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ABSTRACT

In this paper, we investigate and discuss some of the
main issues concerning the estimation of nonlinear
simulation metamodels. We propose a methodology
for identifying a tentative functional relationship, es-
timating the metamodel coefficients and validating
the simulation metamodel. This approach is illus-
trated with a simple queueing system. Finally, we
draw some conclusions and identify topics for further
work in this area.
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1 INTRODUCTION

The use of discrete event simulation models produces
a significant amount of output data making hard to
interpret that data, or to try to predict the system
behavior for a slightly different experimental environ-
ment. A simulation metamodel simplifies the simula-
tion model itself, exposing more clearly the funda-
mental nature of the system input-output relation-
ships.

To build a descrete event simulation metamodel,
we use classical statistical procedures, borrowed from
regression analysis. The objective is to determine
a (relatively simple) functional relationship between
the system response and selected decision variables.
Thus, it becomes much easier (and cheaper), not
only to analyze the simulation output, but to pre-
dict how the real system will react to specific com-
binations of the set of controlable input variables. It
is also straightforward to perform sensivity analyses
of the simulation model parameters and “what if?”
questions—all this, without having to perform addi-
tional simulation runs. However, extra care must be
taken when collecting the simulation data, fitting the
metamodel and, especially, validating it. Since we
will be using mainly well known and robust statistical
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procedures, this approach is more likely to gain con-
fidence and acceptance from simulation practitioners
as well.

Linear models are relatively simple to fit and ma-
nipulate, and their use becomes attractive. In partic-
ular, Kleijnen has been especially active in this area;
see, for instance, Kleijnen (1992), Kleijnen, Burg and
Ham (1979) and Kleijnen and Groenendaal (1992).
Porta Nova and Wilson (1989) discuss the estima-
tion of a general linear multivariate simulation meta-
model, as well as its use in the context of variance
reduction, with the technique of control variables.

Since reality is hardly linear, linear models are
acceptable approximations only in smaller or larger
neighborhoods of the design points under consider-
ation. However, Friedman and Friedman (1985) re-
ported a significant lack-of-fit, when queue length in
the M/M/s queue was expressed, in a linear fashion,
in terms of the arrival and service rates and the num-
ber of parallel servers, s. They point out that this is a
common problem in metamodels of queueing systems,
since the above decision variables are known to be “...
intricately related in a nonlinear fashion”. As in this
case, if a nonlinear simulation metamodel is firmly
based in theory and we extrapolate from the region
where it was developed, it is rather unlikely that it
will produce fundamentally wrong predictions. Un-
fortunately, this does not happen with most polyno-
mial models. Another advantage of nonlinear models
is that they usually have a much smaller number of
parameters, when compared with linear models.

Simulation practitioners might raise some ques-
tions... Is it feasible, in practical terms, to fit a mean-
ingful nonlinear metamodel to a realistic simulation
model of an actual system? Is the eventual improve-
ment worth the additional time and complexity of
nonlinear vs. linear statistical approaches?

Consequently, in this paper, we address and discuss
some of the main issues involved in the use of non-
linear metamodels to analyze simulation output. In



this context, it becomes even more important to test
the metamodel validity. We will use valid statistical
procedures to determine the lack-of-fit of the model,
as well as its predictive capability. We feel that our
approach will only be useful if it can be understood
and applied by any simulation practitioner. Thus, we
will propose a methodology for graphically summa-
rizing the simulation data, selecting from a catalog
of target functional relationships and estimating and
validating a specific metamodel.

This paper is organized as follows. In Section 2,
we discuss the estimation of a general nonlinear sim-
ulation metamodel. In Section 3, we investigate the
validation of the simulation metamodel. In Section 4,
we present a methodology for iterative identification,
estimation and validation of simulation metamodels,
and illustrate its application using the M/M/s queue.
Finally, in Section 5, we draw some conclusions and
recommendations for future work in this area.

