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ABSTRACT

Metamodels are functions with calibrated parameters, used
as abstractions and simplifications of the simulation model.
A metamodel exposes the system’s input-output relationship
and can be used as an analysis tool for solving optimization
problems or as a surrogate for building blocks in larger
scale simulations. Our approach is to analyze statistically
the response by modeling the normal distribution mean and
variance functions, in order to better depict the problem and
improve the knowledge about the system. The metamodel
is checked using the confidence intervals of the estimated
distribution parameters, and new design points are employed
for predictive validation. An example is used to illustrate
the development of analysis and surrogate metamodels.

1 INTRODUCTION

Complex processes are often described by large models, con-
sidered as good reality approximations. However, decision
support, exploratory analysis and rapid adaptive calculations
frequently require easy to understand and explain represen-
tations. A simulation metamodel (Barton 1992) is a model
of the simulation model, and exposes the fundamental nature
of the system’s input-output relationship through a simple
mathematical function. Graphical representations of the
metamodel are also useful for providing a simple and easy
form to analyze and communicate.

A simulation metamodel is defined as an abstraction
and simplification of the simulation model. A metamodel is
built to meet a particular set of objectives, and a metamodel
valid for one objective might not be for another (Davis and
Bigelow 2003). Metamodels are not necessarily rigorous
representations of the original model but they should strive
to offer a small degree of uncertainty. Even though the most
cost-effective metamodel is not necessarily the most valid,
the information provided must be reliable up to a certain
degree.

The construction of a metamodel starts with the sim-
ulation model that is run several times for different input
911-4244-1306-0/07/$25.00 ©2007 IEEE
values. Preferably, these input values should be determined
by an appropriate experimental design. A robust design
experiment works well across a broad range of scenarios
and provides solutions that are less likely to produce unan-
ticipated results (Kleijnen et al. 2005). Then the resulting
simulation responses, or output data, and a statistical model
are inferred from those responses, using some form of re-
gression. To simplify the metamodel, one may combine
some of the inputs and eliminate others that proved to be
redundant. Finally, an appropriate mathematical function
with a few undetermined parameters must be calibrated, by
estimating those parameters, so that the metamodel fits the
response.

Different techniques have been proposed for the con-
struction of simulation metamodels. Linear polynomial
approximations are easy to implement and are frequently
used by simulation researchers (Kleijnen and Sargent 2000,
Cheng and Kleijnen 1999). Nonlinear approaches provide
more flexible and intuitive approximations but are more com-
plex. These methods include nonlinear regression (Santos
and Nova 1999, Santos and Nova 2006), Kriging (Klei-
jnen and van Beers 2005, Allen, Bernshteyn, and Kabiri
2003) and neural networks (Badiru and Sieger 1998). Other
mechanisms include rational metamodels (Hendrickx and
Dhaene 2005), radial basis functions (Jin, Chen, and Simp-
son 2000) and Bayesian approaches (Cheng 1999, Chick
1997). Metamodels have been used for gaining an overview
of the system’s behavior within an experimental region and
to iteratively select new inputs at which to evaluate the sys-
tem (Kleijnen and van Beers 2004, Santos and Santos 2007).
Metamodels can be used as building blocks in larger scale
simulations in order to increase the efficiency of computer
experiments (Barton 1997). Metamodels are also useful for
solving optimizations problems using less expensive com-
puter resources (Jin, Du, and Chen 2001, Cheng and Currie
2004).

In spite of their shortcomings, metamodels can provide,
in an easy to grasp form, the behavior of some useful mea-
sure of performance, or response, of the simulation model.
However, rather than merely estimating the future average
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performance of a system, given a particular design and con-
trol strategy, additional information should be provided as
to how common is such behavior to be expected. Improving
the metamodel, relative to a baseline of simple mathemat-
ical functions, requires the use and understanding of the
statistical nature of the output. Our approach is to analyze
statistically the response and to model besides the mean
value, of some quantity, its variance. This complements
the usual metamodel representation of the mean value with
an indication of how reliable the mean value is and how
common are similar to be expected. The resulting meta-
model uses mean and variance functions to better depict
the problem and improves the knowledge about the system.
As a consequence a well informed decision maker can have
greater confidence and assurance when judging the behavior
of the system.

