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Abstract
The LisbOn KInetics Boltzmann (LoKI-B) is an open-source simulation tool (https://github.
com/IST-Lisbon/LoKI) that solves a time and space independent form of the two-term electron
Boltzmann equation, for non-magnetised non-equilibrium low-temperature plasmas excited by
DC/HF electric fields from different gases or gas mixtures. LoKI-B was developed as a response
to the need of having an electron Boltzmann solver easily addressing the simulation of the
electron kinetics in any complex gas mixture (of atomic/molecular species), describing first and
second-kind electron collisions with any target state (electronic, vibrational and rotational),
characterized by any user-prescribed population. LoKI-B includes electron-electron collisions, it
handles rotational collisions adopting either a discrete formulation or a more convenient
continuous approximation, and it accounts for variations in the number of electrons due to non-
conservative events by assuming growth models for the electron density. On input, LoKI-B
defines the operating work conditions, the distribution of populations for the electronic,
vibrational and rotational levels of the atomic/molecular gases considered, and the relevant sets
of electron-scattering cross sections obtained from the open-access website LXCat (http://lxcat.
net/). On output, it yields the isotropic and the anisotropic parts of the electron distribution
function (the former usually termed the electron energy distribution function), the electron
swarm parameters, and the electron power absorbed from the electric field and transferred to the
different collisional channels. LoKI-B is developed with flexible and upgradable object-oriented
programming under MATLAB®, to benefit from its matrix-based architecture, adopting an
ontology that privileges the separation between tool and data. This topical review presents LoKI-
B and gives examples of results obtained for different model and real gases, verifying the tool
against analytical solutions, benchmarking it against numerical calculations, and validating the
output by comparison with available measurements of swarm parameters.
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1. Introduction

Low-temperature plasmas (LTPs) are highly-energetic highly-
reactive environments, exhibiting a low density of charged
particles (ionisation degrees 10 106 3~ -- - ), high electron
temperature (∼1 eV) and variable heavy-species characteristic
temperatures, ranging from 300 K to ∼104 K. These features
open the way to develop plasma-based technologies that use

different energy distribution scenarios, through efficient
channeling of the energy to targeted species, both in volume
and in plasma-facing substrates. Electrons are key in this
strategy, as they convey the energy available to the heavy
species through various collisional channels that stimulate the
reactivity of the plasma. Therefore, it becomes paramount to
control the energy distribution of the electrons, tailoring it as
to fine-tune the energy transferred to the heavy species.
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Detailed knowledge of the electron energy distribution is
essential also to obtain quantitative information for use in
fluid/global predictive models or in the analysis of exper-
imental diagnostics, by calculating quantities such as rate
coefficients, transport parameters and fractional average
powers, hereafter termed electron macroscopic parameters.

The electron kinetics can be described in detail by sol-
ving numerically the electron Boltzmann equation (EBE) for
LTPs [1], usually written under an approximation framework
that expands the electron distribution function in powers of
some quantity around the equilibrium, assuming that the
thermal velocities are larger than the drift velocities resulting
from the combined anisotropic effects of electromagnetic
applied forces and pressure gradients. The problem has been
solved throughout the years by many different research
groups around the world, that developed EBE solvers as
standalone codes or as routines embedded into other numer-
ical models. We would like to highlight the pioneering con-
tributions of some authors [2], to whom the community is
grateful for advancing knowledge on topics related to the
electron kinetics: gas discharges in molecular nitrogen and
hydrogen were extensively investigated in the early works of
Frost and PheIps [3], Engelhardt and Phelps [4], Newman and
Detemple [5] and Taniguchi et al [6]; Nighan included an
EBE solver in a global model for N2/CO2/CO gas-discharge
lasers [7]; Morgan [8] and Rockwood [9] presented the details
of a computer code for solving the EBE in a low-pressure
positive column, and later Rockwood et al [10, 11] and
Winkler [12] used this approach to study Hg, Ar/Hg,
CO2/N2/He and CO/N2 gas discharges; Elliott and Greene
[13] and Bretagne et al [14] analysed electron-beam-
generated xenon and argon plasmas; Capitelli et al [15, 16],
and later Loureiro and Ferreira [17], solved the EBE coupled
to rate balance equations describing the vibrational kinetics of
several gases (the first contributions being for HCl and N2);
Pitchford, Phelps et al carried out a systematic study of the
effects of various simplifying approximations on the solutions
of the EBE in molecular gases, such as N2, describing tech-
niques for adding higher-degree spherical harmonics to the
two-term approximation [18], analysing the errors introduced
by the two-term approximation in the calculation of excitation
rate coefficients at various applied electric fields [19],and
examining the effects of various approximations to the dis-
tribution in energy of secondary electrons produced in elec-
tron-impact ionizations [20]; the time relaxation of the EEDF
was firstly analysed by Capitelli, Gorse, Winkler et al
[21–24]; Morgan and Penetrante released ‘ELENDIF: a time-
dependent Boltzmann solver for partially ionized plasmas’
[25], distributing a compiled version of this code upon pay-
ment of a fee.

With the arrival of the internet era, various authors have
accepted to share the simulation tools developed, for the
benefit of the LTP community. Examples of these tools are
ELENDIF [25, 26], BOLSIG+ [27, 28], EEDF [29], BOLOS
[30], METHES [31, 32], Magboltz [33, 34] and MultiBolt
[35, 36], the latter four being open-source tools. BOLOS is a

Python library using an algorithm similar to that adopted in
BOLSIG+, METHES is a Monte Carlo collision code written
in MATLAB® [37] for the simulation of electron transport in
LTPs, and MultiBolt is a multi-term Boltzmann equation
solver, also written in MATLAB®, to benchmark cross-
section sets with interest for LTP models. BOLSIG+,
BOLOS, METHES and MultiBolt accept input files with
electron scattering cross sections obtained from the LXCat
open-access website [38]. Magboltz is a Fortran code with
hardcoded data that combines a multi-term expansion (to the
third order) of the electron distribution function with a Monte
Carlo integration technique for solving the EBE, to ensure
calculation accuracies below 1% for the Lorentz angle. All
other tools mentioned here solve the EBE under the classical
two-term approximation [39, 40]. Magboltz and BOLSIG+
describe the drift and diffusion of electrons in a LTP under the
influence of electric and magnetic fields at any angle with
each other, whereas EEDF can consider crossed electric and
magnetic fields only. BOLSIG+ and EEDF accept also high-
frequency (HF) excitation electric fields as input data. Mul-
tiBolt includes a multi-harmonic model for intense microwave
and terahertz excited LTPs [41]. All other codes mentioned
here are for LTPs excited by a stationary (DC) electric field.

Most of these codes take into account the variation of the
electron density due to non-conservative electron scattering
mechanisms, such as ionisation, attachment and recombina-
tion. The Monte-Carlo codes, BOLSIG+ and MultiBolt fur-
ther calculate transverse and longitudinal bulk/flux swarm
parameters, by adopting a density-gradient expansion, and
they also allow for an electron density growth under steady-
state Townsend (SST) or Pulsed Townsend (PT) conditions,
by prescribing the energy sharing between the primary and
the secondary electrons resulting from ionisation events
(METHES), or by taking the limiting cases of no-sharing
and/or equal-energy-sharing (BOLSIG+ and MultiBolt). In
principle, all these codes can solve the EBE for a mixture of
gases chosen by the user, taking into account electron colli-
sions of first and second kind with electronic-like excited
levels, but this feature is not available (or is difficult to
extend) to the subset of vibrational levels within an electronic
level and the subset of rotational levels within a vibrational
level.

It is unquestionable that substantial progresses were
made in setting the basic model formulations and computa-
tional techniques describing LTPs. However, maintaining this
route requires a community-wide change in its mode of
operation, by borrowing best practices from other disciplines.
A closer linking between theory and computation, the adop-
tion of high performance and cloud computing (HPCC)
techniques, the implementation of verification & validation
(V&V) standards, the distribution of open-source codes, and
the support of open-access databases are examples of these
practices [42]. The codes previously mentioned implement
some of these best practices, because they use an open-access
database, or because they are open-source tools, or both in a
few cases.
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The concern about the correctness of computer simula-
tions is not new, and the pioneering efforts of several authors
to introduce V&V strategies in the development of codes is to
be recognized. These strategies concern both the definition of
test problems to be used in verification procedures [43–46],
and the swarm validation of codes and cross section data [47].
The latter research programme relates to the highly-sensitive
procedure for obtaining cross sections from electron transport
coefficients, which is discussed with detail in several pub-
lications [48–54].

Recently, there has been a growing awareness of the
community about the relevance of defining and implementing
structured V&V approaches, to be routinely followed as part
of code development [55]. This attitude is motivating colla-
borative efforts for discussing V&V standards [56], in a
network approach where the needs of the community are
necessarily considered. On this latter point, when the focus is
on the description of the electron kinetics, there is obvious
demand for predictive tools providing an adequate and user-
friendly handling of the energy transfer to/from the internal
degrees of freedom of atoms and molecules (namely in what
refers the electron-impact excitation/de-excitation of elec-
tronic, vibrational and rotational levels), in order to obtain
quality information that can be used as input data in macro-
scopic models or in the analysis of experimental diagnostics.

This work presents the open-source simulation tool Lis-
bOn KInetics Boltzmann (LoKI-B), that solves a time and
space independent form of the two-term EBE for non-
magnetised LTPs excited by DC/HF electric fields, including
first-kind, second-kind and electron-electron collisions, and
assuming either a space-homogeneous exponential temporal
growth or a time-constant exponential spatial growth of the
electron density, as simplifying conditions to account for
changes in the number of electrons due to non-conservative
events (e.g. the production of secondary electrons born in
ionisation events). Rotational collisions can be described
using either a discrete formulation or a more convenient
continuous approximation [57], which was formulated and
tested for homonuclear diatomic molecules. On output, LoKI-
B gives the electron distribution function and the various
electron macroscopic parameters, namely swarm parameters
and power balance terms, calculated using either the dis-
tribution function obtained from the solution to the EBE or
some other form prescribed by the user. The electron mac-
roscopic parameters are relevant for the adjustment of elec-
tron-scattering cross sections, the analysis of the distribution
of power among the collisional channels, and the control upon
calculation errors and validity limits. LoKI-B leverages on the
scientific heritage in the field of nonequilibrium plasma
kinetics of the Portuguese group N-Plasmas Reactive: mod-
eling and Engineering (N-PRiME) [58], and it was developed
under the framework of a dedicated project [59], resorting to
well-grounded scientific foundations established years ago
[60, 61]. LoKI-B is a flexible and upgradable tool developed
with object-oriented programming under MATLAB® [37], to
benefit from its matrix-based architecture. The code adopts an
ontology that privileges the separation between tools and

data, namely by using a well-defined interface and data
format.

