obtained from probability distributions W = {w1, w2, . . . , wk}
weighting appropriately all possible outcomes. The transition
probabilities should be constructed in terms of the average
transition rates, R = {r1, r2, . . . , rk}, by creating a dynamical
hierarchy of transition probabilities, as wi = ri/ξmax, with
ξmax � sup{ri}. If the system consists of NT species, they must
be partitioned among the various possible transition events as
NT = {n1, n2, . . . , nk}, where ni is the number of species
capable of undergoing a given event ei with probability wi .
The Monte Carlo algorithm should be able to select randomly
a certain event, among the various possible events available at
each time.

If a sufficiently large system is utilized to ensure that the
independence of various events is achieved, the Monte Carlo
algorithm effectively simulates a Poisson process. The
correspondence between Monte Carlo time and real time is
fully achieved, provided that at each trial j at which an event
is realized, the time is updated with an increment τj selected
from an exponential distribution of the type

τj = −1

λ
ln(U), (30)

where U is a uniform random number between 0 and 1, and
λ = ∑

i niri is the total rate, in s−1, for the occurrence
of an event of any type for the total ensemble of sites,
either occupied or vacant. It is worth remembering at this
point that equation (30) is consistent with the fact that the
probability of an event of frequency ν occurring after a time t

is given by P(t) = exp(−νt). The time advance defined by
equation (30) is similar to the one proposed in [13, 14] for the
case of homogeneous volume chemical reactions. The present
algorithm is different though, in keeping track of the local
configuration of the surface, as well as in the way the events
taking place are selected. In this respect, the method used
in this study is close to the null-event algorithms developed
from [10], as will be seen below.

Let us consider now the system under analysis in this
paper. The various microscopic events to be considered
are: (i) physical adsorption at reversible sites with the rate
r1 given by equation (12); (ii) desorption of physisorbed
atoms with the rate r2 given by equation (14); (iii) chemical
adsorption at irreversible sites with the rate r3 given by
equation (13); (iv) recombination E–R between a gas-phase
atom and a chemisorbed atom with the rate r4 given by
equation (15); (v) diffusion of physisorbed atoms to one of
the four nearest-neighbouring sites with the rate rD = τ−1

D
given by equation (18); (vi) recombination L–H between a
diffusing atom and an adsorbed atom, either chemisorbed or
physisorbed, in the case where the first atom diffuses to an
occupied site, with the probability k′

4 given by equation (16).
The last two steps are not considered here in exactly the

same manner as in the phenomenological model (i.e. through
the rates r5 and r6). In the set of rate balance equations, we
assume that the L–H recombination occurs when a physisorbed
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atom, after diffusion, arrives at an occupied irreversible
site, i.e. near a chemisorbed atom, whereas in Monte Carlo
simulation the recombination L–H may occur either with a
chemisorbed or a physisorbed atom. In the Monte Carlo
simulation two physisorbed atoms may recombine, depending
on the probability k′

4, and if the recombination does not
take place the diffusing atom is desorbed from the surface.
There exists, therefore, a reduction of the average time spent
by the physisorbed atoms on the surface, which leads to an
underestimation of the surface coverage of physisorbed atoms,
θf , relative to the phenomenological model. As a result of the
overall surface kinetics, θs may be underestimated as well.
However, the differences between the results from the two
models are vanishingly small for low surface coverage.

We should note however that the probability k′
4 for

L–H recombination on reversible sites is assumed here
to be the same as for irreversible sites, which probably
leads to an underestimation of the effects of recombination
between two physisorbed atoms and, consequently, to a
diminution of the magnitude of the differences between
the two models. For an activation energy of desorption,
Ed = 51 kJ mole−1 (see equation (14)), the corresponding
activation energy for recombination may be assumed to be
of the order E∗

r � 0.055 × 51 = 2.8 kJ mole−1 [18],
which makes the recombination probability given by equation
(16) in this case much larger than that for recombination on
irreversible sites. In contrast to L–H recombination, the E–R
mechanism of recombination is considered between gas-phase
and chemisorbed atoms only in both models.