The next section discusses the use of metamodels as
analysis tools and as simulation surrogates or building
blocks. Section 3 describes the process for modeling output
distribution parameters and the construction of the resulting
metamodel. In section 4 an example is used to illustrate
the building of such a metamodel and depict the resulting
expressive capacity. Section 5 is reserved for conclusions.

2 DISTRIBUTION BASED METAMODELS

An important task in simulation is to discover the rela-
tionship, if any, between the simulation input X and the
response of interest Y . If the input-output is plotted and a
visually check suggests some relationship between Y and
the X , then we would expect to express this relationship
through some function f , that is,

Y ≈ f (X). (1)

The utilization of the function f allows the prediction of
Y for a given X . For example, Y could be the steady-
state average waiting time in system and X the mean time
between arrivals. for a queuing system (Law and Kelton
2000). Mathematically, the relation (1) can be written as
the metamodel

Y = f (X ;θ)+ ε

where ε represent the noise and f belongs to a known
parametric family of functions, S . Finding the metamodel
reduces to estimating the parameter vector θ . The family
S should be large and flexible enough to approximate a
comprehensive variety of functional relationships. If two or
more metamodels fit the data equally well, it is desirable to
choose the simplest one. Even when a linear approximation
works well, a nonlinear metamodel may still be used to
retain a clear interpretation of the parameters (Santos and
Nova 2001).
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The proposed distribution based metamodel emulates
not only a mean value but also the estimated standard de-
viation, i. e., a dispersion measure at each design point.
In practice, besides fitting the estimated averages, the es-
timated variances are also fitted. This approach is useful
when the model has unequal variances along the region of
interest, as is frequently the case when the system exhibits a
complex behavior. These regions require a more careful and
detailed study in order to better understand the evolution
and performance of the system.

2.1 Analysis Metamodels

The goal of a metamodel is to aid in the purpose for which the
simulation model was built. So, the metamodel is developed
as a mechanism designed to improve the knowledge and to
better analyze the simulation model. In this context, it may
be important to use metamodels that describe the mean and
the variance of the response.

Suppose a simulation experiment performed according
to some experimental design {Xp : p = 1, . . . ,np}. For each
design point, nr independent replications of the simulation
model are carried out and a set of output values

{Yprk : p = 1, . . . ,np;r = 1, . . . ,nr;k = 1, . . . ,nk}

is obtained. Yprk is the k-th observation correspondent to
the r-th replication of the experimental point p.

If our goal is to study the mean response, then we
consider the output

{Ȳpr. =
nk

∑
k=1

Yi jk/nk, p = 1, . . . ,np,r = 1, . . . ,nr}.

If the output values, Ȳpr., are obtained from a sample of
dimension sufficiently large, then we may apply the central
limit theorem and consider the hypothetical approximated
distribution

Ȳpr. ∼ N(µp,σ
2
p) (2)

where [
µp
σp

]
≈
[

g1(Xp;θ µ)
g2(Xp;θ σ )

]
.

In this case, the goal is to estimate the parameter vectors
θ µ and θ σ . The resulting metamodel needs two functions
to model the normal distribution estimated parameters, pro-
viding a better understanding of the simulation response.
Although, the metamodel values given by the evaluation of
the functional relationship in any of the points within the
design region are parameters of the normal distribution, the
metamodel is not considered a statistical model.
1
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2.2 Surrogate Metamodels

A metamodel can also be thought as a simulation component
that may be used and reused instead of the original simulation
model. The metamodel can be reused stand-alone as a
surrogate for a complete simulation model or may be reused
as a building block in a larger simulation model. To be
reused, a metamodel is encapsulated in a module with a
defined interface, providing limited functionality and able
to be used within a defined architecture. A component may
be regarded as an input-output transfer function, since its
reuse should offer all the apparent benefits of function reuse.

