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Abstract—Quarterly wavelength shifted (QWS) distributed

feedback (DFB) laser structures are commonly referred to be
associated with high mode selectivity, zero-frequency detuning
and small threshold current density. The present paper compares
different asymmetric QWS structures in the threshold regime,
the results being summarized to show their influence on the
emission laser characteristics.

Index Terms — Matricial Techniques, DFB Lasers, Single
Longitudinal Mode Operation .

I. INTRODUCTION

ASERS suitable for high bit rate transmission systems
are requested to present single longitudinal mode (SLM)

operation. According to the coupling wave theory [1], the
electric field distribution along the cavity may be defined
according to the amplitude of two counter-running waves.
They are coupled with each other by the corrugation, whose
amplitude is defined by the coupling coefficient. The laser
emission features are seen to be strongly dependent on the
conditions assumed at the cavity ends. Due to the tolerances
generally associated with the facet ends [2], these ones are
often coated with anti-reflexive (AR) films. However, the
symmetric structure of these mirrorless cavities is associated
with double degenerate patterns, which prevent the SLM
operation [3]. To overcome this problem, several modified
DFB structures have been proposed [4-6], the most popular of
them corresponding to the introduction of a phase-shift of π/2
within the corrugation. It is commonly referred as the λ/4
shifted or quarterly shifted (QWS) laser [7]. The phase-shift
introduces a mode in the Bragg wavelength, which may be or
not the main mode, depending on its location inside the cavity.
At threshold for the symmetric structure (PS at the center of
the cavity) the laser presents the highest mode selectivity and
the smallest current density, besides a zero-frequency
detuning. However, the related electric field distribution is
highly non-uniform, especially for high coupling, presenting a
strong peak near the center. This is responsible for a quick
degradation of the laser performance in the high power regime
(spatial hole-burning effect [8]). Several methods for
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obtaining asymmetric structures are proposed, namely: (i)
lasers with the λ/4 PS moved away from the centre, (ii)
different coupling coefficients related to the corrugation in
each side of the PS or (iii) strongly asymmetric end facet
reflectivities. This work shows their influences on the main
emission properties of the light source using matrix techniques
[9], which seem to be especially adequate to deal with those
situations.

II. MODEL DESCRIPTION

In the present analysis the calculations use the transfer
matrix formalism. The main point is the description of the
laser cavity by a finite number of cells, representing the
corrugation and the facets. On both sides of each cell the right
and left going waves, u and v, are related by two linear
equations. Each cell will then be represented by a 2×2
complex matrix. The input data are the Bragg wavelength, λB,
the coupling coefficient, KC, the effective refractive index, nef,
the cavity length, L, and the reflectivities, RR and RL, plus
phase shifts, φR and φL, on both ends.

The corrugation corresponds to a periodic variation of the
refractive index with period Λ=2l, where its characteristic
parameters are:
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The matrix associated to one period of the corrugation,
symmetrically placed with regard to the cavity ends, is:
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The matrix related to the right facet, defined by a
reflectivity RR =rR

2 and a phase shift φR=πlR/l, assumes the
form:
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In a similar way, the matrix related to the left facet,
represented by RL and φL, is:
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In this formalism the facets may be represented by two cells
of length lR and lL and the counter-propagating waves are
related by the matrices [MR] and [ML]. Due to the fact that
lR,lL<<L, the attenuation imposed by the facets is neglected. In
conventional DFB laser diodes the matrix [M] is simply the
product of the partial matrices related to the facets plus
corrugation:
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where im  is the number of periods inside the ith cell and N
the number of cells within the cavity.