The organisation of the paper is the following. Section 2
presents arguments to motivate users for using LoKI-B.
Section 3 recalls the basics of the EBE, reviewing its two-
term formulation (focusing on the ionisation collision opera-
tor and the definition of the effective/total electron-neutral
momentum-transfer cross section), showing the flexibility in
defining the electron excitation conditions from the input data
available, providing minimal details about the numerical
solution, and presenting the main electron macroscopic
parameters calculated as output. Section 4 gives examples of
results obtained with LoKI-B for different model and real
gases, putting forward the main features and the flexibility of
operation of the simulation tool, verifying it against analytical
results, benchmarking it against numerical calculations
obtained with BOLSIG+, and validating the output by
comparison with available measurements of swarm para-
meters. Section 5 presents some final remarks and future
guidelines.

2. Why using LoKI-B?

LoKI-B was developed as a response to the need of having an
electron Boltzmann solver easily addressing the simulation of
the electron kinetics in complex gas mixtures. To our knowl-
edge, this requirement is not fully met by none of the solvers
available for public use, including BOLSIG+, undoubtedly the
one most adopted by the LTP community. As mentioned
before, BOLSIG+ (version 12/2017 beta [28]) features several
physical models that allow its use in many different working
conditions, namely: electron drift and diffusion under the
influence of electric and magnetic fields at any angle with each
other; density-gradient expansion allowing calculating the
transverse and longitudinal bulk/flux swarm parameters;
influence of electron-electron collisions on the first anisotropy;
HF excitation; PT and SST electron density growth due to non-
conservative electron scattering mechanisms. The inclusion of
stepwise-inelastic and superelastic collisions is also announced
through the selection of the option ‘Superelastics’. However,
this option activates these mechanisms for all the target states
considered in the simulations, assuming fractional populations
for the upper and lower states of each transition calculated from
bi-Maxwellian Boltzmann factors, with a transition from the gas
temperature Tg to an excitation temperature Texc occurring
around an energy Utr (T T,g exc and Utr are provided by the user).
Moreover, this feature does not allow discriminating the nature
of the different states considered, treating electronic and
vibrational states in a similar way (by using electron-scattering
cross sections labelled as EXCITATION, to describe both
electronic and vibrational transitions), with populations that are
normalized separately in pairs, for each excitation process. The
populations of rotational states are normalized in a more rig-
orous way, over its ensemble, always with the restriction of
using a bi-Maxwellian Boltzmann distribution. As an alternative
solution to the previous limitations, BOLSIG+ʼs users can
trigger stepwise-inelastic and superelastic mechanisms by using
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a double-arrow (<->) when defining each electron-collision
mechanism in the cross-section input file. In principle, this
procedure allows a free choice of the populations for each target
state, and of the normalization rules to be satisfied by each
ensemble of states (electronic, vibrational, rotational). However,
in this case BOLSIG+ treats the various target states as indi-
vidual components of a gas mixture, for each of which ‘mole
fractions’ must be provided, introducing additional complica-
tions. In particular, BOLSIG+ adopts the standard format of
LXCat for the cross-section input files, where each target cor-
responds simply to a ‘gas’, with no details on its quantum
configuration. This way, there is no discrimination between an
electronic ground/excited-state and a vibrational ground/
excited-state (within the former), unless the user splits the input
file of the ‘gas’, creating as many files as the target states to be
considered, in order for BOLSIG+ to import them as ‘pseudo-
gas-components’ of a mixture. Naturally, each one of these files
should contain not only the excitation cross sections for the
corresponding target, but also its elastic momentum-transfer
cross section, which can be difficult to deduce if the original
data in the ‘gas’ input file is for the effective momentum-
transfer cross section (see the discussion in section 3.2).

Compared to BOLSIG+, the current version of LoKI-B
is more limited in the features of some physical models (only
non-magnetized plasmas are described; no density-gradient
expansion is included; the impact of electron-electron con-
ditions in the first anisotropy is not considered), but in other
cases it includes further options (e.g. the rotational excitation/
deexcitation of homonuclear diatomic molecules can be
described using a convenient continuous approximation CAR,
see section 3.1; the sharing of energy between the two elec-
trons involved in ionization events can be more generally
described by a differential cross section, in addition to the
limiting cases of no-sharing or equal-energy-sharing, see
section 3.2; the electron macroscopic parameters can be cal-
culated adopting a generalised Maxwellian distribution
function, or any other function prescribed by the user, see
section 3.5). Principally, LoKI-B was designed for the
simulation of the electron kinetics in any complex gas mixture
(of atomic/molecular species), describing first and second-
kind electron collisions with any target state (electronic,
vibrational and rotational), characterized by any user-pre-
scribed population, easily defined through a formula or a text
file (e.g. a Boltzmann distribution at gas temperature for the
rotational states; a Treanor-Gordiets distribution at given
excitation temperature for the vibrational states; and a set of
self-consistently-calculated or measured populations for the
electronic states, see examples in section 4). Thus, in LoKI-B,
the structure of each target state must be detailed according to
the standard rules of atomic and molecular physics, and the
limitations previously reported for BOLSIG+ in the handling
of input data from LXCat are solved by including extra
specifications in the input files (see section 3.3). Naturally,
this flexibility is enhanced by the open-source nature of
LoKI-B, making the code transparent and easy to use, and
although these features are of more technical nature they are
perceived today as compelling advantages for the users [62].

3. The electron Boltzmann equation

The simulation tool LoKI-B solves a time and space inde-
pendent form of the two-term EBE, calculating the electron
energy distribution function (EEDF) and the corresponding
electron macroscopic parameters. The current version of the
tool is for non-magnetised LTPs. The scientific foundations of
LoKI-B were established years ago [60, 61], and are based on
the early works of Lorentz, Holstein, Allis and Delcroix
[39, 40, 63, 64]. A recent topical review [1], integrated in the
collection Foundations of low-temperature plasmas and their
applications published by Plasma Sources Science and
Technology, gives a summary of the essentials of the EBE,
when written for an electron distribution function expanded in
Legendre polynomials P cosl q( ) around the angle θ, defining
the spatial orientation of the velocity vector with respect to
the polar direction of the total anisotropy (produced by
electric fields and density gradients).

3.1. General formulation

LoKI-B describes the electron kinetics of a plasma with
electron density ne, excited from a general mixture of atomic/
molecular gases, by applying an electric field along the z-axis
with the form

E t E t ecos , 1p zw= -
 ( ) ( ) ( )

where the oscillation frequency ω is either set to zero (in the
DC case) or taken much larger than the typical collision
frequency νc (in the HF case). Each gas k of the mixture has
mass Mk and particle density Nk, such that the total gas
density is N p k T NB g k k= º å( ) , with p the total gas pres-
sure and Tg the gas temperature (kB is the Boltzmann con-
stant), assumed equal for all k-gas components. Moreover,
each gas k is composed by several electronic levels ki with
particle density Nki

, such that the k-gas density is N Nk i kiº å .
We also introduce the following normalised densities: the gas
fraction in the mixture χk ≡ Nk/N; the population of level ki,
relative to the k-gas density, N N ;k k ki ix º and the reduced
density of level ki, relative to the total gas density,

N Nk ki id º , such that k k ki i
d x c= . Note that each ki-level can

include several vibrational sub-levels kiv
, each one composed

by several rotational sub-levels kivJ
. The definition of the

normalised densities for each one of these sub-levels follows
the same ontology as for the ki levels, and therefore can be
obtained by a straightforward generalisation of ki

x and kid .
In the classical two-term approximation, the electron

distribution function can be written assuming a separation
between the Legendre expansion of the energy distribution
and the space-time profile of the electron density ne(z, t) as
follows

F z u t f u f u
v

v
t n z t

f u f u t n z t

, , cos ,

cos cos , , 2

e

e

0 1

0 1

w

q w

+

= +


 ⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭( ) ( ) ( ) · ( )

[ ( ) ( ) ] ( ) ( )

where u m v e2e
2= ( ) is the electron kinetic energy in eV

(with me and e the electron mass and charge, respectively);
f 0(u) ≡ f (u) is the isotropic part of the electron distribution
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function, identified with the EEDF in the framework of the
two-term approximation, and satisfying the normalisation
condition f u u du 1;

0ò =
¥

( ) and f 1(u) is the (real part of
the) first-anisotropy of the electron distribution function.

Under the previous conditions, the EBE including a non-
conservative collisional operator can be written as

m

eu N
uf u

N

m

e

dG u

du
S u a

2

1

2
3e eeffná ñ

+ =( ) ( ) ( ) ( )

f u
E N

u

df u

du
b, 31

PT

z
= -

W
( ) ( )

( )
( ) ( )

or

N
uf u

N

m

e

dG u

du
S u a

1

3

1

2
4eeff 1a
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f u
N

u
f u

E N

u

df u

du
b, 41 eff

SST SST

a
= -

W
-

W
( ) ( )

( )
( ) ( )

( )
( ) ( )

where(3a) and(4a) or(3b) and(4b) correspond to the iso-
tropic and anisotropic components of the EBE, respectively,
in the following approximations: the space-homogeneous
equations (3a)–(3b) assume an exponential temporal
growth of the electron density with a growth constant

k i k k keff ion att , ,ion ,atti i i
n n n d n ná ñ º á ñ - á ñ º å á ñ - á ñ[ ], corresp-
onding to the electron net creation frequency for the system
under study (with ionná ñ and attná ñ the corresponding electron
mean frequencies for ionisation and attachment, respectively,
and where the sums extend over all levels of all gases in the
mixture); the time-constant equations (4a)–(4b) assume an
exponential spatial growth of the electron density in the
direction opposite to that of the applied electric field, with a
growth constant k i k k keff , i i i

a a h d a hº - º å -( ), corresp-
onding to the effective electron Townsend coefficient (with α

and η the corresponding first and second Townsend coeffi-
cients for ionisation and attachment, respectively). Note
that the inclusion of growth models for the electron density
is necessary if one intends a space and time independent
description, yet including non-conservative collisional
mechanisms such as electron ionisation and attachment. The
temporal growth model was used to simulate Pulsed Town-
send (PT) discharges by Tagashira et al [65], using the for-
mulation of Thomas [66] for the one dimensional continuity
equation of electrons under the action of an uniform electric
field. The spatial growth model is usually adopted when
simulating steady-state Townsend (SST) discharges main-
tained with a DC electric field [65].