A successful reuse strategy should include features to
support technical aspects like abstraction, selection, special-
ization and integration (Pidd 2002). A metamodel is itself
an abstraction providing succinct, high level descriptions of
reusable artifacts that are essential in assisting the devel-
opers in understanding their purpose, nature and behavior.
Selection enables the identification of previously devel-
oped metamodels as Components Off The Shelf (COTS)
to aid the developer in performing reuse. Parameterization
of metamodels, such as θ µ and θ σ parameters, support
specialization of components since its is unlikely to reuse
without modification. Integration provides a mechanism
for the combination, connection and communication be-
tween reuse artifacts enabling the reuse of a metamodel in
a simulation context.

When a metamodel is reused, the mean and variance
parameters obtained when evaluating the metamodel are used
to drive a normal distribution generator (see equation (2)).
The values resulting from the normal distribution exhibit a
stochastic behavior similar as to what is to be expect from
the original simulation model. In this context, the analysis
of the system may take into account deviations from the
average behavior and the occurrence of rare events.

The reuse of a metamodel, as building block in an
event driven simulation model, requires the construction of
the metamodel as a delay line. This implies that the input
variable is the time between arrivals and that the response,
or output variable, is the time spent inside the metamodel.
Furthermore, the observed responses must be observations
of individual entities rather than means or other quantities.
The output of the metamodel, when used as a black-box
building block, corresponds to a delay assigned to each
arriving entity. The delayed entity is then scheduled to
the metamodel output node, using the standard simulation
scheduling procedure.

For this approach, we consider only one simulation
run, and the sequence to be analyzed at each design point p
should be Yp11, . . . ,Yp1nk . The metamodel also results from
the estimation of the vector parameters θ µ and θ σ and by
hypothesis the output values are

Ȳp1k ∼ N(µp,σ
2
p). (3)
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3 METAMODEL CONSTRUCTION

The process of building a successful distribution based
metamodel requires a sequence of steps. As in other meta-
modeling processes, a region of interest must be defined
and an appropriate experimental design should be devel-
oped, resulting in a set of considered relevant design points
or inputs. Then the necessary data is collected from a
predefined number of replications executed at each design
points. In order to proceed with the construction of the
metamodel we must be assured that the data is sufficiently
independent and identically distributed (iid), and that the
resulting mean and variance estimators are reasonably valid
at each design point. This step is performed using classical
input modeling techniques to assess if the estimators can
be used to approximate the collected assuming a normal
distribution (Leemis 2004).

Once the data is collected and validated, the construc-
tion of the metamodel requires the selection of a curve to
represent each of the normal distribution parameters. Each
of the parameters is modeled independently and different
metamodeling techniques may be used, depending weather
the behavior of the parameter is linear or exhibits non-
linearities. After each distribution parameter is fitted, the
resulting curve must be validated in order to ensure that
the expected output does not deviate significantly from the
simulation data collected.

3.1 Gather Simulation Data

The collection of data must address a number of issues
such as the initial and final conditions, whether to per-
form terminating or steady-state simulations and decide the
required number of replications and run length. When exe-
cuting terminating simulations, that are run a predetermined
amount of time or until a certain event occurs, it may be
necessary to censor the results if rare events are simulated.
The results obtained from steady-state simulation, that have
no natural point of termination, are biased by the warm-
up period. In this case, an initial data deletion must be
performed to control the bias and reduce the estimation
error in the parameters of the metamodel. Techniques, such
as the Welch’s procedure, are used to eliminate the initial
bias (Alexopoulos 2006).

When assessing the average behavior of the system with
respect to a quantity of interest, for instance the time in
system, the sample mean values can be obtained in different
ways. Independent replications, when each run provides a
single data value, provide iid data that enables the direct
use of classical statistical techniques. Overlapping and non-
overlapping batches, when the simulation is divided into
sections each of these providing a single data values, can
be used in steady-state simulations but the data collected
2
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might not be considered iid from a simulation point of
view (Alexopoulos 2006).