2 METAMODEL ESTIMATION

In general, we can say that simulation models try to
approximate reality, while simulation metamodels are
approximations of the simulation models themselves.
Thinking of simulation as an input-output transfor-
mation, we are lead to the notion that simulation
is basically a function, although rather complicated,
that cannot usually be expressed by a simple expres-
sion. But it may be possible to approximate, with
a single formula (a metamodel), what the simulation
actually does.

When building a simulation model, we should rep-
resent the most important variables and parameters.
Zeigler (1976) defines a parameter as a quantity that
can not be observed in the real system, while a vari-
able is directly observable. Client arrival times or the
number of servers in a queue are examples of vari-
ables. The arrival rate, A, and the service rate, p,
of a Poisson process (see Section 1.2 in Kleijnen and
Groenendaal (1992) ), are examples of parameters.
When a simulation program is executed, parameters
are well known input values. The response of the real
system is represented by the output variable Y of the
simulation model.

In this paper, following Kleijnen and Groenendaal
(1992), we represent the simulation model (or pro-
gram) by a mathematical function, ¢:

Y = ¢(Zar)a (1)

where Y is the system response, Z = Z1,... ,Z are
the input variables and parameters and r represents
the set of random number streams that drive the sim-

ulation at (Zy,... , Z;). In a queueing system, the de-
pendent variable or response might be, for instance,
the average queue length or the mean system sojourn
time.

The approximating function, of the above simula-
tion program, is the following nonlinear metamodel:

V= f(X,0)+e (2)

where the independent or explanatory variables
X = (Xi,...,X4) belong to a subset of RY, 8 =
(61,...,6,) € © C RP is a vector of parameters to be
estimated, € represents the error and f is an unknown
function. The error, €, includes both effects due to the
inadequacy of f as a representation of ¢, as well as
intrinsic effects, always present in any stochastic sim-
ulation model—they depend on r in (1). Sometimes,
Xi, in (2), is identical to the simulation variable or
parameter Z;, in (1); for instance, the arrival or ser-
vice rates in a queue. In other cases, X; may be a
transformation of one or more Z;’s; again, in the spe-
cific case of queueing systems, X; = Z1/Z> may con-
stitute a better explanatory variable (if we consider
the “traffic intensity”, p = A/u). Consequently, the
parameters and input variables Z of the simulation
model (1) determine the independent variables X of
the simulation metamodel (2). The coefficients 0 in
(2) are designated metamodel parameters and must
be estimated.

2.1 Data for Analysis

In practice, the mathematical conditions associated
with the metamodel (2) may or may not be satis-
fied. Thus, we start by postulating a specific form
for model (2) and, then, we test its validity. The
approach is: (i) we first choose, for the model, a
function that may closely follow the output variable
Y, throughout the region to which the data belong;
then, (ii) we estimate the parameters of the “elected”
model; and, finally, (iii) we investigate if the model
is, in fact, adequate or not. That is, if it can be used
to forecast the system behavior or not.

In order to build a meaningful simulation meta-
model, we have to determine a sufficient number,
m, of design points (that is, combinations of the
d explanatory or decision variables) that will cover
the relevant part of the decision region under study,
{Xa : 1 =1,d}, for i = 1,m. These design points
must be unique—that is, any two combinations of the
decision variables must have, at least, one different el-
ement.

Although the estimation of a nonlinear simula-
tion metamodel might be discussed in the context of



other methods for output analysis, we felt that inde-
pendent replications were particularly well suited for
this purpose. Thus, we first choose adequate values
for parameters and suitable random distributions for
the stochastic components in the simulation model.
Then, we perform an appropriate number of model
runs, n, for each of the m design points, using inde-
pendent random streams, and collect the data on the
relevant system response, {Y;; : i = 1,m;j = 1,n}.
Finally, we use classical statistical procedures to com-
pute point estimators or confidence intervals for the
response, from the above random sample of size n.
The number of replications, n, at each design point
may now be much smaller than the number that is
generally used in a common simulation study.