Equations (3a)–(3b) can be used in either the DC or the
HF cases, whereas equations (4a)–(4b) are for the DC case
only. In these equations, the quantity E/N is the reduced
electric field, where E Ep zº (with 1 or 2z = for the DC
or the HF cases, respectively); the quantities ΩPT and ΩSST

have the dimensions of a cross section, being defined as

u u
m eu N

u
a

2
5c

e

c
PT

2w
W º W +

W
( ) ( ) [ ( )]( )

( )
( )

u u b, 5cSST sW º( ) ( ) ( )

where u u m eu N2c c e effs nW º + á ñ( ) ( ) ( ) ( ), with ucs º( )
k k k c,c så the electron-neutral total momentum-transfer cross

section, for the system under study, and σk,c the corresp-
onding cross section for gas k; G G G G GE eeel CARº + + +
is the upflux function that contains power gain/loss con-
tributions due to, in order, the applied electric-field, the elastic
collisions, the rotational collisions (in the continuous
approximation for rotations, CAR, with a Chapman-Cowling
correction due to the gas temperature [57, 67–69], written
here for the case of homonuclear diatomic molecules), and the
electron-electron collisions [68], respectively
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e
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where m M N eu m, 2k e k k c k e k c,
el

,
elg n sº º is the electron-

neutral elastic momentum-transfer collision frequency for the
gas k ( k c,

els being the corresponding cross section), k0,n º
N eu m2k e k0,s is the electron-neutral collision frequency for
the rotational excitation of gas k ( Q a8 15k k0,

2
0
2s pº being the

corresponding cross section, with a0 the Bohr radius), Bk andQk

are the rotational constant and the quadrupole-moment
constant (in units of ea0

2) of the gas k, respectively, I(u) and J(u)
are the relevant Spitzer integrals [39, 70], and een º

e m v n4 4 lne c e
2

0
2 3p pe L[ ( )] is the electron-electron collision

frequency (with ε0 the vacuum permittivity, ln cL the Coulomb
logarithm ( n12c e D

3p lL º ) and λD the Debye length);
S S S Si j i i j i i i i, , ,ion ,attº å + å + å> is the discrete collision
operator that contains power loss/gain contributions due to
inelastic/superelastic mechanisms, ionisation and attachment,
respectively

a7

S u u V u V f u V u u f u
g

g
u u f u V

u V u V f u

i j i i j i j i j i j i j

j
i

j
i j i j

i j i j i j

, , , , , ,

, ,

, , ,

d s s

d s

s

= + + + -

+ -

- + + ( )

( ) [( ) ( ) ( ) ( ) ( )]

[ ( ) ( )

( ) ( ) ( )]

b7

S u u u u V u f u du

u u u f u du u u f u

,

,

i i
u V

u V

i i

u V
i i

,ion

2

,ion
sec

,ion

2
,ion
sec

,ion

i

i

i

, ion

,ion

,ion

ò

ò

d s

s s

= ¢ ¢ ¢ - - ¢ ¢

+ ¢ ¢ ¢ ¢ -

+

+

+

¥

⎧⎨⎩
⎫⎬⎭ ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

S u u u f u c. 7i i i,att ,attd s= -( ) ( ) ( ) ( )

In(7a)–(7c), the levels i, j and the reduced densities δi, δj now
refer to any level for any gas in the system; σi,j is the electron-
collision cross section for the i j excitation with energy
threshold Vi,j and statistical weights gi and gj, respectively (note
that the third and fourth superelastic terms in (7a) were written
resorting to the Klein-Rosseland relation [71]); ui,atts ( ) is the
electron-collision cross section for the attachment of level
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i; u u,i,ion
secs ¢( ) is the single differential cross section (SDCS) for

the ionisation of level i with energy threshold V ;i,ion and

u u u du, 8i

u V

i,ion
0

2

,ion
seci, ion

òs s= ¢ ¢
-

( ) ( ) ( )
( )

is the integral cross section for the ionisation of level i. The
SDCS takes into account the distribution of the energy available
after an ionisation event, caused by a primary electron with
energy u¢, yielding a secondary electron born in the event with
energy u and a scattered electron with energy u V ui,ion¢ - - .

Note that the effect of rotational inelastic/superelastic
mechanisms, in the electron kinetics of homonuclear diatomic
molecules, can be considered by adopting either the CAR
approach of(6c) or the discrete approach of the collision
operator(7a), yielding similar results provided that the rota-
tional constants Qk and Bk are coherently matched to the
rotational cross section set σi,j [57].

LoKI-B allows the user to choose between different
descriptions of the ionisation mechanism, namely: (i) taking
ionisation as a conservative mechanism, described by the inelastic
part of the collisional operator(7a), in which case the first terms
in the left-hand side of(3a) and(4a) should be set to zero; (ii)
taking ionisation as a non-conservative mechanism, described by
the collisional operator(7b) with a SDCS, and using the EBE
given by (3a)–(4b); (iii) taking ionisation as a non-conservative
mechanism, and prescribing no-sharing of energy between the
secondary electron, introduced at u=0, and the scattered elec-
tron, introduced at energy u Vi,ion¢ - . In this case the SDCS for
the secondary electrons writes u u u u,i i,ion

sec
,ions s d¢ = ¢( ) ( ) ( ) and

the ionisation operator becomes

S u u V u V f u V

u u f u
m

e N
u

2
, 9

i i i i i i

i
e i

,ion ,ion ,ion ,ion ,ion

,ion
,ion

d s
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d

= + + +

- +
á ñ

⎡
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⎤
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

corresponding to the inelastic part of(7a) plus an extra term that
describes the introduction of new electrons at zero energy; (iv)
taking ionisation as a non-conservative mechanism, and pre-
scribing equal-energy-sharing between the secondary and the
scattered electrons, introduced at energy u V 2i,ion¢ -( ) . In this
case the SDCS for the secondary electrons is

u u u u u V, 2i i i,ion
sec

,ion ,ions s d¢ = ¢ - ¢ -( ) ( ) [ ( ) ] and the ionis-
ation operator becomes

10
S u u V u V f u V

u u f u

4 2 2 2

,
i i i i i i

i

,ion ,ion ,ion ,ion ,ion

,ion

d s
s

= + + +
- ( )

( ) [ ( ) ( ) ( )
( ) ( )]

where the first term of S u dui,ion ( ) describes the entrance of both
the secondary and the scattered electrons at a total energy between
u2 and u du2 2+ , produced by a primary electron with energy

u u V2 i,ion¢ = + , whereas the second term describes the exit of
primary electrons with energy u after ionizing collisions.

Note that the current version of LoKI-B does not include
any external sources of electrons, such as electron beam
injection or photoionization. However, the model adopted in
the code can be easily upgraded as to consider these effects:
(i) on the right-hand side of the EBE, with the addition, to the

source function S, of an energy-resolved gain-term; (ii) on the
left-hand side of the EBE, with the addition of the corresp-
onding energy-integral term, describing the growth of the
electron density in a stationary situation. The inclusion of
these external sources of electrons, as well as the handling of
the non-conservative electron-collision mechanisms (particu-
larly the attachment), must be carefully monitored in all cases,
since they can be responsible for the development of sig-
nificant anisotropies, in which case the two-term expansion of
the EBE adopted here is no longer valid.

3.2. Cross section models adopted

LoKI-B adopts specific models to define the total momentum-
transfer cross section, σc, and the SDCS for the ionisation of
level i, i,ions .

The momentum-transfer cross section, for an electron-
neutral collision described by a differential (angle-resolved)
cross section σ(u, θ), is generally defined as [72]

u u d
1

2
, 1 cos sin . 11c

0òs s q q q qº -
p

( ) ( )( ) ( )

For a gas k, the electron-neutral momentum-transfer cross
section σk,c(u) is constructed by weighting the contributions
of the different types of collisional mechanisms to give

u u u u ,

12

k c
i

k k c
i j i

k k c k k c, ,
el

,
, ,i i i i j j j i, ,å ås x s x s x s= + +

>

( ) ( ) [ ( ) ( )]

( )

( ) ( )

where ,k c k c,
el

,i i j,s s ( ) and k c,j i,s ( ) are the electron-neutral
momentum-transfer cross sections for the elastic scattering of
level ki, the inelastic excitation k ki j , and the superelastic
de-excitation k kj i , respectively. The latter cross sections,
whose magnitudes are usually much smaller than those of

k c,
el

i
s , are often taken assuming an isotropic scattering (also
due to the lack of data), in which case one can identify the
momentum-transfer cross section with the integral cross
section (integrated over all scattering angles), i.e.

k c k,i j i j, ,s s( ) ( ). Also, the elastic momentum-transfer cross
section is usually identified with that of the highly-populated
ground-state of the gas. Therefore

u u u u . 13k c k c
i j i

k k k k, ,
el

,
i i j j j i, ,ås s x s x s+ +

>

( ) ( ) [ ( ) ( )] ( )( ) ( )

The solution of the EBE(3a)–(4b) requires information
on both the elastic and the total momentum-transfer cross
sections, but the way to obtain it depends on the momentum-
transfer data available for each gas. If the elastic momentum-
transfer cross section is available, equation (13) can be used
directly to deduce the corresponding total σk,c, knowing the
electron-scattering inelastic/superelastic cross sections for the
transitions considered together with the relevant populations,
to be self-consistently determined (if possible) within a kin-
etic model. Conversely, if the data available is for a total
momentum-transfer cross section, which in databases is
usually termed as effective k c,

effs (see section 3.3), then the
elastic momentum-transfer cross section can be deduced from
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k c k c i j i k k k k,
el

,
eff

,
prescribed prescribed

i i j j j i, ,s s x s x s= - å +> [ ]( ) ( ) , where

the populations k
prescribed

i
x and k

prescribed
j

x correspond to some

prescribed distribution, coherent with the measured/estimated
data of k c,

effs , and allowing to obtain a unique result (density
independent) for the elastic cross section. By default, LoKI-B
adopts a Boltzmann distribution at the gas temperature for

k
prescribed

i
x , but the user can modify this choice. The previous
comments support the recommendation of replacing, whenever
possible, the data for effective momentum-transfer cross
sections with that for elastic momentum-transfer cross sections.