As a result of data collection, a set of values Wpi
is associated with each design point p (p = 1, . . . ,np and
i = 1, . . . ,ni), denoted by Wi or just W if no specific point
is addressed. If an analysis model is being constructed,
then the values correspond to the mean responses from (2),
i. e., Wpr = Ȳpr·. If the metamodel is to used as building
block, the observation values of a single run correspond to
Wpk = Yp1k from (3). In either case, the behavior of these
sets of points, one set for each design point, represents the
quantity to be modeled.

3.2 Output Analysis

The output analysis is used to estimate the mean and vari-
ance parameters at each design point. These values will then
be used to construct the transfer functions that describe the
metamodel. There are several ready-to-use readily available
distribution fitting software packages on the market or in-
cluded with commercial simulation languages, like BetaFit,
UniFit or ExpertFit (Barton et al. 2002), that are used to
find the distribution that best fits the data. These packages
take the sampled data set and select, from a set of common
scalar probability distributions, those that give the better
values for several goodness-of-fit (gof ) statistics. In this
paper, however, we are mainly concerned with the mean
and variance parameters of the normal distribution, although
mean and variance values may be computed from other dis-
tributions. Also, we must assume the same distribution
for all design points, with presumably different distribution
parameters for each point.

In order to apply classical statistical techniques we must
assess weather the observations, in the collected order, are
iid. One technique applies linear regression to the output
Wi versus the collect value number i, i = 1, . . . ,ni. The
regressed first degree polynomial

Wi = β0 +β1i+ ε

assumes that data is iid if the hypothesis

H0 : β1 = 0 (4)

holds. If β1 is significantly different from zero the assump-
tion is probably not appropriate, corresponding to learning
and fatigue curves for negative and positive values of β1,
respectively (Leemis 2004). However, if output data has
cycles and trends the above technique does not detect such
dependencies. The correlation plot is another technique
that determines the correlation between adjacent observa-
tions, for different levels of separation or lags. The graph-
ical plot represents ρ̂ j = Ĉor(Wi,Wi+ j) as a function of
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j = 1, . . . ,ni−1. and all represented values must be close
to zero if data is to be assumed iid (Law and Kelton 2000).

Assuming that the collected data is approximately iid,
we may used Maximum Likelihood Estimators (MLEs) to
determine the parameter values. For each experimental
point, we may obtain the MLEs for the parameters of the
hypothetical normal distribution of Wpi:

µ̂p = W̄p. =
1
ni

ni

∑
i=1

Wpi, σ̂p =

(
1
ni

ni

∑
i=1

(Wpi−W̄p.)2

)1/2

.

In the final stage of the output analysis we must ensure
that the normal distribution with the estimated parameters
is, in fact, a good approximation of the original output
data. Statistical gof tests, like chi-square and Kolmogorov-
Smirnov, are used to investigate whether to reject, or not,
the choice of the hypothetical distribution and its parame-
ters. The Kolmogorov-Smirnov test statistic evaluates the
maximum vertical difference between the empirical and the
fitted cumulative distribution functions. However, even if
the gof test rejects the distribution and its parameters, which
is likely if the data set is large, some authors suggest that
the result should only be advisory (Biller and Nelson 2002).
Alternatively, a graphical comparison based on the graphs
of the cumulative distribution function is also sensitive to
lack of fit.

3.3 Curve Selection and Parameter Estimation

The construction of a distribution metamodel requires the
fitting of one curve per selected distribution parameter, mean
and variance for a normal distribution. Each parameter is fit-
ted independently and requires, in the context of regression
metamodeling, the selection of a curve that approximates
the input-output behavior inferred from the values obtained
from each design point. Linear regression using polynomi-
als is limited by the inability of low degree polynomials
to sufficiently approximate data values and the tendency of
high degree polynomials to fluctuate for values between the
provided data, specially in the boundaries. If polynomials
provide a poor fit, frequent when the output exhibits flat
regions, other metamodel types must be used. The regres-
sion of nonlinear functions, on the other hand, requires an
extensive and flexible catalog of curve candidates as well
as a careful choice of good approximate initial values.