Figure 1 shows the flow diagram of the algorithm used for
simulating the surface recombination of N(4S) atoms with a
two-dimensional lattice of l × l sites. A trial in this algorithm
begins when one site (i, j ) and a uniform number s between
0 and 1 are generated randomly. First, it is verified if the site
is occupied or vacant. If the site is vacant, the character of
the site is analysed. In the case of a reversible site, physical
adsorption occurs if s � w1, with w1 denoting the probability
this occurrence, whereas in the case of an irreversible site
chemisorption may occur if s � w3, w3 now being the
probability of chemisorption.

Let us consider now the right branch of the flow diagram.
When the site is occupied, we must start by analysing if the
site holds a physisorbed or a chemisorbed atom. In the first
case, the atom is removed if s � w2, with w2 denoting the
probability of thermal desorption of a physisorbed atom. In
the opposite case, s > w2, we must check if the atom may dif-
fuse to one of the four nearest-neighbouring sites by regarding
if s � (w2 +wD), where wD denotes now the probability of dif-
fusion obtained from the rate rD = τ−1

D given by equation (18).
In the favourable case, the atom is removed from the site (i, j )
and added to one of the four nearest-neighbouring sites (i ′, j ′)
randomly chosen. Now, we need to check if this new site is
occupied or vacant. In the case of vacancy, the atom passes to
occupy the new site, whereas in the case of occupancy of the
site (i ′, j ′), either with a physisorbed or a chemisorbed atom,
we must check if L–H recombination may occur. For this pur-
pose, a second random number, r , between 0 and 1 is generated
and compared with the probabilty k′

4 given by equation (16).
L–H recombination occurs and both atoms are removed from
the surface if r � k′

4. In contrast, only one atom is desorbed
and the other remains on the site if r > k′

4.

Finally, in the case of occupancy of the site (i, j ) with a
chemisorbed atom, E–R recombination occurs if s � w4, with
w4 denoting the probability of E–R recombination between a
gas-phase and a chemisorbed atom obtained from r4 given by
equation (15).

In the algorithm of figure 1, the transition probabilities are
created from a dynamical hierarchy of transition probabilities,
as wi = ri/ξmax, with ξmax � sup{r1, r3, r4, r2 + rD}. After
successful realization of an event at trial j the time is advanced
by an increment τj selected from the exponential distribution
(30), with the total rate, λ, for time advancing, in s−1, given by

λ = (l × l)[(1 − θf)r1 + (1 − θs)r3 + θsr4 + θf(r2 + rD)].

(31)

It is worth remembering here that the populating and
depopulating rates, ri , are expressed in site−1 s−1, while l × l

is the total number of sites in the two-dimensional lattice.
The procedure just described provides just one possible

realization of the stochastic time-evolution of the system.
In order to get a statistically complete picture, it should
be desirable to carry out several independent realizations of
the temporal evolution of the system, each starting with the
same initial conditions and proceeding to the same time t . The
results of the different runs should then be averaged in a proper
way [12]. However, if the lattice used is big enough, then the
results will be significant even for a single run [13].

Let us still mention that, as a first test of the dynamical
Monte Carlo method, we have calculated the time-evolution
of the fractional coverages θf and θs in the absence of
diffusion, rD = 0. In this limit case, θf(t) and θs(t) are
given by equations (9) and (10), respectively. The dynamical
Monte Carlo results obtained matched perfectly these two
expressions.

4. Results and discussion

For the input parameters given in section 2 and assuming
Tg = 500 K and Tw = 350 K for the gas and wall
temperatures, respectively, and a gas-phase atomic density
[N ] = 1015 cm3 s−1, we have r1 = 2.17 × 103 site−1 s−1,
r2 = 2.45 × 107 site−1 s−1, r3 = 2.17 × 103 site−1 s−1,
r4 = 1.76 × 101 site−1 s−1 and rD = 1.56 × 109 site−1 s−1,
while the recombination probability of the L–H mechanism is
k′

4 = 8.14 × 10−3. Unfortunately, this set of input parameters
corresponds to a low surface coverage of the reversible sites.
Even when diffusion is ignored, the fractional coverage of
reversible sites as t → ∞ is of the order θf = r1/(r1 + r2) �
8.86×10−5 (see equation (9)), so that either a huge lattice, l×l,
or the average over different realizations of the system becomes
necessary to avoid significant fluctuations in the results, which
produces an increase in computational time. Due to this
fact and keeping in mind that the purpose of this paper is
to discuss the applicability of the dynamical Monte Carlo
method to the task of heterogeneous atomic recombination, the
determination of actual probabilities for recombination being
left to a forthcoming paper, we will present here results for a
simulation in which certain rates have been modified in order
to shorten the attainment of a steady-state equilibrium.