In symmetric structures and in the absence of non-
uniformities associated with spatial variations of the photon
and carrier populations, the matrix related to each cell is
invariant. Residue phases at the facets make the spectrum
asymmetric with respect to the Bragg frequency, even if the
reflectivities have the same value at both ends. In mirrorless
DFB structures the laser spectrum becomes doubly
degenerate, not allowing the oscillation at the Bragg
wavelength and it does not depend on the facet phase shifts.
Thus the SLM operation becomes not feasible. The
introduction of phase shifts along the corrugation overcomes
this problem. Phase shift gratings are easily included using the
matrix formalism. Assuming a small electric field
discontinuity along the plane of the phase shift located at zφ,

the related matrix is:
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Owing to the conservation of energy, the matrix [M] as well
as its inverse must satisfy the reciprocity rule:

11 22 12 21 0M M M M− = (14)

The oscillation condition corresponds to the vanishing of
the incoming waves and it is given by the complex equation:

( )22 , 0M δβ γ = (15)

Equation (15) is solved using the Newton-Raphson
technique (see appendix). The solutions are the detuning δβ
and the gain γ related to each mode that is allowed to
propagate inside the cavity. The normalized gain selectivity,
δγL, corresponds to the difference between the values
associated with the main side mode and the main mode. While
the requirement of the gain selectivity may vary from one
optical communication system to another, it is generally
accepted that for cavity lengths of about 500 Å, a minimum
value of 0.5 (or equivalently, a 25 dB side mode suppression
ratio) shall be insured [10]. However, the non-uniformity of
the electric field distribution, associated with a strong carrier
injection, alters the longitudinal distribution of the refractive
index, which also affects the field distribution. These effects
are well known and correspond to the major drawback of this
kind of lasers in the high power regime. In order to ensure a
stable SLM operation, the structure must be optimized with
respect to the field intensity distribution. For this purpose a
parameter F (flatness) is defined, being given by:
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where Iav is the average field intensity inside the cavity.
In order to minimize the spatial hole-burning effect,

therefore improving the maximum single mode output power,
it is required that F<0.05.

The electric field intensity is proportional to the photon
density which, at the end of the kth cell, is given by:
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where kM⎡ ⎤
⎣ ⎦  is the matrix that relates the waves at the kth

section to those at the left facet. It is given by:



3

[ ][ ] [ ][ ]1 1
k

k k LM M M M M−⎡ ⎤ =⎣ ⎦ (18)

and C is a normalization constant, whose value is obtained
according to the steady state carrier equation. It depends on
the structural parameters, namely the active layer width, d, the
active layer thickness, w, and the laser cavity ends, L.

The output powers from the front and back facets are
denoted by fP  and bP , respectively, which are proportional

to the photon population in the first and last cells, obtained
using (17).

The external differential quantum efficiencies, denoted by
dfη  and dbη , are obtained from:
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where thα  is the main mode loss at threshold and intα
represents the internal losses.

III. RESULTS

All the results correspond to a λ/4 InGaAsP/InP DFB laser
diode whose parameters are shown in Table I. The phase shift
location is defined by the parameter pφ=2zφ/L. The front (left)
facet corresponds to pφ=0 and the rear (right) facet to pφ=2.
The PS divides the corrugation in two parts with coupling
coefficients Kf and Kb and lengths Lf and Lb. Obviously
Lf+Lb=L. In the results the corrugation will be identified by
the values KCf:KCb and Lf:Lb or pφ .

Fig.1 shows the flatness versus phase-shift position pφ for
several corrugations with uniform coupling coefficients. It is
apparent that increasing the coupling coefficient increases the
non-uniformity of the electric field distribution, meaning
worse performances in the high power regime. It is also
shown that the asymmetry imposed by the PS ( 1)pφ ≠

corresponds to a disadvantage as far as the hole-burning is

concerned. It is worth noticing that the stable SLM criterium
is only observed for weak coupling when the PS is in the
vicinity of the center of the cavity.

Fig. 2 shows the normalized mode selectivity versus PS
location for the same set of lasers. The gain margin increases
when the PS approaches the center, the emission spectra
becoming doubly degenerate for pφ around 0.5. The range of
PS locations becomes more and more restrictive as KC

increases. Again the symmetric structure represents the most
attractive option.

Fig. 3 shows the ratio between the front and back output
powers versus PS location. The asymmetry improves the ratio
Pf/Pb, the effect being particularly important for strong
coupling. Obviously, for the symmetric structure (pφ=1)
Pf/Pb=1.

Fig.4 shows the front external differential quantum
efficiency of the laser structures versus PS location.

Again the asymmetry benefits the laser performance, but KC

shall be small. While increasing the front emitted power face
to the back power, the increase of the coupling coefficient
leads to a decrease in the threshold gain. This happens due to
the high concentration of the electric field distribution near the
PS for strong coupling coefficients.
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Fig. 1.  Flatness as a function of the phase shift position.