The distribution metamodel estimation uses the least
squares method from numerical analysis. The least-squares
criterion of estimation in the linear model remains the most
commonly used method. The least squares method uses
a direct method if a polynomial fit is being used, while
an iterative method is required for a nonlinear function
fitting. This method consists of minimizing the error sum
of squares. In our case, we minimize SSE(µ,θ µ) and
3
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SSE(σ ,θ σ ), where

SSE(η ,θ η) =
np

∑
p=1

[η̂p−g1(Xp;θ η)]2.

That is, we obtain the vectors θ̂ µ and θ̂ σ such that
SSE(η , θ̂ η) < SSE(η ,θ η) for all θ η ∈ Rmη , with both
η = µ and η = σ .

3.4 Metamodel Validation

It makes sense to have some form of quality assurance so as
to ensure that the metamodel is fit for its intended purpose.
Metamodel validation is responsible for establishing that its
output data closely resembles the output data that should be
observed from the simulation model. The accuracy required
from the metamodel depends on its intended use and the
utility function of the decision makers. The comparison of
the metamodel and simulation output data could be done
using numerical statistics up to a significance level. Alter-
natively, the assessment could be made by using graphical
plots.

When MLEs are used to determine the values associated
with each design point, it makes sense to use the respective
confidence intervals as validation boundaries. The intervals
Ip(µ) = µ̂p±δp(µ) and Ip(σ) = σ̂p±δp(σ) where

δp(η) =
(
−E
[

∂ 2 lnLp(µ̂p, σ̂p)
∂η2

])−1/2

(5)

and Lp(µ̂p, σ̂p) is the likelihood function evaluated at
(µ̂p, σ̂p), based on the p-th design point data. For ni
large, these confidence intervals are approximate 100(1−
α)% (Law and Kelton 2000). If the metamodel’s output,
computed with the estimated parameters, is within the con-
fidence interval, we do not reject the metamodel when H0
holds for a given significance level, for instance 95% of the
design points p = 1, . . . ,np, where

H0 : g1(Xp; θ̂ µ) ∈ Ip(µ) ∧ g2(Xp; θ̂ σ ) ∈ Ip(σ). (6)

Similarly, a predictive validation can be inferred by
using the same hypothesis for a set of inputs other than the
design points used for the metamodel estimation.

3.5 Data Presentation

Metamodels fill in the gaps by estimating the expected be-
havior. The usual metamodels are mathematical constructs,
often with little, if any, intuitive value to decision makers.
Mean and standard deviation from a normal distribution
are tangible and easily understood quantities that comple-
ment each other to form a more complete description of the
91
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system. Analytical representations are guided towards opti-
mization procedures and detailed analysis, while graphical
representation provide an easy to grasp overview.

A graphical representation of the metamodel’s output
provide an intuitive and easy to communicate depiction of
the expected behavior of the target system. Although, the
metamodel models two distinct quantities, mean and stan-
dard deviation, they are closely related and may graphically
represented in a single plot. The output can be displayed by
plotting a central mean value within an uncertainty band of
variable width, whose breadth is controlled by the standard
deviation value; a 2σ band width corresponds to a prob-
ability of approximately 68%. Such approach improves
significantly the available information without increasing
excessively the graphical presentation.

4 APPLICATION EXAMPLE

The construction of distribution metamodels is illustrated
using a simple parts painting processing unit. The mean
time between arrivals of the parts, in minutes, is the decision
variable X modeled with an exponential distribution. The
painting time is triangularly distributed between 2 and 10
minutes, with a mode of 5 minutes. However, 20 percent
of the painting operations have to be repeated due to im-
perfections. The purpose of the simulation experiment is to
express the time in the system, Y , as a function of the mean
time between arrivals of parts. Two examples were devel-
oped to exercise either, analysis and surrogate, metamodels.
For the development of the analysis metamodel, where the
response is the mean time in system, 20 independent repli-
cations of 2000 observations were collected for each design
point. The construction of the surrogate metamodel collects
the time in the system of the last 50 observations of the
first replication used to build the analysis metamodel, for
each design point. The region of interest, or experimental
region, assumes X values between 7 and 11 minutes, where
the lowest interarrival time considered is near the system’s
saturation point.

