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Classical rotons in cold atomic traps
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We predict the emergence of a roton minimum in the dispersion relation of elementary excitations in cold atomic
gases in the presence of diffusive light. In large magneto-optical traps, multiple scattering of light is responsible
for the collective behavior of the system, which is associated to an effective Coulomb-like interaction between the
atoms. In optically thick clouds, the rescattered light undergoes diffusive propagation, which is responsible for
a stochastic short-range force acting on the atoms. We show that the dynamical competition between these two
forces is by the appearance of a roton minimum in the dispersion relation. Making use of the fluctuation-dissipation
theorem, we show that the roton minimum is related to classical long-range order in the system.
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Since the first ideas advanced by Landau [1,2], the concept
of “roton minimum” in the dispersion of the collective modes
of a certain physical system has played a central role in the
description of superfluidity. After the success of the theory in
the context of superfluid phases of 4He, rotons have received
considerable attention since then and have been identified
in many different quantum interacting systems. Recently
Cormack et al. [3] suggest that rotons may appear in already
moderately interacting ultracold Bose gases, and Kalman
et al. [4] have numerically observed their emergence in two-
dimensional dipolar bosonic gases. In fact, the emergence of
a roton minimum in the excitation spectrum strongly depends
upon the shape of the interacting potential or, equivalently, on
how particles are correlated. The correlational origin of the
roton minimum has been firstly suggested by Feynman, where
the static structure factor S(k) is expressed in terms of the
dispersion relation ω(k) as

ω(k) = h̄k2

2mS(k)
. (1)

This has an enormous implication on the interpretation
of the physical properties of the system in terms of the
dispersion relation: The presence of a roton minimum is the
signature of strong correlations in the system. In the limit
of large mode softening, i.e., for rotons with zero frequency,
the system can develop mechanical instabilities, which can
lead to interesting physics. In Ref. [5] Henkel et al. have
suggested that the presence of a “roton zero” is at the
origin of crystallization in ultracold Rydberg gases. In this
paper we describe the classical origin of a roton minimum
in the excitation spectrum of cold atomic clouds confined
in magneto-optical traps (MOTs). Due to the competition
between long-range interactions between the atoms and the
stochastic forces associated with the diffusion of light, atoms
in MOTs experience a complex effective interaction. We
suggest that a new dispersion mode may result from the
dynamical coupling of the density waves with the fluctuations
of the light intensity inside the trap. Finally, by applying an
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hydrodynamic version of the fluctuation-dissipation theorem,
and thus generalizing the relation between S(k) and ω(k) of
Eq. (1), we show the emergence of (classical) long-range order,
extending the concept of rotons to the classical regime. The
remainder of the paper is devoted to the understanding the
physical origin of such a classical roton minimum.

A route for the most intriguing complex behavior in
large magneto-optical traps relies exactly on the multiple
scattering of light [6,7]. Due to the consecutive scattering
and reabsorption of photons, the atoms experience a mediated
long-range interaction potential similar to Coulomb system
(∼1/r) [8,9], and the system can therefore be regarded as
a one-component trapped plasma. In a series of previous
works, we have put in evidence the important consequences
of such a plasma description of a cold atomic gas [10,14],
whereas the formal analogy and the application of plasma
physics techniques reveal themselves to be appropriate to the
description of driven mechanical instabilities [15–19] or even
more exotic phenomena, like phonon lasing [20]. Moreover,
in such optically thick traps, it is known that light does not
propagate ballistically, rather exhibiting a diffusive behavior
[21]. In this situation, the energy transport velocity vE , i.e.,
the velocity that accounts for the propagation of energy by the
scattered wave, is smaller than c [22,23]. Labeyrie et al. [24]
have experimentally observed that vE can, indeed, be several
orders of magnitude smaller than c in the case of resonant
light propagating in traps, already with a moderate optical
thickness. More recently, the diffusive behavior of light has
been identified as a source of dynamical instabilities leading to
the formation of photon bubbles in magneto-optical traps [25].