2.2 Least Squares Estimation

We assume that the simulation model (1) can be mod-
eled through the replicated simulation metamodel

Yi; = f(Xi.,0) + €5, (3)

for i = 1,m and j = 1,n, where ¢;; ~ NID (0,07),
with o; > 0. Then, the population’s conditional ex-
pectation and variance are E[Y;;|X;] = f(X;,,0) =
wi and Var[Y;;|X;] = o7 . As such, the simulation
output at each design point, {Y;; : j = 1,...,n}, for
i = 1,...,m, can be interpreted as n independent
observations from the normal distribution N(u;,0?).
Thus, for estimation purposes, we can consider, in-
stead, an equivalent LS problem, in which the indi-
vidual observations, at each design point, are replaced
by their averages:

Y, = f(Xi.,0) + &,

with Var[Y;] = ¢?/n and €; ~ N(0,0?/n).

To estimate the parameters, @, in the meta-
model (3), we apply the nonlinear least squares (LS)
method. In contrast to the linear case, for most non-
linear models, the system of normal equations can-
not be solved analytically; so, we must resort to an
iterative method. We will discuss how the Gauss-
Newton method can be used to obtain approximately
the asymptotic nonlinear LS estimator, 8; see Section
2.1.3 in Seber and Wild (1989).

i=1,2,...,m, (4)

Proposition 1 Given appropriate reqularity condi-
tions (see White (1980) ) and for large m, the LS
estimator of 8, 0, in (8) satisfies, approximately:

O~0" +[FIS'F'FIS 'Y —f], (5)

6~N, (0, %[FTle]_1> . (6)

where 0% is the exact value of 0, f = £(6%)
= (f(Xl.aO*)’---af(Xm-aO*))Tﬁ F = F(o*_) is

the jacobian matriz of £, evaluated at 0", Y =
Y1,...,Y.)T and T is the diagonal matriz ¥ =
diag(o?,...,02). In order to simplify the notation,

we omit that £ and F are evaluated at 0™.

Verification We point out that in the nonlinear
metamodels (3) and (4), the errors have unequal
variances—the setup for generalized or weighted LS.
Consequently, to determine the WLS estimator, 8, we
minimize
1\t
7 - £X,0)7 (13) ¥ - £(X,0)

with respect to 0; see Section 2.1.4 in Seber and Wild
(1989). But, this is equivalent to minimizing [V —
£f(X,0)]TZ7Y - £(X,0)].

3 is a symetric positive definite matrix, that ac-
cepts the Cholesky decomposition:

> = UTuy, (7)

where U is an upper triangular matrix. Multiplying
the nonlinear model (4) through R = (UT)™!, we
obtain

W =g(X,0) +mn, (8)

where W = RY, g(X,0) = Rf(X,0) and n = Re,
with € = (€1.,... ,&x.)T.

Then, we observe that E[n] = 0 and Var[n]
=RVar[e]RT = 1/nRERT . But X allows the de-
composition (7) and R = (UT)"1; thus, Var[n] =
1/n(UT)-1UTU [(UT)1]" = 1/nl,,, where I,, is
the identity matrix of order m. We conclude that the

problem (4) has been transformed into an ordinary
LS (OLS) problem. Thus, the OLS estimator of  is

0~0"+[G"G]'G"[W —g], 9)

where G = 9g(X,0)/86" is the jacobian matrix of g
and we omit that both g and G are evaluated at 6*;
see Theorem 2.1 in Seber and Wild (1989).

But, since g(X,0) = Rf(X,60), we have G(0) =
ROf(X,0)/06" = RF(). Besides, W = RY and
RTR = X!, thereof (9) is equivalent to:

0 ~ 6" +[F'RTRF] (RF)T[RY — Rf(X,0")]
= 0"+ [FTZ'FI7'FTRTR[Y - £(X, 6")]
= 0"+ [F'S7'FI7'FTEY - £(X, %))

Thus, the approximate result (5) has been estab-
lished.