Accordingly, figures 2(a) and (b) show the fractional
surface coverage of both reversible θf and irreversible θs sites,
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Figure 1. Flow diagram for simulating the approach to and the attainment of equilibrium for the surface coverages of reversible and
irreversible sites in heterogeneous atomic recombination.

as a function of real time, starting from an empty surface at
time t = 0, as the following changes in the input parameters
are considered: Ed = 51×1.3 = 66.3 kJ mole−1; ED = 0.5×
66.3 = 33.2 kJ mole−1; νD = 1011 s−1. The corresponding
modified rates are r2 = 1.27 × 105 site−1 s−1 and rD =

1.13 × 106 site−1 s−1, while r1, r3, r4 and k′
4 are not changed.

In this case a 750×750 lattice may be used in the calculations.
The coverages θf and θs are defined with respect to the total
number of sites of each type. The dashed curves correspond
to the results of the phenomenological model. The differences
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Figure 2. Fractional surface coverage of reversible (a) and
irreversible (b) sites, termed here as θf and θs, respectively, as a
function of time, using a dynamical Monte Carlo simulation (——)
and a phenomenological model (– – –), assuming a desorption
energy Ed = 66.3 kJ mole−1.

between the results of both models are due to the hypothesis
made concerning the interactions between two physisorbed
atoms. We recall here that in the phenomenological model
two physisorbed atoms do not interact with each other, while
in Monte Carlo when a physisorbed atom arrives to a reversible
site already occupied, either the two physisorbed atoms may
recombine or one is desorbed, the other sticking on the surface.
The interactions between physisorbed atoms have the effect of
reducing the average time spent by these particles at the surface.
This is why the phenomenological model overestimates the
coverage θf (and, in some cases, θs as well).

The differences between the results from the two models
become vanishingly small in the case of lower coverage of
physisorbed atoms, which may be obtained by increasing the
rate, r2, of thermal desorption. Figures 3(a) and (b) show the
fractional coverage θf and θs for the same conditions as in
figures 2(a) and (b), except that Ed is now 62.2 kJ mole−1 and
ED is also modified accordingly (r2 = 5.18 × 105 site−1 s−1

and rD = 2.28 × 106 site−1 s−1). In the case of a lower
energy for desorption, θf is lower and encounters between two
physisorbed atoms are more scarce, so that the inclusion or
ignoring of such processes has only a very small effect on the
results.

Through the example shown here, we verify that
Monte Carlo simulations may be utilized to simulate the

Figure 3. As in figure 2 but with Ed = 62.2 kJ mole−1.

dynamical evolution of a lattice–gas system associated with
heterogeneous atomic recombination. There is an excellent
agreement between the results from the Monte Carlo and
phenomenological models, both in the approach to equilibrium
and in the steady-state fractional surfaces coverage, in spite of
a number of minor differences between them. The amplitude
of the fluctuations depends on the number of events averaged,
so that the dimension of the lattice should be determined by
the steady-state surface coverage that will be attained. For the
present example, the fractional surface coverage of reversible
sites is θf(∞) ∼ 1.5 × 10−2 and ∼7 × 10−3 in figures 2(a)
and 3(a), respectively, and may be obtained using a 750 × 750
two-dimensional lattice.

The algorithm used for Monte Carlo simulation considers
that a physisorbed atom may diffuse to one of the four nearest-
neighbouring sites and, in the case of occupancy of this new
site, the diffusing atom may either recombine or desorb,
depending on the probability k′

4. This assumption leads to an
underestimation of the surface coverage θf , since in the case
where recombination does not take place the physisorbed atom
cannot continue sticking on the surface. In order to evaluate
the effects of such an assumption, figures 4(a) and (b) show
the fractional coverage θf and θs calculated for the same input
parameters as in figures 3(a) and (b) but supposing now that a
physisorbed atom that does not recombine is not immediately
lost to the gas-phase. The physisorbed atom will remain on
the surface, diffusing to a neighbouring site. If this new site
is occupied, the diffusing atom will attempt recombination
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Figure 4. Fractional surface coverage of reversible (a) and
irreversible (b) sites, θf and θs, respectively, as a function of time,
using a dynamical Monte Carlo simulation assuming that one
attempt (curve A) and four attempts (curve B) are made for
recombination (see text). The broken curve is our phenomenological
model. The results are obtained for Ed = 62.2 kJ mole−1.

a second time. The scheme is repeated for a maximum of
four attempts, at which point it definitively desorbs if the
recombination has not occurred.