The implementation of the ionisation operator(7b) requires
information on the SDCS, discriminating its values as a func-
tion of the primary and the secondary electron energies. In
general, the available experimental data for SDCS is scarce and
often measured for only a few energy values of the primary
electron. Here, we have adopted the comprehensive set of
measurements of Opal et al [73], for the double differential
cross section of different gases, resolved on both the energy and
the angle of the secondary electron. This pioneering work
proposes differential ionization cross sections with a very reli-
able shape [74], which can be normalized from available
experimental data for the corresponding integral cross sections
(see (8)). Indeed, after integration over the angles, and by
comparing the energy distributions of the secondary electrons
for different energies of the primary electrons, these authors
proposed a fitting expression for the SDCS

u u
u

w u V w u w
,

arctan 2

1

1
,

14

i
i

i
,ion

sec ,ion

,ion
s

s
¢ =

¢
¢ - + b

( ) ( )
[( ) ( )] ( )

( )

where β ; 2 and w is a parameter close to the ionisation
threshold Vi,ion, which is set for each gas according to the ori-
ginal estimates [73]. Note that(14) satisfies exactly the expres-
sion(8) for the integral cross section i,ions , and therefore it is
used in LoKI-B to describe the energy distribution of the elec-
trons involved in ionisation events, using available data (see
section 3.3) and mitigating possible normalisation errors. Note
also that (14) is not the sole fitting expression proposed for the
SDCS in the literature, a possible alternative being given in [75].

3.3. Input data

LoKI-B solves the EBE(3a)–(4b) given: the working condi-
tions E/N (or Te, when choosing a generalised Maxwellian as
EEDF, see section 3.5), p, Tg, ω/2π and ne, along with: the χk

fractions of the various k-gases in the mixture; the distributions
of populations ,k ki iv

x x and kivJ
x of electronic levels ki, vibra-

tional levels kiv
and rotational levels kivJ

, respectively (if
applicable); and the sets of cross sections k c,

el
i

s (or k c,
effs , see

section 3.2), σi,j, i,atts and i,ions , where here i, j stand for any
level of any gas in the system. Note that Tg is needed to
calculate the elastic and the CAR operators(6b) and(6c),
whereas p is required to calculate the total gas density in the
particular case of HF excitations (for obtaining the reduced
frequency ω/N) and/or if electron-electron collisions are

considered in the calculations (for obtaining the ionisation
degree ne/N).

Input parameters are set from a text input-file, in a user-
friendly flexible way, e.g. allowing to (i) prepare simulations for
either a sole value or a range of values of the applied reduced
electric field or electron temperature; (ii) choose among dif-
ferent ionisation models (conservative, no-sharing or equal-
energy-sharing) and electron-density growth models (temporal
or spatial); (iii) define the distributions of populations directly in
the input file, from user-defined text files, or via functions
for typical distributions at user-defined temperatures (e.g.
Boltzmann or Treanor); (iv) list the filename(s) with the set(s) of
cross sections to adopt in the simulations; (v) provide details
about the energy grid and the solution algorithm to adopt in the
simulations (see section 3.4). The code uses SI units for all
physical quantities, except the energies that are expressed in eV
(electron-volt) and the reduced fields that are expressed in Td
(Townsend; 1 Td 10 Vm21 2= - ).

By default, LoKI-B uses electron scattering cross
sections obtained from the LXCat open-access website [38].
The cross sections can be assembled into a single file, or
given from multiple files. As input, LoKI-B accepts also extra
sets of cross sections, which are not used in the calculation of
the EEDF, but remain available for integration over the cal-
culated EEDF, to obtain electron macroscopic parameters
with interest for various purposes (e.g. global models,
spectroscopy analysis, actinometry diagnostics, etc.). The
choice of the input data is the responsibility of the users,
meaning that the selection of any cross section set (obtained
or not from LXCat) must be carefully validated and evaluated
according to the specific needs and the conditions of interest
for the simulations.

LXCat is organised to provide ‘data required for mod-
eling low temperature plasmas’ [38] in the most effective
way. In the case of electron-neutral scattering cross sections,
LXCat provides easy access to complete sets of cross
sections, defined as those giving a good description of all
electron energy and momentum losses [72], yielding electron
swarm parameters in agreement with available measured data
(within experimental uncertainties), when used in a two-term
Boltzmann solver [72, 76]. Each complete set assembles cross
sections for electron collisions with different neutral targets,
usually associated with the electronic ground-state of each
gas. To date, on LXCat these data are tagged with the name of
the corresponding gas (e.g. Ar, N2, O2, CO2, L) and are
grouped under the category Ground states, where one
can find cross sections for the collisions of electrons with the
electronic/vibrational/rotational ground-states of a neutral
gas. For example, the datasets N2 may contain (i) the elastic/
effective momentum-transfer cross section for N2; (ii) exci-
tation cross sections for different electronic levels (including
the ionisation level), from the electronic ground-state N2(X);
(iii) excitation cross sections for different vibrational levels
N2(X,v), from the vibrational ground-state N2(X, v=0); (iv)
a global rotational excitation cross section for N2(X).

This practical organisation of LXCat can create some
difficulties when a detailed discrimination and handling of
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data is intended. The reason is of technical nature, and it
relates with the fact that, to date, electron collisions with the
Ground state of a gas are described as a collection of
mechanisms e + gas name -> L, with no possibility to
specify the internal structure of the electronic ground-state of
the gas. To circumvent this limitation, LoKI-B checks the
free-field COMMENT, of the LXCat datasets, to look for details
on the full structure of reactants and products, for each
electron-impact reaction. This workaround is the practical
solution to prepare any cross section datafile obtained from
LXCat for use in LoKI-B, and it is already implemented in the
database IST-Lisbon. For example, in IST-Lisbon the v=
0 to v=1 vibrational excitation within ground-state N2(X) is
described by LXCat metadata as e + N2 -> e +
N2(v=0—v=1), but is discriminated in the COMMENT field as
e + N2(X,v=0) -> e + N2(X,v=1). Note also that, in
IST-Lisbon, the cross sections for excitations from vibrational
levels N2(X, v>0) and from rotational levels N2(X, v=
0, J), can be found in the datasets termed N2-vib and
N2-rot, respectively.

3.4. Numerical solution

The EBE is numerically solved in an uniform energy grid
u n u1 2n = - D( ) , defined in the energy interval [0, umax]
with n 1, 2, =  cells of fixed step-size u umax D = ,
each cell n being limited by nodes n 1 2- and n+1/2. The
user can define the energy grid in two ways: (i) by setting the
maximum energy umax and the number of cells ; (ii) by
prescribing a number of decades in the fall of the EEDF,
between f1 and f , as to ensure an automatic adjustment of
the energy grid. Typical values for the decade-fall are within
10 to 25, considering not only the use of double precision, but
also the order of magnitude of the various quantities (kinetic
energy, cross sections) multiplying the EEDF in the calcula-
tions. The user is responsible for adequately defining the
energy grid, namely by noticing that small energy steps are
required to resolve any relevant structure in the cross sections,
such as near-threshold variations and resonances, as well as
situations involving the presence of a Ramsauer minimum.

Equations (3a)–(4b) are written for each grid-cell, where
the isotropic and anisotropic functions f and f 1 are defined,
with the corresponding upfluxes Gx (x=E, el, CAR, ee) and
cross sections σy (y=k, c; k(i,j)) being set on the grid-nodes.
The cross sections are interpolated linearly from the data
provided by the user, setting to zero all the values up to the
corresponding energy threshold, i.e. 0yn

s = for n �
INT V ui j, D( ).

The EBE is discretised adopting the finite differences
scheme presented in [9]. The result is a system of algebraic
equations that can be written under matrix form, with tridia-
gonal elements coming from the left-hand sides of(3a)
and(4a), and some sparse off-tridiagonal elements due to the
electron-neutral collisional operator in the right-hand sides. In
particular, equations (3a)–(4b) are composed by terms pro-
portional to f, df/du and dG/du whose discretised forms can

be generally summarised as follows
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where a u a u, ¢( ) ( ) and b(u) are generic functions of u; cx is a
constant; g u u,x ( ) ( ) and u( ) can be obtained straightfor-
wardly from(6a)–(6d); and the coefficients An and Bn are
linear functions of the EEDF given by

A
u u

a f a
2

16n
n n
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n m m

1 2 1 2

2
1

,
  

å= -
D
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D

º+ +
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. 16n
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The previous equations are subjected to the following
conditions [9]: (i) the flux boundary conditions G(0)=
G(umax)=0, which imply g g 0x x1 2 1 2

= =
+

and A0 =
A B B 0;1 1 = = =+ (ii) the energy conservation condition
for dGee/du, which yields an,m=bm,n; and (iii) the imposi-
tion of a Maxwellian EEDF for dGee/du=0, which is
ensured by setting a an m m n, 1, 1= - + .