Result (6) is obtained by applying Theorem
2.1 in Seber and Wild (1989), item (i), to the
problem (9): @ ~ N, [0,1/n(GTG)"']. Since
G = RF and R'R = %', we obtain
0 ~ N,[0,1/n(FTRTRF) '] , and then 6 ~
N, [0,1/n(FTE2"'F)7] .

As as estimator of X, we can use

3 = diag(62,...,62), (10)

rYm

AD .
where &7 is given by

1 _
3 (- Vi) (11)
=1

J

n
~2
0; =

(see page 151 in Kleijnen and Groenendaal (1992) ).

3 METAMODEL VALIDATION

The purpose of the simulation metamodel validation
is to investigate whether the metamodel adequately
aproximates the behavior of the input/output gen-
erated by a simulation program. The assessment of
this adequacy is necessarily subjective. However, the
simulation responses of interest are generally aver-
ages, and so, central limit effects ensure normality.
In the next section, we present statistical tests that
help detecting the lack of fit associated with the deter-
ministic portion of the proposed nonlinear regression
metamodel. In Section 3.2, the metamodel predic-
tive capability is tested, by using the holdout sample
method.

3.1 Model Adequacy

In the replicated metamodel (3), if the total number
of observations, N = 3" n = mn, is large, we can
use the following rough F-test for lack of fit, proposed
by Seber and Wild (1989), page 82:

(SSE — SSPE)/(m — p)
SSPE/(N—m)

where SSE = Y7 % wilVi; — £(X;.0)]? is the
usual error sum of squares (or, residual sum of
squares), SSPE = Y1, 2?21 w;[Yi; — Yi]? is the
pure error sum of squares and w; = 1/o? are the
weights. If there exists a parametrization for which
the model can be adequately approximated by a lin-
ear model, then F' will be roughly distributed as an
Fop,n—m distribution, when the model is valid.

As an additional statistic for testing the metamodel
validity, we also propose the coefficient of determina-
tion R2,

F =

(12)

_ SSR

2 _—
R = SST’

where SSR = Y, Y0, [f(Xi.0)foi-¥]
is the regression sum of squares, SST =
Sy Yy [Yij/oi — }7__]2 is the total sum of squares
and Y. = 1/(mn) 37", 3% Vij/o; is the grand
mean of the observations. Since R? always increases
as we add more explanatory variables, we could also
use an adjusted R? for the number of parameters p:
N -1

2 1 _ _ P2
Rip=1-(0-R) g

3.2 Predictive Validity

In order to test the predictive validity of the meta-
model, a data splitting (or cross-validation) procedure
is used (see Sections 12.6 and 15.4 in Neter, Wasser-
man and Kutner (1989) ). We develop another re-
gression model using only about two-thirds of the N
observations (model-building sample). Splits of the
data are made intuitively. The holdout observations
(validation or prediction set) are used to test the re-
gression model. For example, if we have N = 120 ob-
servations, then the model-building and the holdout
groups will have 72 and 48 observations, respectively.
We evaluate the coefficient of determination, R?, for
both the model-building and the holdout cases. If the
two values of R? are very close, then we can conclude
that the model does have predictive validity.

In order to obtain more information about the
predictive capacity of the metamodel, we can com-
pute the mean squared prediction error, denoted by
MSPR (see Neter, Wasserman and Kutner (1989),
page 466):

1™ .
MSPR= — Z;[Y - f(X:,0)%,  (13)

where f(X;_,8) is the predicted value for the ith val-
idation case, based on the model-building data set.
Y; is the value of the response variable in the ith val-
idation case and m* is the number of cases in the
validation data set (holdout sample).

In our case, problem (3), we compute the MSPR
through

MSPR = ! ii%[yu - f(X;.,0)2,

m

N

where 7 is the number of levels of X and n is the
number of replications in each level. Values of M SPR
close to the M SE computed for the regression fitted
to the model-building sample, are an indication that
the M SFE gives an appropriate measure of the predic-
tive capability of the model. If M SFE is much smaller



than M SPR, then we should use M SPR as an indi-
cator of the predictive capability of the metamodel.