In what follows, we consider the dynamics of cold atoms
in MOTs to be described by the Vlasov equation

(
∂

∂t
+ v · ∇ + 1

m

∑
i

Fi · ∇v

)
f (r,v,t) = 0, (2)

where the distribution function f (r,v,t) is the normalized to
the total number of particles

N =
∫

dr
∫

dvf (r,v,t). (3)
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The total force
∑

i Fi = FT + Fc accounts for both the
trapping and cooling forces. Evidence [26,27] suggests that
the density profile is approximately constant for large traps
(typically with N ∼ 109–1010 atoms), which allows us to
consider the system to be homogeneous and thus to neglect
the effects of the trap. The collective force can be described
by a Poisson equation [9,10]

∇ · Fc(r,t) = Q

∫
dvf (r,v,t). (4)

The prefactor in Eq. (4) represents an effective charge Q =
σL(σR − σL)I/c of the atoms induced by light, where σR and
σL represent the scattering and absorption cross sections [6–9],
and I is the light intensity. For most of the experimental
conditions, the scattering cross section is larger than the
absorption cross section, i.e., σR > σL, enforcing the effective
charge to be a positive quantity. We have showed that the
positiveness of Q is an essential condition for the existence of
stable oscillations in the system (see, e.g., Ref. [10]).

The phase-space dynamics of light can be described a
transport equation for the luminescence gω(r,u,t) accounting
for several processes like absorption, gain, elastic, and inelastic
diffusion, which may be written as [11]
(

∂

∂t
+ u · ∇

)
gω(r,u,t) = −γextgω(r,u,t) + γsc

4π

∫
gω(r,u′,t)

×p(u,u′) d�′ + η(r,t), (5)

where γext and γsc, respectively, represent the extinction
(resulting from the sum of pure absorption) and elastic
scattering coefficients (see Ref. [12] for a detailed derivation
of the coefficients in the presence of Doppler broadening),
η is the power emission function, and �′ is the solid angle
defined around the direction of u (in this version, the inelastic
processes are input in the absorption and emission terms).
Taking moments from equation (5), we can derive recursive
equations for the intensity I (r,t) = ∫

gω(r,u,t) du. Assuming
Markovian processes only, and using the fact that p(u,u′)
(generally dependent on the internal structures of the scatters)
is a isotropic function, we can make use of Fick’s law
jω = −D∇I as a closure condition, where the photon current
is defined as jω = ∫

ugω du. Under this approximation, the
light intensity can be described by the diffusion equation

∂I

∂t
− ∇ · D∇I = −γextI. (6)

In the case of isotropic diffusion, the diffusion coefficient is
determined by D = 	2/τ [13], where the photon mean-free
path is 	 = 1/nσL, with n = ∫

f dv standing for the atomic
density. According to experimental results [24], the diffusion
time τ can be considered as independent from the atom density,
so the diffusion coefficient explicitly reads

D(r,t) = 1

σ 2
Lτn2

= 1

σ 2
Lτ

[ ∫
f (r,v,t) dv

]−2

. (7)

In practice, the Markovian approximation remains valid
as long as the optical thickness b = aγext/vE is much
larger than unit (b ∼ 40 already for traps of moderate sizes

a ∼ 2–3 mm [24]). Such a condition is verified provided that
	 � a [11,12]. The equilibrium solution to the diffusion equa-
tion (6) is I0(r) ∼ sin(kextr)/kextr , where kext = √

γext/D0.
The vanishing condition at the edge of the trap determines the
value of the absorption constant as γext = π2a2/D2

0. In what
follows, we consider fluctuations of very small scale in respect
to the variation of the light intensity, in the wave vector range
k � kext. In that case, we can safely neglect the right-hand side
of Eq. (6) in first order. Therefore, linearization of Eqs. (2),
(4), and (7) with f = f0 + δf , I = I0 + δI , and D =
D0 + δD yields(

∂

∂t
+ v · ∇

)
δf + 1

m
δFc · ∇vf0 = 0, (8)

∂

∂t
δI − D0∇2δI − δD∇2I0 = 0, (9)

∇ · δFc = Q0

∫
δf dv + Q0n0

δI

I0
, (10)

where Q0 = σL(σR − σL)I0/c. By Fourier transforming the
perturbed equations, we obtain the following kinetic dispersion
relation:

1 = ω2
p

k2

(
1 + ωd

i� − D0k2

) ∫
1

vz − �/k

∂F0

∂vz

dv, (11)

with � = ω + iγ . Here we have defined f0(v,r) = n0F0(v),
such that

∫
F0(v) dv = 1 and considered perturbations parallel

to the wave vector k = kez. One observes that the dynamics
of the system is described by two different frequencies. The
first is associated with the oscillations of the atoms due to
the long-range force, corresponding to an effective plasma
frequency [10]