After discretisation, the isotropic part of the EBE can be
written as C f f 0m n m m1 ,

å == ( ) , which is solved coupled to

the normalisation condition f u u 1m m m1
å D == . The matrix

C( f ) is nonlinear due to the presence of the following terms
Firconsecutive iterations; (ii) a Newton-Raphson-based
approachst, the temporal/spatial growth-term of the electron
density, associated with non-conservative mechanisms,
involves either the effective ionisation rate coefficient Neffná ñ
or the effective Townsend reduced coefficient αeff/N, both
being functions of the EEDF (see section 3.5). Second, the
expression of the electron-electron upflux Gee involves linear
functions of the EEDF, as confirmed by(6d) and(16a)–(16b).

In the absence of nonlinear effects (e.g., for electro-
positive gases, with the ionization taken as a conservative
mechanism and no electron-electron collisions), the EBE is
solved adopting a very effective direct solution method.
Conversely, when the matrix C( f ) contains nonlinear terms,
the EBE must be solved using some iterative method. In the
case of weak nonlinear effects (e.g., low electronegativity and
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low ionization degree), the solution can be obtained by using
two nested iterative algorithms, based on successive direct
solutions. The algorithms adopt (i) a mixing of solutions to
converge over Neffná ñ or αeff/N, looking for relative differ-
ences of the EEDF below a user-prescribed value (typically
10−9), between two consecutive iterations; (ii) a Newton-
Raphson-based approach that converges over the EEDF,
looking for relative variations below a user-prescribed value
(typically 10−9), between two consecutive iterations. Final
convergence checks also the ratio of the power ‘dissipated’ in
electron-electron collisions to the power gained from the
applied electric field Θee/ΘE, looking for values of this ratio
below 10 109 10- -– . In the case of strong nonlinear effects, the
user is recommended to choose a relaxation method for sol-
ving the EBE. Here, the default convergence criterion
demands relative variations of the EEDF below a user-pre-
scribed value (typically 10−9), between two consecutive
iterations.

3.5. The electron macroscopic parameters

On output, LoKI-B calculates the isotropic and the aniso-
tropic parts of the electron distribution function, in addition to
various electron macroscopic parameters obtained by inte-
gration over the EEDF, namely: (i) swarm parameters
(transport parameters and rate coefficients), which can be
used to adjust complete sets of electron-scattering cross
sections [47, 76] or as input parameters in macroscopic
(fluid/global) plasma models [1, 77, 78]; (ii) power-transfer
terms [1, 70], providing the distribution of power among the
different collisional channels and controlling the calculation
errors.

The rate coefficients for excitation/de-excitation
mechanisms, between levels i and j>i, are given by [1]
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Note that(17a)–(17b) can be applied not only to the cross
sections adopted for solving the EBE, but also to the extra set
of cross sections defined by the user as additional input data
of LoKI-B (see section 3.3).

The ionisation and the attachment rate coefficients are
defined similarly to(17a) as
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For simulations involving the time-growth of the electron
density, equations (18a)–(18b) are solved within each itera-
tion on the convergence parameter Neffná ñ (see section 3.4).

The reduced transverse free-diffusion coefficient and the
reduced mobility are calculated from [1, 70]
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In(19a), x=c, SST for temporal or spatial growth of the
electron density, respectively. Equation (19b) corresponds
either to the DC mobility, at ω=0 and x PT, SST= for
temporal or spatial growth of the electron density, respectively;
or to the real part of the HF mobility, at ω ? νc and x=PT.
Equations (3b) and(4b) can be integrated to define the electron
mean drift velocity v e m u f u du2 3d e 0

1òº
¥

( ) ( )/ / , yielding
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and equation (4a) can be integrated to define the effective
Townsend coefficient

v v
. 21
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For DC simulations involving the spatial-growth of the electron
density, equations (20b) and(21) can be combined to yield

D E 0, 22e eeff
2

eff effa m a n- + á ñ = ( )

and in this case(22) is solved within each iteration on the
convergence parameter αeff (see section 3.4).

The balance equation for the electron power-density, per
electron at unit gas density, is obtained by multiplying(3a)
or(4a) by u e m2 e and integrating it over all energies. The
result writes (in eV s−1 m3)

N N N N
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where the different terms represent, in order, the variation of
the power density due to non-conservative mechanisms
inducing a time/space net growth of the electron density, the
power density gained from the applied electric field, and the
power density gained/lost in collisional events, respectively
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In these equations, the labels ‘inel’ and ‘sup’ refer to inelastic
and superelastic collisions, respectively, associated with rota-
tional, vibrational, electronic excitation/de-excitation and ionis-
ation/attachment mechanisms. In(24a), u f u du

0
3 2òe º

¥
( ) is

the electron mean energy, and Dε and με are the diffusion
coefficient and the mobility for the electron-energy flux,
respectively, defined by expressions similar to(19a) and(19b)
where the integrand function is further multiplied by u.

The parameters defined by(17a)–(24h) can be calculated
adopting the distribution function f (u), as obtained from the
solution to the EBE, or some prescribed EEDF, such as a
generalised Maxwellian [79–81]
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where Γ represents the gamma-function, Te is the electron
kinetic temperature such that k T e 2 3B e eº( ) ( ) , and s is a
positive real number that allows shaping the EEDF. In part-
icular, (25) yields a Maxwellian EEDF and a Druyvesteyn
EEDF for s=1 and s=2, respectively.

3.6. Validity limits and control

The two-term approximation adopted in LoKI-B to solve the
EBE is valid in a situation of small anisotropies [1],
corresponding to electron–neutral mean-free-paths much
smaller than any characteristic dimension of the plasma
container, and an energy gain from the electric field, between
collisions, much smaller than the electron kinetic energy. For
a homogeneous scenario like the one described here, the latter
condition is the most relevant and can be approximately
written as (see (20a) and(24b))

E , 26E e c
2m enQ ~  ( )

which yields, for a Maxwellian EEDF at 1 eV temperature and a
typical reduced collision frequency N v 10c c

19n s~ á ñ ~ ´-

10 106 13= - m3s−1, E N m e N 300e ce n ~ ( )/ / / Td.
This is a conservative limit for the reduced electric-field, often
exceeded in calculations because the two-term approximation
yields fairly good results still. However, users are advised to
check the EEDF results when taking E/N values much above
the estimated validity limit, namely by comparing the solution
obtained for the isotropic and the anisotropic parts of the
electron distribution function. Also, HF calculations are valid
only if the oscillation frequency of the electric field is much
larger than the typical frequency for the electron energy

relaxation, which can be approximately written as (see (6b))

N N , 27cw g n ( ) ( )

corresponding to ω/(2π) ? 20MHz–20kHz for νc/N∼
10−13 m3s T, 5 10 , 300g

1 5g ~ ´ =- - K and p∼
105 Pa–130Pa. Again, users are advised to check the validity of
the HF approximation for the particular working conditions
considered.

LoKI-B contains several control features upon the input
data and the calculation results, and in some cases it returns
warning messages for the benefit of users. In particular: (i) the
code controls the maximum value umax of the energy grid
adopted, comparing it with the cutoff energy ucutoff of the
electron-neutral elastic momentum-transfer cross section.
When ucutoff<umax a warning message is returned, and if the
user accepts to proceed with the calculations these are carried
out by setting to zero the values of any cross section from its
corresponding ucutoff and up to umax. LoKI-B does not extra-
polate cross sections beyond the cutoff energies defined in the
input data-files, again because it adopts an ontology that separates
the tool and the data. The user is recommended to always careful
examine the cross sections being used and, if needed, he/she
should adopt adequate laws to extrapolate them, chosen
according to the specific processes considered (e.g. dipole
allowed or dipole forbidden electron excitation, ionization, etc);
(ii) the code returns a warning message if the calculation of the
elastic momentum-transfer cross section from the corresponding
effective produces negative values for k c,

els (see section 3.2),
which are then set to zero. In this case, users are advised to check
the cross section data adopted; (iii) the code controls the quality
of the Boltzmann-matrix inversion, by monitoring the error upon
the fractional electron power-balance. The latter is obtained
from(23), by normalizing this equation with respect to a
reference power-density Θref, defined for each calculation as the
sum of all power-gain terms(24b), (24c), (24e). The relative
error E coll

gain
coll
loss

growth refQ + Q + Q + Q Q[ ] (with typical value
∼10−10) degrades for very-low E/Ns, due to the smallness of the
power-density values for all the power-transfer channels, and for
very-high E/Ns, if the umax grid-limit adopted in the calculations
is not large enough to prevent ill-conditioned EBE-matrices.

4. Results

This section gives examples of results obtained with LoKI-B
for different gases. The examples were chosen to serve a
twofold purpose. First, they illustrate the roadmap followed in
the development of the simulation tool, which involves its
verification against analytical results, its benchmarking
against numerical calculations obtained with other codes, and
the validation of the results obtained by comparison with
available measurements of swarm parameters. Second, they
put forward the main features and the flexibility of operation
of LoKI-B. The verification and the benchmarking exercises
are carried out for model gases, whereas the validation pro-
cedure uses real data from atomic and molecular gases, or for
gas mixtures. Calculations are for given values of E/N at

0w = , considering a gas temperature of 300 K, using the
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SDCS given by(14) to describe the energy sharing between
the scattered and the secondary electrons after each ionisation,
and assuming a temporal growth of the electron density,
unless stated otherwise. Typical run times are found between
0.5–1 s, depending of the E/N value considered, for calcu-
lations done in a laptop with a single processor at ∼3.5GHz,
adopting an energy grid with 1000 = cells adjusted as
described in section 3.4.

4.1. Examples for model gases

An obvious verification of LoKI-B corresponds to the solu-
tion of the EBE for a model gas where the sole electron-
scattering mechanisms are elastic collisions with the neutrals.
The problem can be solved analytically, yielding the well-
known Margenau EEDF [82]

f u
du
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and for a constant momentum-transfer rate coefficient the
result is a Maxwellian EEDF at temperature
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For this verification test we consider a model gas with
N 10c

el 12n = - m3s−1 andM=40amu, running LoKI-B for
E/N values between 0 and 50Td, adjusting the maximum
value of the energy grid as to ensure a fall of 15 decades for
the EEDF (see section 3.4). Figure 1 shows the EEDF and the
ratio of the anisotropic-to-isotropic components of the elec-
tron distribution function, at E/N=10 Td (corresponding to
k T e 4.53B e = eV) and 1000 = cells. As expected, the
fractional anisotropic component of the electron distribution
function increases with the electron energy, yet remaining
below the unit.