The regression coefficients for the holdout group
are then estimated and we compare for consistency
with the estimated regression coeflicients based in the
model-building group.

Another useful statistic for testing the metamodel
predictive validity is the prediction sum of squares,
PRESS, procedure (see Neter, Wasserman and Kut-
ner (1989), page 450). In our case, this procedure has
to be adapted and so we have the following quantity:

PRESS =Y 3" S{Vy — f(Xi,0)P, (19

i=1j=1 1%

where 9(,1) is the estimated parameter vector based
on the set that we obtain if we delete the replications
that correspond to case +.

If PRESS and SSE are quite close, then MSE
may be a valid indicator of the predictive capability
of the selected model. A disadvantage is the necessity
of doing m distint regressions. To perform each of the
m estimations, we have to use an iterative procedure.
This is usually time-consuming and we may have an
additional problem choosing adequate starting values
for the iterations.

4 APPLICATION

In this section we illustrate the application of our
methodology by means of an example. For this pur-
pose, we modeled the M/M/s queue, with a sin-
gle service facility and a single waiting line. De-
mands were assumed to arrive according to a Pois-
son process with a constant average arrival rate, A,
and service times were assumed to follow an expo-
nential distribution with a constant average service
time 1/p = 1. Our goal was to express the average
waiting time in the queue (the response) as a function
of the queue utilization factor, p = A/ (a single de-
cision variable). We considered the following twelve
(m = 12) different values for p (and X), {p; : i =
1,9} ={.1,.2,.3, 4,.5,.55,.6,.7,.75, .85,.9,.95}. We
decided to perform n = 10 replications of each of the
m = 12 design points; we chose, for n, a number
greater than nine, in order to obtain an appropriate
estimate for 02,i = 1,...,m; see Deaton, Reynolds
and Myers (1983). Different replications use the same
value for the independent variable p;, but different
pseudorandom number seeds. Each of these 10 repli-
cations starts in the empty state (no customers wait-
ing). In order to account for the presence of initializ-
ing bias at each design point, we run Welch’s proce-
dure Welch (1983), for increasing number of observa-

tions and window widths. Consequently, the deleted
observations were made to correspond to about 15%
of the total number of observations in each run. For
instance, for p = .1, the number of observations in
each run was 3,500, the first 500 were deleted and a
window of 1,000 was enough; for p = .95, each run
included 40,000 and 3,500 were deleted, for a window
of 20,000.

Taking into account the discussion in Section 2.1,
the collected simulation data for the metamodel esti-
mation is summarized in Table 1. X; represents the
utilization factor in experiment i. Y;, is the average
waiting time in queue during the ¢th run, with uti-
lization factor X; and input random stream r;;—that
is, the jth replication of experiment i.

Table 1: Simulation data for metamodel estimation

i X Y;. gi/\/n

1 | 0.10 | 0.110601 | 0.000131466
2 1 0.20 | 0.248065 | 0.000533648
3 | 0.30 | 0.429343 | 0.00145294
4 | 0.40 | 0.670248 | 0.00146284
5 | 0.50 | 0.987577 | 0.00335524
6 | 0.55 | 1.21614 0.00637383
7 | 0.60 | 1.50915 0.0154060
8 | 0.70 | 2.38149 0.0742331
9 | 0.75 | 3.09417 0.152555
10 | 0.85 | 5.72853 0.201175
11 | 0.90 | 8.95594 0.932344
12 | 0.95 | 18.8805 4.09515

Our suggested procedure, for fitting the sim-
ulation metamodel, consists of the steps that fol-
low.

1) Identifying a tentative nonlinear relation be-
tween the response and the decision variable.