ωp =
√

Q0n0

m
. (12)

The second important quantity is the rate at which the photons
scatter inside the trap, or simply the diffusion frequency

ωd = 2∇2I0

I0
D0. (13)

We notice that the latter changes with the scale at which the
diffusive processes occur (micro-, meso-, or macroscopic), as
it depends upon the length scale L =

√
2∇2I0/I0 � √

2/kext

at which the light intensity varies. We will discuss the
macroscopic case below, but we again stress that our analysis
remains valid as long as the light intensity varies much slower
than the typical excitation wavelength, which means that the
ωd can be treated as a constant quantity. The integral in Eq. (11)
can be evaluated using the Landau prescription, according to
which the full information about the initial conditions is cast
if the integration path is set to pass below the pole � = vzk.
We split the integral into two parts∫

1

vz − �/k

∂F0

∂vz

dv = Pr
∫

1

vz − �/k

∂F0

∂vz

dv

+ iπ

∫ (
∂F0

∂vz

)∣∣∣∣
vz=�/k

dv, (14)

where Pr stands for the Cauchy principal value. Assuming a
phase speed vph = ω/k much greater than the width of the
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distribution, such that F0 and its derivatives get small as vz

gets large, we may expand the denominator in (14), which
simply yields

Pr
∫

1

vz − �/k

∂F0

∂vz

dv � k2

ω2

∫
F0

(
1 + 3

k2v2
z

�2

)
dvx dvy dvz.

(15)

Assuming the atomic equilibrium to be described by a Maxwell
distribution

F0(v) = 1

(2πvth)3/2
e−v2/2v2

th , (16)

with vth = √
kBT /m standing for the thermal speed, we may

finally write

1 = ω2
p

�2

[(
1 + u2

s k
2

�2

)(
1 + ωd

i� − D0k2

)]

+ iπ
ω2

p�2

k2

∂f0

∂vz

∣∣∣∣
vz=�/k

, (17)

where we have defined the sound speed us = √
3vth. Assuming

small damping, γ � ω, we may explicitly separate the real and
imaginary parts of the modes,

ω2 = (
ω2

p + u2
s k

2)(1 − ωdD0k
2

ω2
p + D2

0k
4

)
(18)

and

γ = ωd

2

ω2
p + u2

s k
2

ω2
p + D2

0k
4

− 3√
8π

ωp

k3λ3
D

e−3/(2k2λ2
D), (19)

where λD = uS/ωp is the effective Debye length. We now
discuss some of features of the dispersion and show, in
particular, that contains a roton minimum in some range of
parameters.

According to typical experimental conditions [24], the
mean-free path is found to value 	 ∼ 300 μm and the diffusion
coefficientD0 � 0.66 m2 s−1. Based on our previous estimates
[10], the effective plasma frequency and Debye length,
respectively, value ωp ∼ 2π × 100 Hz and λD ∼ 100 μm.
Therefore, for a system of size a ∼ 1 cm, the diffusive
approximation is valid provided that the diffusion and plasma
frequencies are of the same order, ωd ∼ ωp. This is achieved
if 	d = √

D0/ωp ∼ 1 cm is of the same order of L, which
may be possibly achieved for typical experimental parameters.
Moreover, the values of ωp and ωd can be varied by changing
the detuning of the cooling lasers and the optical thickness of
the system. In Fig. 1, it is depicted the emergence of a roton
minimum in the dispersion relation (18). As the values of ωd

increase (i.e., for stronger diffusion), the frequency decreases
(mode softening). At the critical value ω

(c)
d = 2ωp, the mode

softens towards zero, which is a clear manifestation of a roton
instability mechanism. For ωd > ω

(c)
d , the system enters a

crystallized phase. The mechanism of crystallization via mode
softening was recently investigated in the quantum framework
of supersolidity [5]. An important remark is related to the
Landau damping at short wavelengths. Modes in the region
kλD � 1 undergo a kinematic damping. Fortunately rotons are
possible to be excited at longer wavelengths (krotλD < 1), thus

Landau
damping
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FIG. 1. (Color online) Illustration of the real (top panel) and
imaginary (bottom panel) parts of the dispersion relation in the
macroscopic regime for D0 = 2.0λ2