Figure 4(a) shows that no significant effects are observed
when we pass from our standard model with only one attempt
for recombination to the four-attempts case. However, larger
differences are obtained if we decrease the rates for thermal
desorption, since in this case the mean residence time for
physisorbed atoms on the surface is controlled by diffusion
rather than by desorption; that is, we have no more τN ∼ k−1

2
in equation (29). Figures 5(a) and (b) show the fractional
surface coverages θf and θs assuming, for comparison, one,
two and four attempts for recombination before a physisorbed
atom is definitively desorbed, in the case of a relatively high
desorption energy, Ed = 76.5 kJ mole−1, with ED modified
accordingly. In this case we have a low desorption rate, r2 =
3.83 × 103 site−1 s−1. With such a low r2 rate, θf(∞) ∼ 0.10,
∼0.19 and ∼0.28 when we assume one, two and four attempts,
respectively, for recombination. For these high values of
the surface coverage θf , ‘collisions’ between two physisorbed
atoms are likely to occur. These encounters between two
physisorbed atoms, which in the Monte Carlo formulation lead
to the loss of one or two physisorbed atoms to the gas-phase,
are not taken into account in the phenomenological model.

Figure 5. Fractional surface coverages of reversible (a) and
irreversible (b) sites, θf and θs, respectively, as a function of time,
using a dynamical Monte Carlo simulation assuming that one
(curve A), two (curve B) and four attempts (curve C) are made for
recombination (see text). The broken curve is our phenomenological
model. The results are obtained for Ed = 76.5 kJ mole−1.

This is why the latter model presents now appreciably higher
values for the fractional coverage θf .

5. Conclusions

We have shown that a Monte Carlo method of the same type
as that formulated by Fichthorn and Weinberg [9] may be
used to simulate the sequence of elementary surface processes
involved in heterogeneous atomic recombination. Both the
transient and stationary solutions for the surface coverage
of two types of adsorption sites, holding physisorbed and
chemisorbed atoms on the surface, are well described in the
present Monte Carlo formulation. The Monte Carlo results
are compared with those from a phenomenological model. In
spite of a number of conceptual differences concerning the
diffusion and recombination of physisorbed atoms, only minor
differences are found in the results, with the exception of the
limit of a very high occupation of physisorption sites.

The effect of varying the mean residence time of
physisorbed atoms has been investigated by changing the
activation energy for desorption, from a relatively low value
in which the residence time is mainly determined by thermal
desorption, until the opposite situation of a high activation
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energy where the permanence of the atoms on the wall is
determined by the hypotheses made for diffusion.

The dynamical Monte Carlo method presented in this
work is a real-time, exact way of treating time-dependent
surface kinetics. It stands as an alternative to the traditional
procedure of numerically solving the deterministic reaction
rate equations. Even if the differences between the classic and
stochastic formulations are in many cases purely academic,
the stochastic approach is superior, since it is always valid
whenever the deterministic approach is, and it is sometimes
valid when the deterministic approach is not.

The purpose of this paper has been fully achieved since we
have shown that a dynamical Monte Carlo method can be used
to describe surface atomic recombination, provided a certain
number of conditions are satisfied. In particular, this is true
if: the transition probabilities are formulated appropriately in
terms of the transition rates; the time increments correspond
to a scale where no two events occur simultaneously; and
the system is sufficiently large so that the various events
are independent. Although a specific working system has
been considered for illustration of the method, namely the
recombination of ground-state nitrogen atoms N(4S) on silica-
base surfaces, the results shown here are merely indicative
because some of the rates have been modified in order to
speed up the attainment of computational convergence.

Future work will concentrate on the derivation of actual
probabilities, γ , of recombination in the same system, and
a comparison with experiment will be carried out. The
advantage of using a Monte Carlo formulation will be explored,
for instance by taking into account the influence of the surface
configuration on the choice of microprocess. Nevertheless,
the description of the various elementary processes playing a
role in heterogeneous recombination as well as the validity
of the method is already satisfactory as it stands in this
paper.
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