Ideally, we should select a curve based on physical
justifications. Pragmatically, we usually do that visu-
ally, just like we compare empirical histograms with
known density functions for selecting a random dis-
tribution. A convenient first step is to represent the
dispersion diagram (or scatterplot) of the response
and the decision variable, plotting the corresponding
pairs (X;,Yj;), for i = 1,m and j = 1,n. In Fig-
ure 1, we graphically display the results of our exper-
iment. We observe that the average waiting time in
queue is actually related in a nonlinear fashion with
the utilization factor. If we had two decision vari-
ables, we might draw contour curves or use a three
dimensional visualization software, instead. In order
to identify the type of nonlinear relation, we advance
to the next step.
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Figure 1: Dispersion diagram for M/M /1 queue

2) Selecting a curve from a catalog of typical non-
linear functional relationships.

To facilitate the identification of tentative nonlin-

ear relations, we might build a catalog of different
functional relationships, with their graphical repre-
sentations. Due to space restrictions, we reproduce in
Figures 2 and 3, only a small part of one such catalog.
Comparing the actual dispersion diagram of Figure 1
with this part of the catalog of curves, it is likely
that an hyperbole might fit the data. So, we chose
this functional relationship for the tentative simula-
tion metamodel relating the average waiting time in
the M/M/1 queue with the utilization factor:
Vi = 00X;/(1 + 6:X;) + &, i = 1,...,12, with
€. ~ N (0,1/1007) and Y;; ~ N(u;,0?). As we men-
tioned in Section 2.2, this hypothesis of normality is
generally satisfied when the simulation responses are
averages, which is the case (we are analyzing the av-
erage waiting time in queue). Note that the selected
function (a hyperbole) is not linearizable.

For this particular system, we know the theoretical
expected steady-state response. To illustrate what
might have happened, if we had chosen to fit another
functional relationship to the M/M/1 data—for in-
stance, the monomial in Figure 2, Y;; = 6; X €;;, we
perform the next two steps of the procedure for both
models above. Since the metamodel to fit is now lin-
earizable, we take the decimal logarithm of both sides
and obtain log Y;; = log 61 + 62 log X; +loge;;, the fa-
miliar simple linear regression equation.

3) Estimating the nonlinear simulation meta-
model.

From Figure 1, we observe that the variance of the
response increases with the utilization factor. Thus,
we must use the least squares estimator given by (5)
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Figure 2: Monomial, y = 0,2%2,0; = 25,0, =5
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Figure 3: Hyperbole, y = 722 6, = 1,0, = —1

and satisfying (6), with n =10 and p = 2:

61 01 | 1 re-1 —1>
o |~ (|5 ] e,

where F = F(07,03).

In order to obtain the approximate least squares
estimator of 8; and 0>, we used the iterative Gauss-
Newton method. The approximate solution was
found when |(SSE*+! — SSE*)/SSE**!| < 1079 for
five consecutive values of k, where SSE* is the resid-
ual sum of squares in iteration k.

In Table 2, we present the main results of the es-
timation of the selected simulation metamodel: the
approximate LSE of 6, e 65, as well as their corre-
sponding asymptotic standard errors. We also repro-
duce the corresponding values for the monomial case
(Model 2).

However, the metamodel has to be validated, to
determine if it is indeed the “elected” model. This



Table 2: Estimated metamodel coefficients

Model | Coeff. | Estimator | Standard error
1 0, 1.0004 0.00882
0 —1.0000 0.00174
2 log 61 0.7451 0.00548
0, 2.0254 0.01351

topic is dealt with in the next step.

4) Validating the nonlinear simulation meta-
model.

Table 3 reproduces the significance tests performed
on the estimated metamodel. We can observe that
the proposed model explains rather well the simu-
lation model response, through the factor X = p:
clearly, the F' test for lack of fit is not significant
(F10,108 =~ 1.93). Thus, there is no evidence to re-
ject this model and try another one. We should also
emphasize that the graphical analysis of the residu-
als also suggests that the assumptions of regression
analysis are met. However, some authors argue that,
in the linear case, this F' test is not very sensitive
to departures from the normality and homogeneous
variance assumptions; see Kleijnen, Burg and Ham
(1979). That is, it may happen that the test may
have a low probability of detecting if the fitted model
does provide a good fit. The nonlinear case is treated
performing a linearization. Consequently, the same
problem may occur in the nonlinear case. Thus, the
acceptance of the fitted metamodel can not depend
solely on the value of this statistic.