Dωp . We can observe the emer-
gence of a roton minimum for ωd = 1.9ωp (thick solid line) and
ωd = 1.99ωp (dash-dotted line). The rotons softens the frequency
to ω(krot) = 0 at the critical value ω

(c)
d = 2.0ωp . Roton instability is

illustrated here for ω = 2.2ωp (thin solid line). The short-wavelength
oscillations corresponding to kλD > 1 are kinematically damped.
The usual plasma dispersion relation of Ref. [10] is presented here
for comparison (dashed line).

avoiding the Landau damping mechanism. We observe that
the onset of diffusion tends to decrease the damping rate (see
Fig. 1). This encourages hope for rotons to be experimentally
observable.

Another important property of the classical rotons described
above is that they carry useful information about the long-range
correlation of the system. From the dissipation-fluctuation the-
orem [28], the dynamic structure factor is given by S(k,ω) =
(kBT k2/πω)Imε(k,ω)−1, where ε(k,ω) ≡ 1 + χ (k,ω) and
χ (k,ω) is the susceptibility. As a result, the dispersion relation
(17) is defined as the root of the function ε(k,ω) ≡ 1 + χ (k,ω).
In the absence of hydrodynamic damping, the static structure
factor S(k) = π−1S(k,ω)Re[ε(k,ω)−1i�] is finally given by
the classical expression [29]

S(k) = v2
thk

2

ω(k)2
. (20)

In Fig. 2 we illustrate the behavior of S(k) for the same
parameters of Fig. 1.
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FIG. 2. (Color online) Static structure factor S(k) depicted for
the same parameters of Fig. 1. A peak emerges in the static structure
factor around krot = λD/	2

d = 0.5λ−1
D .

The static two-point correlation function g(r) =
〈n(r)n(0)〉/〈n(r)〉〈n(0)〉 = 〈n(r)n(r ′)〉/n2

0 can then be easily
calculated provided the relation g(r) = 1 + F−1[S(k) − 1]
[30] (F represents the Fourier transform), which after the
integrating out the angular variables simply reads

g(r) = 1 + 1

π2

∫ ∞

0

k sin(kr)

r
[S(k) − 1]dk. (21)

Computing the integral in the complex plane, we can imme-
diately reconstruct the correlation function. It is observed that
the appearance of a minimum in the excitation spectrum (18)
is associated with the occurrence of long-range correlation (at
the scale of λD) in the system. By inspection, one founds that
the roton minimum occurs at krot � λD/	2

d , which is exactly the
period at which the correlation function oscillates (see Fig. 3).
This feature can be qualitatively understood in the context
of Percus-Yevick (PY) theory [31,32], where the correlation
function is approximated by g(r)PV � 1 + c0r

−1 cos(k0 +
δ0)e−κ0r , with c0 being a constant and z0 = κ0 + ik0 the pole
of the function S(k) − 1. We remark, however, that the PY
theory was originally developed for hard-sphere potentials
and therefore does not describe systems with long-range

2 Π

krot

0 5 10 15 20
0.7

0.8

0.9

1.0

1.1

1.2

r ΛD

g
r

FIG. 3. (Color online) Two-point correlation function g(r) de-
picted for D0 = 2.0λ2

Dωp . ωd = 0 (dashed line), ωd = 1.9ωp (solid
line) and ωd = 1.99ωp (dash-dotted line). The correlation function
oscillates with the period a of 2π/krot � 4πλ−1

D .

interactions. For that reason, we have not used it to compute
g(r) in (21).

In conclusion, we have derived the excitation spectrum of
large (optically thick) magneto-optical traps in the presence of
diffusive light. We have explicitly established the dispersion
relation for the particular case of a thermal atomic distribution,
revealing the emergence of a roton minimum for a set of
parameters compatible with current experimental conditions.
We have also shown that an increase of the light diffusivity
is associated to the softening of the roton minimum, which
may eventually lead to roton instability. Using the relation
between the static structure factor and the dispersion relation,
we have explicitly demonstrated that the roton minimum is
related to the emergence of classical long-range correlations
in the system. The experimental observation of the effect can
be made possible by measuring the fluorescence spectrum of
the modulated system (e.g., modulating the intensity of the
cooling laser). The expected smoking gun of the roton effect is
thus the appearance of a turning point of the most pronounced
peak around the frequency ∼ωd .
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