To evaluate quantitatively the deviation of the EEDF with
respect to a Maxwellian distribution function, fMxw, one can
follow different approaches. The simplest is to monitor the dif-
ferences of the electron kinetic temperatures obtained from the
curve in figure 1 and calculated from(29), T Te e,MxwD º
T T Te e e,Mxw ,Mxw-∣ ∣ . One can also compare directly the num-
erical and the analytical EEDFs, as shown in figure 2, which
presents the relative error between the distribution functions and
the mean value of this error over the entire kinetic-energy scale,

f f f u f u f uMxw numerical Mxw MxwD º -∣ ( ) ( )∣ ( ). Note that the
steady increase in the relative error of f (u), as the kinetic energy
increases, is due to the division by an exponentially decreasing
function, as was confirmed by calculating the corresponding
absolute errors. The relative errors for Te and f (u) are plotted in
figure 3, as a function of E/N at constant 1000 = cells,
revealing small standard deviations σ around average values .á ñ
between 5 10 4´ - and 10−3 respectively: T Te e,MxwáD ñ 

Tes =5.33 10 104 6´ - - and f f 1.57fMxw sáD ñ  = ´
10 8 103 6 ´- - .

The small error-dispersion observed in figure 3 is pre-
served for other values of  but, as expected, it is possible to
decrease the relative error by increasing the number of grid-
cells. Figure 4 shows the evolution of the average relative
error for the electron temperature and the EEDF, as a function
of the number of grid-cells, and from the data in this log-log
representation one can estimate the order of the algorithm
adopted in the calculations. Indeed, the slope of the trend line
with the squares is approximately 2, which is coherent with
the use of a second-order-accurate discretization scheme in
solving the EBE, whereas the slope of the trend line with the
triangles is roughly 1.6, thus revealing that the evaluation of
the electron temperature is related not only with the dis-
cretization scheme adopted for the EBE, but also with the

Figure 1. Electron energy distribution function (black curve, left
axis) at E/N=10 Td and 1000 = cells, calculated with LoKI-B
for a model gas where the sole electron-scattering mechanisms are
elastic collisions with the neutrals, assuming a constant momentum-
transfer rate coefficient [82]. For comparison purposes, the figure
shows also the ratio of the anisotropic-to-isotropic components of the
electron distribution function (red, right).

Figure 2. Analytical (solid black curve) and numerical (dashed blue)
EEDFs (see left axis), calculated for the same conditions as in
figure 1. The figure shows also the relative error between the
distribution functions (solid red curve), and the mean value of the
error over the entire kinetic-energy scale (dashed red) (see
right axis).
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integration routine used to obtain macroscopic values from
the EEDF (first-order mid-point quadrature rule).

A second verification check of LoKI-B analyses the
behavior of the electron-electron collision operator(6d) for an
increasing influence of these collisions, namely due to an
increase in the electron density. For this verification check we
consider a Reid-type model gas [43] with mass M=4amu,
temperature Tg=300 K and the following electron-scattering
cross sections: constant elastic momentum-transfer cross
section 6 10c

el 20s = ´ - m2; ramp inelastic cross section with
threshold 0.2 eV and slope 10−19 m2 eV−1. Figure 5 shows
the EEDF calculated at E/N=10 Td and 1000 = cells,
for electron densities varying between 1017 and 1022m−3,
corresponding to ionisation degrees n N 10 10e

6 1= -- - at
p=414Pa and Tg=300 K. As expected, the EEDF
approaches a Maxwellian distribution function with the
increase in the ionisation degree, which confirms the correct
behavior for the operator Gee.

The development of LoKI-B involves also its bench-
marking against numerical calculations obtained with other
codes, namely the very popular BOLSIG+ [27]. For these
comparisons we have adopted the same Reid model gas as
before [43], except for the value of the gas temperature taken
equal to 0 K, according to the definition settings of this model
gas. The calculations consider E/N values between 1 and
100Td, adopting an energy grid with 1000 = cells,
adjusted as to ensure a 13 decade-fall for the EEDF.

Figures 6(a)–(b) shows, as a function of E/N, the elec-
tron reduced mobility, as the example of an electron macro-
scopic parameter calculated with LoKI-B and BOLSIG+, and
the relative difference between the predictions of the codes for

N D N,e em and ε. In general, the results obtained with LoKI-B
and BOLSIG+ are in good agreement, within errors of
10 % 1%2 -- ( X X 2.20 10 3 10X

3 6sáD á  = ´  ´- -⟫ ,
4 10 3 10 , 2 10 2 104 4 3 3´  ´ ´  ´- - - - , for X N ,em=
D N ,e e, respectively).

4.2. Example for an atomic gas: argon

As mentioned previously (see section 3.5), swarm parameters
can be used to adjust complete sets of electron-scattering
cross sections, and this procedure of code/data validation was
also adopted in the development of LoKI-B, by comparing
calculation results with available measurements for these
parameters.

As an example for an atomic gas, figures 7(a)–(b) shows,
as a function of E/N, calculations and measurements of the
electron reduced mobility and the electron characteristic
energy u Dk e emº of argon, obtained for Tg ; 300 K, 77 K.
LoKI-B calculations used the Ar complete set of cross
sections, published in the IST-Lisbon database of LXCat [83].

Figure 3. Relative error of the EEDF (solid black curve, left axis)
and the electron temperature (dashed red, right), as a function of the
reduced electric field, calculated at 1000 = cells for the same
conditions as in figure 1.

Figure 4. Average relative error of the electron temperature
(triangles) and the EEDF (squares), as a function of the number of
grid-cells, evaluated for different E/N values under the same
conditions as in figure 1.

Figure 5. Electron energy distribution function, calculated with
LoKI-B for a Reid ramp-model [43] at E/N=10 Td, Tg=300 K,
p=414Pa and 1000 = cells, including the effects of electron-
electron collisions for the following ionisation degrees: 10−5 (A),
10−4 (B), 10−3 (C), 10−2 (D), 10−1 (E). The dashed curve is a
Maxwellian distribution function at k T e 0.16 eVB e = , corresp-
onding to the electron kinetic temperature of the EEDF calculated for
ne/N=0.1.
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The results in this figure reproduce the typical validation
agreement between calculations and measurements, within
the experimental uncertainty.

Argon was used also to analyse the impact, on the EEDF
and the electron swarm parameters, of the different descrip-
tions available for the ionisation (see section 3.1): using a
SDCS given by(14), according to Opal’s model [73]; pre-
scribing specific distributions of the energy available after
each ionisation, between the secondary and the scattered
electrons, namely by assuming no-sharing of energy with the
secondary electron or equal-energy-sharing between both
electrons; taking ionisation as a conservative mechanism,
with no production of secondary electron. Figures 8(a)–(b)
plots the EEDF at E/N=300 Td and the first reduced
Townsend coefficient as a function of E/N, for an argon
plasma. LoKI-B calculations used the IST-Lisbon cross
section set, and adopted the four descriptions mentioned
above for the ionisation mechanism, assuming a spatial-

growth of the electron density when considering the pro-
duction of secondary electrons due to ionisation events.

An observation of figure 8(a) shows the following: (i) for
all non-conservative descriptions, regardless of the specific
energy-sharing-model adopted (SDCS, no-sharing or equal-
energy-sharing), the introduction of secondary electrons at
low energies is responsible for an enhancement of the body of
the EEDF and a simultaneous depletion of its tail, as to yield a
normalised distribution; (ii) the description no-sharing, given
by (9), produces the highest enhancement of the EEDF, in the
region close to u=0. This description is partly identical to
the treatment of electron-impact ionisations as a conservative

Figure 6. Example of benchmark of LoKI-B against BOLSIG+, for
a Reid ramp-model [43]. (a) Electron reduced mobility, as a function
of the reduced electric field, calculated using LoKI-B (solid black
curve) and BOLSIG+ (dashed red). (b) Relative difference between
the predictions of the two codes, as a function of the reduced electric
field, for the electron reduced mobility (black A curve), the electron
free-diffusion coefficient (red B) and the electron mean energy
(blue C).

Figure 7. Electron swarm parameters in argon, as a function of the
reduced electric field. The lines are calculations with LoKI-B for
Tg=300 K (solid curves) and 77 K (dashed). The points are
experimental data, retrieved from the IST-Lisbon, Dutton and
LAPLACE datatases with LXCat [83–85]. (a) Reduced mobility.
The points are from the following authors: Nielsen [86] (,); Bowe
[87] (); Pack and Phelps [88] ( ); Wagner et al [89] (); Robertson
[90] à( ); Christophorou et al [91] (<); Nakamura and Kurachi [92]
(>); Kucukarpaci et al [93] (⎔); Pack and Phelps [88] (77 K, ☆);
(b) Characteristic energy. The points are from the following authors:
Lakshminarshima et al [94] (,); Milloy et al [95] (294 K, );
Al-Amin et al [96] ( ); Townsend and Bailey [97] (288 K, );
Warren and Parker [98] (77 K, à).
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mechanism, the difference being associated with the intro-
duction of secondary electrons at zero energy. In this case the
scattered electrons have the largest possible energy u Vion¢ - ,
causing the EEDF tail to be slightly above all other solutions
for non-conservative descriptions; (iii) both SDCS and equal-
energy-sharing descriptions induce a larger distribution of
energy between the secondary and the scattered electrons,
leading to the corresponding decrease of the EEDF in the
region close to u=0.

The changes observed in the EEDF have consequences
upon the swarm parameters, namely the first Townsend

coefficient. Figure 8(b) shows that, as expected for high E/N,
the calculated values of α/N are smaller (and in better
agreement with the available measurements), when electron-
impact ionisations are described as a non-conservative
mechanism.