In the same table, we show the corresponding val-
ues we would have obtained, had we chosen the mono-
mial function. It is quite obvious that there is evi-
dence to reject the monomial fit.

Table 3: Testing for lack-of-fit

Mod | Source | D f SS MS F
1 Lack 10 | 1.891 | 0.189 | 0.189
Error | 108 | 108.0 | 1.000
2 Lack 10 | 3580. | 358.0 | 358.0
Error | 108 | 108.0 | 1.000

Besides testing the metamodel adequacy, we must
also test its predictive validity. We notice, in Table 4,
that the values of PRESS = 111.005 and SSE =
109.891 are rather close. This supports the validity
of the fitted regression metamodel. It also stresses the
importance of M SFE as an indicador of the predictive

capability of this model.
Again, we also present the corresponding diagnos-
tics for Model 2 (the monomial function). The values

are consistent with the rejection of this model.

Table 4: Metamodel diagnostics

Statistic | Hyperbole | Monomial
SSE 109.891 3688.38
PRESS 111.005 6603.47
MSE 0.9313 31.2575
R? 0.9444 0.883554
Ridj 0.9491 0.893258

The main results of the metamodel validation
procedure, based on the regressions on the model-
building and validation data sets, are reproduced in
Table 5. We present the estimated regression model
coefficients, their standard deviations and some other
related statistics. Notice that there is good agreement
between the two sets of estimated regression coeffi-
cients, and between the values of statistics M SE and
R? for both cases. The fact that MSPR is not sig-
nificantly different from M SFE implies that the mean
squared error, M SE, based on the model-building
data set, is a reasonably valid indication of the predic-
tive capability of the fitted regression model. These
validation results support the appropriateness of the
selected simulation metamodel.

On the other hand, for the monomial (model 2),
the same statistics convey the opposite information.
So, as before, this model would be rejected based on
this validation procedure.

Table 5: Metamodel validity test

Hyperbole Monomial
Statistic || M-bld Valid M-bld | Valid
6, 9965 | .9940 - -
log 61 - - 7870 | .6407
5(67) 0117 | .0099 - -
6 (log 1) - - 0958 | .1135
6, —1.001 | —.9982 || 1.996 | 1.940
(62) 0021 | .0033 || .0028 | .0057
SSE 66.99 | 46.48 | 1912. | 642.9
PRESS | 73.23 - 4885. | -
MSE 9569 | 1.010 || 27.31 | 13.98
MSPR - 1.333 - | 50.93
R? 9011 | .9855 || .5896 | .9033
R2, 9093 | .9867 | .6238 | .9113




In conclusion, we can say that, although the lin-
ear(ized) model is much simpler to fit, we strongly
feel that there will be many situations in which the
advantages of a nonlinear model will overcome the
extra time and computation needed.

5 CONCLUSIONS

In this work, we have addressed some of the most
important issues involved in the estimation of nonlin-
ear simulation metamodels. Although they are more
complex and time-consuming than their linear coun-
terparts, nonlinear metamodels account for a larger
part of the variability of the simulation model and
have fewer parameters. We have shown that it is
feasible, for an informed practitioner, to apply our
proposed procedure for metamodel estimation. The
statistical procedures that we propose for validation
also seem to be reasonably discriminating between a
good and a bad choice for the metamodel structure.

More work needs to be developed and we intend to
do so. The catalog of functional relationships has to
be enlarged with more functions of one or two inde-
pendent variables. It would be useful to come up with
specific visually oriented approaches to help in the
curve selection, when the metamodel includes more
than two independent variables. The construction of
confidence intervals and hypotheses testing are two
other topics deserving attention, but that could not
be fit into the dimensions of this paper.
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