The adopted experimental design considers a set of 9
evenly spaced designs points {7, 7.5, 8, 8.5, 9, 9.5, 10,
10.5, 11}. Another experimental design is used to assess
the predictive capability of the developed metamodels and
uses the middle points of the previous design {7.25, 7.75,
8.25, 8.75, 9.25, 9.75, 10.25, 10.75}. The selection of the
middle points assumes a worst case behavior of polynomial
fitting, specially for high degree polynomials. In order to
reduce the bias, an initial-data deletion was performed using
the Welch’s moving average, where 300 observations were
deleted from the first design point X = 7 and 100 from the
last point X = 11, for example. The model of the painting
processing unit was simulated using AweSim 3.0 and the
metamodels built in MATLAB 6.5 using some custom made
routines.
4
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Table 1: Design points β1 values for iid hypothesis and
MLEs estimators with the respective δp(η), given by (5),
for the analysis metamodel.

p Xp β1p µ̂p δp(µ) σ̂p δp(σ)

1 7.0 1.25 128.52 30.65 65.50 22.93
2 7.5 2.92 69.79 20.43 43.65 15.28
3 8.0 1.73 44.37 9.33 19.94 6.98
4 8.5 −0.56 29.14 3.14 6.72 2.35
5 9.0 −0.05 26.38 3.23 6.91 2.42
6 9.5 −0.03 20.95 1.89 4.03 1.41
7 10.0 0.17 17.72 1.22 2.60 0.91
8 10.5 −0.06 16.23 0.80 1.71 0.60
9 11.0 0.14 15.50 0.89 1.90 0.67

The data collected to build the analysis metamodel Wpi
consists of 20 means for 9 design points. Even though
each mean was collect from an independent replication, the
values of β1 obtained to assess the iid hypothesis (4) can be
as high as 2.92, as depicted in the third column of Table 1.
The Kolmogorov-Smirnov test does not reject the choice of
a normal distribution (α = 0.05), with the obtained MLE
parameters, for every design point.
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Figure 1: Estimated mean values, with the respective con-
fidence intervals, and the resulting fitted fifth degree poly-
nomial.

The polynomials to be selected correspond to the lowest
degree that meets the hypothesis (6), as shown in Table 2.

Table 2: Number of design point rejections of the hypothesis
(6) for different polynomial degrees.

degree 1 2 3 4 5 6 7 8

mean 7 7 4 1 0 0 0 0
stdev 7 6 4 5 3 0 0 0

The selected polynomials, of degrees 5 and 6 for the
mean and standard deviation parameters, are depicted in
91
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Table 3: Estimated parameters for the selected polynomials
used to describe the analysis metamodel.

coefficient mean stdev

X0 4.260e4 −4.509e5
X1 −2.150e4 3.017e5
X2 4.343e3 −8.352e4
X3 −438.20 1.225e4
X4 22.067 −1.004e3
X5 −0.4435 43.681
X6 −0.7874

Figures 1 and 2, their coefficients presented in Table 3, and
the resulting metamodel in Figure 5.

In order to gain additional insight about the metamodel’s
validity, the experimental design with middle points was
used to verify if the hypothesis (6) holds. The mean polyno-
mial holds the hypothesis (6) for every middle design point,
giving a high validity assurance; see Figure 3. However,
in the standard deviation case, depicted in Figure 4, there
are two design points that do not hold the hypothesis (6).
Specifically, for X = 8.75 the polynomial undervalues the
estimated confidence interval, while for X = 10.75 the poly-
nomial overvalues the respective interval.
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Figure 2: Estimated standard deviation values, with the re-
spective confidence intervals, and the resulting fitted poly-
nomial.