4.3. Example for a molecular gas: nitrogen

The procedure of validation of a complete set of electron-
scattering cross sections using swarm parameters was applied
also to molecular gases. For example, figure 9 shows, as a
function of E/N, calculations and measurements of the elec-
tron reduced mobility of nitrogen, obtained for Tg ; 300 K.
LoKI-B calculations used the N2 complete set of electron-
scattering cross sections, published in the IST-Lisbon data-
base of LXCat [106]. The N2 cross sections describe the
elastic momentum-transfer due to electron collisions with the
ground-state N2(X); the excitation of electronic levels N2(A

u
3S+, B g

3P , W u
3D , B u

3S-, a u
1S-, a g

1P , w u
1D , C u

3P , E g
3S+,

a g
1S+, higher-singlets) from the ground-state N2(X); the
excitation of vibrational levels N2(X, v=1–10) from the
vibrational ground-state N2(X, v=0); and the ionisation of
N2(X). For simulations at low E/N values, the dataset N2 is
complemented with the description of the rotational excita-
tion/de-excitation of the ground-state N2(X, v=0) by elec-
tron impact, i.e. e+N2(X, v=0, J) « e+N2(X, v=0,
J+2). As mentioned, this description can adopt either the
continuous (CAR) approach, using the GCAR rotational
operator(6c), or a discrete approach that considers a set of
cross sections for rotational transitions involving the levels
N2(X, v=0, J=0–32), which corresponds to the N2-rot

Figure 8. Electron energy distribution function, calculated with
LoKI-B for argon plasmas at E/N=300 Td, adopting the following
descriptions for the energy sharing in electron-impact ionisations:
conservative (dashed-black curve); non-conservative, equal-energy-
sharing (solid-black); non-conservative, using a SDCS (dotted-blue);
non-conservative, no-sharing (dashed-red). The non-conservative
descriptions assume a spatial-growth of the electron density. The
insert is a zoom of the EEDF over the low-energy region. (b) First
reduced Townsend coefficient, as a function of the reduced electric
field, for argon plasmas. The lines are calculations with LoKI-B for
the same conditions as in (a). The points are experimental data,
retrieved from the IST-Lisbon datatase with LXCat [83], from the
following authors: Kruithof and Penning [99] (,); Kruithof [100]
(d); Golden and Fisher [101] (!); Specht [102] (); Abdulah (from
Puech and Torchin [103]) (à); Jelenak et al [104] (<); Bozin et al
[105] (>).

Figure 9. Electron reduced mobility in nitrogen, as a function of the
reduced electric field. The lines are calculations with LoKI-B for
Tg ; 300 K, where rotational excitations/de-excitations are
described adopting either the continuous approximation for rotations
(CAR, solid black curve) or a discrete approach (dashed red) that
considers transitions involving the levels N2(X, v=0, J=0–32).
The points are experimental data, retrieved from the IST-Lisbon
datatase with LXCat [106], from the following authors: Frommhold
[107] (,); Pack and Phelps [88] (d); Wagner and Raether [108] (!);
Lowke [109] (293 K, "); Errett (from Engelhardt et al [110])
(293 K, ◊).
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dataset published also in the IST-Lisbon database. The results
in figure 9 reveal a good agreement between calculations and
measurements, within the experimental uncertainty, also
validating the equivalence between the continuous and the
discrete descriptions of rotational excitation/de-excitation
mechanisms for nitrogen.

Nitrogen plasmas can be used also to demonstrate the
distribution of the electron energy between various gain/loss
channels. Figures 10(a)–(b) plots, as a function of E/N, the
fractional power-transfer Θx/Θref due to the different phe-
nomena considered in the EBE (x=E, el, inel, sup, growth),
and the largest power-densities per electron at unit gas density
Θx/N (x E, sup rotational= - ), respectively. LoKI-B calcu-
lations used the same data and rotational descriptions as
before. Figure 10(a) discriminates between electron power-
gain mechanisms (positive values) and electron power-loss
mechanisms (negative) (see (24a)–(24h)), and in the case of
inelastic/superelastic electron collisions it further dis-
criminates the various collisional channels, i.e., rotational,
vibrational, electronic excitation/de-excitation, and ionis-
ation. As indicated, the results in this figure are normalised to
the sum of the different power-gain terms, refQ (see
sections 3.5 and 3.6). Here, ref sup rotationalQ Q - for
E/N<0.1 Td (when adopting the CAR approach) or
E/N<1 Td (when using the discrete approach for rotations),
and above these field values ErefQ Q , as can be confirmed
from figure 10(b) or by checking, for each E/N, which
mechanism gives 1x refQ Q = in figure 10(a). An observa-
tion of figure 10(b) reveals that CAR yields a slightly smaller
power-transfer to the rotational channel, which results in the
relative differences depicted in figure 10(a) between CAR
and the discrete approach for rotations, in the range
0.1Td E N 10  Td. As expected, for reduced electric
fields above 1Td the electron power-losses are dominated by
the vibrational and the electronic collisional channels.

4.4. Example for mixtures of nitrogen-oxygen-argon

One of the main features of LoKI-B is the flexibility of
operation with mixtures of atomic/molecular gases. This
section presents results of the electron kinetics for nitrogen-
oxygen and air-argon mixtures, including an example of
validation of swarm parameters, the analysis of the effect of
vibrational distribution functions (VDF) upon the EEDF, and
the influence, on the EEDF and the electron power-transfer, of
admixing dry-air to argon plasmas.

Figure 11 shows, as a function of E/N, calculations and
measurements of the electron reduced mobility for dry-air
(80% N2–20% O2), obtained for Tg ; 300 K. LoKI-B cal-
culations used data published in the IST-Lisbon database of
LXCat [106, 119], namely the N2 and the O2 complete sets of
electron-scattering cross sections, complemented by the
datasets N2-rot and O2-rot for the (discrete) description of
rotational transitions. The information on the electron cross
sections contained in N2 and N2-rot was already given in
section 4.3. The O2 cross sections include the elastic
momentum-transfer due to electron collisions with the
ground-state O2(X); the excitation, from the ground-state

O2(X), of electronic levels O2(a g
1D , b g

1S+), O2(A u
3S+, C u

3D ,

c u
1S-) bound-states and leading to dissociation (e + O2(X)
e+O(3P) + O(3P)) and continuum Herzberg bands, O2(B

u
3S-) leading to dissociation (e + O2(X)  e+O(3P) +
O(1D)) and continuum Schumann-Runge bands, and
O2(9.97eV, 14.7 eV); the excitation of vibrational levels
O2(X, v=1-4) from the vibrational ground-state O2(X,
v=0); the electron dissociative attachment of O2(X); and the
ionisation of O2(X). The O2-rot cross sections describe the
rotational transitions by electron impact involving the levels
O2(X, v=0, J=1, 3, 5, L, 31), i.e. e+O2(X, v=0, J)«
e+O2(X, v=0, J+2). The results in figure 11 reveal good

Figure 10. Electron power-transferred to various gain/loss channels
in nitrogen, as a function of the reduced electric field, calculated with
LoKI-B using either the continuous approximation for rotations
(CAR, solid curves) or a discrete approach (dashed) that considers
rotational transitions involving the levels N2(X, v=0, J=0–32).
(a) Fractional power-transfer due to the following phenomena: Joule
heating (black curve A), elastic collisions (red B), rotational
excitation/de-excitation (green C), vibrational excitation/de-excita-
tion (blue D), electronic excitation/de-excitation (wine E), ionisation
(orange F) and spatial growth (magenta G). The positive/negative
values correspond to power gain/loss mechanisms. (b) Largest
power-densities, per electron at unit gas density, obtained in the
simulations of (a). The solid/dashed black A/green C curves
correspond to the same gain mechanisms as in (a).
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agreement between calculations and measurements, within
the experimental uncertainty. For comparison, figure 11
shows also the results of μN in the absence of rotational
transitions. Note that the inclusion of these mechanisms is
essential to obtain a good agreement with the experiment, at
low E/N. In particular, not considering these effects for N2

(O2) leads to an underestimation in the computed values of
μN by 39% (8%), at 0.1Td.

To analyse the effect of the vibrational transitions upon
the EEDF, we have considered the VDFs plotted in figure
12, corresponding to (i) a Treanor-Gordiets distribution
[120, 121] at Tg=300 K and Tvib=4000 K in nitrogen

v v v v

v v

exp 1
, 30v

E E

k T

E

k T

v
v

v

B B g

1 0

vib










x

x
=

- - -- D⎧
⎨⎪

⎩⎪

⎡
⎣⎢

⎤
⎦⎥{ }( )

( )

with v E E E T T1 2 1 g1 0 vib
 = + - D +[ ( ) ], where Ev

(v=0, 1) is the energy of vibrational levels 0, 1, and Δ E is
the anharmonicity factor in eV; (ii) results recently calcu-
lated/measured in an oxygen ICP [122], which are repre-
sentative of such distributions in O2 regardless of the specific
discharge conditions [123–125].

Figure 13 shows EEDFs calculated with LoKI-B at
E/N=30 Td, considering different N2-O2 mixtures with the
VDFs plotted in figure 12. The results confirm the relevance
of electron-vibrational excitation/de-excitation mechanisms
in nitrogen, signalled by the sharp decrease in the body of the
EEDF due to a vibrational barrier around 2 eV, which
smooths down for increasing percentages of oxygen in the

mixture (see the insert in this figure). Simulation results (not
shown) confirm also that in oxygen, and for the working
conditions considered, electron-vibrational mechanisms have
little influence on the EEDF. As expected, the effect of
vibrational excitations can be enhanced by setting to zero the
populations of the excited vibrational levels, thus removing
their influence as energy reservoirs for electron-impact
superelastic collisions. The effect can be observed in
figure 13, by comparing the EEDFs obtained for air plasmas,

Figure 11. Electron reduced mobility in dry air (80% N2–20% O2),
as a function of the reduced electric field. The lines are from
calculations with LoKI-B for Tg ; 300 K, including (solid) or not
including (dashed) rotational excitations/de-excitations involving
the levels N2(X, v=0, J=0–32) and O2(X, v=0, J=1, 3, 5, L,
31). The points are experimental data, retrieved from the LAPLACE
and Dutton datatases with LXCat [111, 112], from the following
authors: Frommhold [113] (,); Hessenauer [114] (d); Nielsen et al
[115] (!); Ryzko [116] ("); Rees [117] (◊); Roznerski et al
[118] (<).