TABLE I
MATERIAL AND STRUCTURAL PARAMETERS

Parameter Symbol Value Unit

Internal losses intα 40 cm-1

Laser cavity length L 500 µm
Active layer thickness w 1.5 µm
Active layer width d 0.3 µm
Confinement factor Γ 0.66
Bragg wavelength Bλ 1.55 µm

Group velocity gv 83 10 3.41× m/s
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Fig. 2.  Mode selectivity as a function of the phase shift position.
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Figs. 5-8 show the influence of the coupling coefficient
variation on the emission properties of the laser.
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Fig. 5.  Flatness versus PS location for various coupling ratios. Coupling ratio
Cf CbK K  is denoted by :Cf CbK K .

Let’s define the coupling ratio as KCf/KCb. In each figure we
can see 3 curves for ratio<1 and 3 curves for ratio>1. Some
conclusions shall be emphasized. Namely:
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Fig. 8.  Quantum efficiency versus PS location and coupling ratios. Coupling
ratio Cf CbK K  is denoted by :Cf CbK K .

(i) In the symmetric structure (pφ=1) the flatness and the
gain selectivity are the same for r and 1/r.

(ii) In the symmetric case the value of Pf/Pb for r is
inverse of the one obtained for 1/r.
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Fig. 3.  Output power ratio as a function of the phase shift position.
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Fig. 4.  External differential quantum efficiency as a function of the phase
shift position.
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Fig. 6.  Gain margin versus PS location for various coupling ratios. Coupling
ratio Cf CbK K  is denoted by :Cf CbK K .
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Fig. 7.  Output power ratio versus PS location and coupling ratios. Coupling
ratio Cf CbK K  is denoted by :Cf CbK K .
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(iii) For r<1 the spectra are doubly degenerate as the PS
approaches the front facet. For r>1 the SLM operation is
always ensured in the range under analysis.

(iv) The advantages of r>1 is twofold: smaller values of
flatness and greater gain margins.

(v) However, when r>1 the lasers present small
differential quantum efficiencies, since Pf<Pb for all PS
positions.

Finally the influence of the conditions assumed at the cavity
ends was considered. The results are presented in the figures 9
to 12. The power reflectivity was taken as 0.25 per cent for
both facets. The dashed zones correspond to the spread
obtained when the facet phase shifts are allowed to vary along
their entire range. As we can see their influence decreases as
the coupling coefficient becomes higher, meaning that the
emission properties are mainly defined by the corrugation
properties.

In strongly asymmetric DFB structures with weak coupling
strength high gain margins may be obtained while maintaining
high values for output power ratios and quantum efficiencies.

Results obtained are in full agreement with those referred in
[11].
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Fig. 11.  Output power ratio versus PS position for different coupling strength
and phase shifts at cavity facets.
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Fig. 12.  Quantum efficiency versus PS position for different coupling
strength and phase shifts at cavity facets

IV. CONCLUSIONS

Asymmetric QWS DFB laser diodes were analyzed. In AR
coated lasers the output power ratios and the quantum
differential efficiencies are increased as the PS approaches the
front facet. The SLM operation is reached if 0.6 1pφ< < . The
corresponding quantum efficiencies are between 30% (for the
symmetric case) and 45% (for lasers with length ratio :f bL L

equal to 30:70). In QWS DFB lasers with power reflectivities
of 0.25%, only about 1/3 of the cases would ensure the SLM
operation when the length ratio is 30:70, but the quantum
efficiency may reach 50%.

The model used in all the calculations is based on matrix
techniques. They are seen to be very flexible: laser structures
are represented by the same general equation; the algorithm
derived can be applied to several structures.

APPENDIX
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Fig. 9.  Flatness versus PS position for different coupling strength and phase
shifts at cavity facets.
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Fig. 10.  Mode selectivity versus PS position for different coupling strength
and phase shifts at cavity facets.
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where 22 (1)M  and 22 (2)M  represent the real and imaginary
parts of 22M , respectively, and:
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,n nω γ  are the roots of (15) corresponding to the nth iteration
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