Figure 12. Vibrational distribution functions adopted in the
calculations for nitrogen (solid curve and squares), corresponding to
a Treanor-Gordiets distribution [120, 121] at Tg=300 K and
T 4000vib = K, and for oxygen (dashed and triangles), corresponding
to results recently calculated/measured in an oxygen ICP [122].

Figure 13. Electron energy distribution functions, calculated with
LoKI-B at E/N=30 Td, considering different N2-O2 mixtures with
the VDFs plotted in figure 12: 100% N2 (A curve, black solid); 80%
N2–20% O2 (A, black dashed); 50% N2–50% O2 (A, black dotted);
100% O2 (B, blue). The C red curve is the EEDF calculated for 80%
N2–20% O2, by setting to zero the population of all vibrational levels
other than the ground-states N2(X, v=0) and O2(X, v=0). The
insert is a zoom of the EEDF over the low-energy region.
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either considering the VDFs of figure 12 or by setting to zero
the population of all vibrational levels other than the ground-
states N2(X, v=0) and O2(X, v=0).

Figures 14(a)–(b) analyses the influence, on the EEDF
(calculated at 30 Td) and the electron power-transfer, of
admixing to argon plasmas a small percentage (below 5%) of
dry-air (80% N2 – 20% O2, considering the VDFs plotted in
figure 12). As expected, the addition of air increases the
relevance of the power transferred to vibrational transitions
(with the corresponding decrease in the relative power
transferred to elastic collisions and to electronic excitations,
see figure 14(b)), introducing a more distinctive separation
between the EEDF regions below and above ∼2 eV (see
figure 14(a)), as consequence of the electron-impact vibra-
tional excitations and de-excitations, respectively.

4.5. Example for an electric-field pulse applied to dry-air

The response of the electrons in a gas-mixture subjected to an
electric-field pulse is a current hot topic in LTPs, mainly due
to applications related with environmental remediation,
synthesis of value-added chemicals and new fuels, surface
treatment and medicine [126–129].

In this context, LoKI-B was used to study the evolution
in time of the electron kinetics, when an electric-field pulse
with a duration of 10 μs is applied to a 80% N2–20% O2 gas
mixture (dry-air). The simulations assume a time-dependent
reduced electric-field (see figure 15) given by

E t

N

E

N

t

t
e , 31t t0

0

0= -( ) ( )

with E0/N=100 Td and t0=1 μs, taking as initial condition
for the EEDF the zero-field solution of the EBE (which cor-
responds to a Maxwellian distribution at the gas temperature
Tg=300 K). Moreover, because LoKI-B handles the popu-
lations of excited states in a user-friendly way, the study
considers the evolution of the EEDF in the presence of
Boltzmann distribution functions, at Tg=300 K, for the
vibrational states N2(X, v) and O2(X, v) and for the rotational
states N2(X, v=0, J) and O2(X, v=0, J), which are
assumed not to change within the 10 μs time-interval of the
simulations. The calculations were done following the same
strategy adopted in several models [126–129], which consists
in solving the time-independent EBE for a range of E/N to
produce, as a function of either the reduced electric-field or
the electron mean-energy, a table of rate coefficients that can
be interpolated at different times during the execution of the
model. Here, this quasi-static approximation was imple-
mented by resolving the pulse rise into 500 E/N values,
corresponding to time-steps below Δ t=0.1 μs.

For these working conditions, figures 16(a)–(c) shows
the evolution in time of the EEDF, calculated with LoKI-B at

Figure 14. Electron energy distribution functions (at E N 30= Td)
(a) and fractional power-transfer (b) calculated with LoKI-B,
considering different mixtures of argon with dry-air (80% N2–20%
O2): 100% Ar (solid curve); 98% Ar—2% dry-air (dashed); 95% Ar
—5% dry-air (dotted). The calculations consider the VDFs plotted in
figure 12 for N2 and O2. The insert in (a) is a zoom of the EEDF over
the low-energy region. The colors and labels in (b) correspond to the
same power-transfer mechanisms as in figure 10.

Figure 15. Plot of the electric-field temporal pulse given by (31).
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E/N=0, 20, 43 Td, respectively, corresponding to the
values signalled with arrows (I), (II) and (III) in figure 15.
Note that figure 16(a) represents the initial condition for the
EEDF; note also that the EEDFs in figures 16(b)–(c) exhibit
the vibrational barrier usually found in nitrogen plasmas,

whose influence in the losses of the electron energy is miti-
gated with the increase in the electric-field intensity.

The EEDFs calculated at different times can be used to
obtain the time variation of pertinent electron macroscopic
parameters, such as rate coefficients and power densities. For
the same conditions as before, figures 17(a)–(b) represents, as
a function of time, the ionisation and the attachment rate
coefficients, and the fractional power transferred from the
electric field to the different electron-collision channels. Note
the electronegative feature of the gas mixture, for which
η/N>α/N during the whole duration of the pulse; note also
that, as expected, the major power-transfer channels are due
to rotational mechanisms (at low E/N) and vibrational
mechanisms (at high E/N, namely around the electric-
field peak).

Figure 16. Electron energy distribution functions, calculated with
LoKI-B at E/N=0 Td (a), 20Td (b) and 43Td (c) (corresponding
to the values signalled with arrows (I), (II) and (III) in figure 15), for
a 80% N2–20% O2 gas mixture (dry-air) at Tg=300 K, considering
Boltzmann distributions at 300 K for the vibrational and the
rotational levels with the ground-states of nitrogen and oxygen.

Figure 17. Electron rate coefficients (a) and most relevant fractional
powers (b), calculated with LoKI-B as a function of time, for the
electric-field temporal pulse of figure 15 applied to a 80% N2–20%
O2 gas mixture (dry-air) at Tg=300 K, considering Boltzmann
distributions at 300 K for the vibrational and the rotational levels
with the ground-states of nitrogen and oxygen. The curves in this
figure are for: (a), the ionisation (solid) and the attachment (dashed)
rate coefficients; (b), Joule heating (black curve A), elastic collisions
(red B), net rotational excitation (green C), net vibrational excitation
(blue D). The positive/negative values correspond to power gain/
loss mechanisms.
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The results presented here intend to demonstrate the
flexibility of LoKI-B to exploit some relevant physical
aspects related with the electron kinetics in LTPs. However,
for what concerns the evolution in time of the EEDF, e.g. in
reactive gas mixtures under the action of an electric-field
pulse, a more cautious approached should be considered,
involving the solution of the time-dependent EBE (instead of
using a quasi-static approximation, based on the solution
of its time-independent form), eventually coupled to a
time-dependent description of the kinetics of heavy-species,
namely if the time-scales considered are above ∼100 μs.
Work is in progress to upgrade LoKI-B with a time-dependent
algorithm for monitoring the temporal evolution of the EEDF.

5. Final remarks

This topical review presented LoKI-B, a flexible and
upgradable open-source simulation tool (https://github.com/
IST-Lisbon/LoKI), licensed under the GNU general public
license, for studying the non-equilibrium electron kinetics of
LTPs excited by DC/HF electric fields. LoKI-B solves a time
and space independent form of the EBE, written in the clas-
sical two-term approximation and including first-kind, sec-
ond-kind and electron-electron collisions, assuming either a
space-homogeneous exponential temporal growth or a time-
constant exponential spatial growth of the electron density, to
account for variations in the number of electrons due to non-
conservative events. The tool simulates plasmas produced
from different gases or gas mixtures, accounting for the
internal distributions of populations for the electronic, vibra-
tional and rotational atomic/molecular levels present in the
plasma. On output, LoKI-B yields the EEDF, the electron
swarm parameters, and the electron power absorbed from the
electric field and transferred to the different collisional
channels. The latter parameters can be calculated using either
the distribution function obtained from the solution to the
EBE or some other form prescribed by the user. As part of its
development roadmap, the tool has been checked in some
test-cases, comprising the verification against analytical
results, the benchmarking against numerical calculations
obtained with BOLSIG+, and the validation by comparison
with available measurements of swarm parameters.

LoKI-B is freely available for users to perform electron
kinetics calculations, and for modellers who are invited to
continue testing the tool and/or to contribute for its devel-
opment and improvement. As any numerical tool, LoKI-B
provides a mere representation of the energy distribution of
the electrons in a LTP, because it is based on a specific for-
mulation with embedded approximations. Therefore, the tool
should be used only in situations fitting its validity limits, and
users are advised to check section 3.6 and to carefully read the
extensive literature on the two-term EBE [1], for obtaining
details about its solution. The ontology of LoKI-B separates
the tool and the data, but good use of the tool is naturally
associated with the choice of adequate input cross sections
and the definition of a proper energy-grid. As general
guidelines, the preference should be for complete sets of cross

sections (cf section 3.3), giving a good description of all the
electron energy and momentum losses, and a numerical grid
with maximum energy below the cutoff energies of the cross
sections and an energy step able to resolve any relevant
structure in the data (e.g near-threshold variation, resonances,
...). Again, users are responsible for the correct choice of the
input cross sections (obtained or not from LXCat) and the
numerical grid, which must be carefully validated/evaluated
according to the specific needs and the conditions of interest
for the simulations.

LoKI-B is developed with object-oriented programming
under MATLAB®, meaning that it can benefit from all the
features associated with this platform. In particular, future
developments of the tool could include a variety of cap-
abilities, promoting its integration with other codes and/or the
exchange of data, such as [37]: parallel and/or cloud com-
puting, web deployment and embedded code generation.

The future evolution of LoKI-B will include the adoption
of a time-dependent algorithm to monitor the temporal evol-
ution of the EEDF; and the extension of the formulation to
obtain both the transverse and the longitudinal electron dif-
fusion coefficients, and to simulate also weakly-magnetised
LTPs. These and other developments will be always followed
by V&V procedures, to ensure the quality of the tool and the
output.
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