The data used to build the surrogate metamodel Wpi
consists of 50 observations for 9 design points. Since every
β1 value is smaller than the highest value observed in the
analysis metamodel, we do not reject the hypothesis (4) of
iid; see Table 4. However, the Kolmogorov-Smirnov test,
with a critical value of 0.1884, rejects the hypothesis of a
normal distribution (α = 0.05), for five of the nine design
points. In fact, three of the rejected design points have values
close to the critical, and only the first two points (p = 1,2)
differ significantly from the critical value. These two values
correspond to input values near the system’s saturation point
5
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Figure 3: Comparison of the confidence intervals for the
mean values, from the predictive experimental design,
against the fitted polynomial.

MEAN INTERARRIVAL TIME

Figure 4: Comparison of the confidence intervals for the
standard deviation values, from the predictive experimental
design, against the fitted polynomial.

and exhibit discrepancies in their tails. Nevertheless, we are
going to accept the normal distribution for two reasons. First
because the proposed method requires a single distribution
for every design point and some flexibility is needed. Second,
some authors suggest that these tests should only be advisory,
especially for large data sets, in particular if additional
evidence supports the selection (Biller and Nelson 2002).

The estimated parameters of the selected polynomials,
of degrees 7 and 5 for mean and standard deviation pa-
rameters (lowest degrees for hypothesis (6) ), are shown in
Table 5 and the resulting metamodel depicted in Figure 6.

5 CONCLUSIONS

Metamodels are abstractions of the simulation model that
expose the system’s input-output relationship through simple
mathematical functions. The proposed distribution based
metamodels analyze statistically the response using classical
9
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Figure 5: Final representation of the analysis metamodel,
with the expected response and the associated uncertainty
band.

Table 4: Design points β1 values for iid hypothesis, MLEs
estimators with the respective value of Kolmogorov-Smirnov
test, for the surrogate metamodel.

p Xp β1p µ̂p σ̂p K-S test

1 7.0 1.11 579.93 317.92 0.4226
2 7.5 −0.65 221.57 113.19 0.3643
3 8.0 0.68 62.98 36.92 0.2154
4 8.5 0.69 45.02 23.04 0.1830
5 9.0 0.70 24.75 24.21 0.2017
6 9.5 −0.35 15.29 17.18 0.2362
7 10.0 −0.07 13.56 9.69 0.1488
8 10.5 0.10 13.44 7.72 0.1139
9 11.0 −0.28 15.08 12.75 0.1802

statistical techniques. The response is modeled as a normal
distribution, at each design point, and the estimated mean
and standard deviation MLE values used for the metamodel
construction. Two polynomial functions fit the distribution
parameters evaluated at each experimental design point.
This approach, estimates variances besides averages, giving
better insight of the system’s behavior in regions where the
model exhibits unequal variances, as is frequently the case
in systems with complex behavior.

The accuracy of the polynomial functions are checked
using the confidence intervals obtained when estimating the
MLE values, for every design point. The pair of polyno-
mials to be selected, are obtained by linear regression, and
correspond to the lowest polynomial degree that ensures a
sufficiently accurate fit. A predictive validation test is per-
formed, employing the same technique developed for the
polynomial accuracy, using an experimental design built
with the middle points of the initial design.

A distribution metamodel may be developed as an anal-
ysis tool designed to improve the knowledge and judgment
of the system’s behavior, for example in solving optimiza-
16
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Table 5: Estimated parameters for the selected polynomials
used to describe the surrogate metamodel.

coefficient mean stdev

X0 −2.347e7 2.134e5
X1 1.869e7 −1.092e5
X2 −6.343e6 2.224e4
X3 1.189e6 −2.254e3
X4 −1.331e5 113.62
X5 8.897e3 −2.2788
X6 −328.82
X7 5.1849
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Figure 6: Final representation of the surrogate metamodel,
with the expected response and the associated uncertainty
band.

tion problems. Likewise, the metamodel can be reused
as a simulation model surrogate stand-alone or as a larger
model building block. When used as a building block the
metamodel behaves as a delay line, relating the interarrival
time with the time in system.

A parts painting processing unit example is used to
illustrated the distribution based metamodel development.
The resulting distribution metamodels are depicted using a
single diagram where the mean behavior is complemented
by an uncertainty band representing the expected dispersion
measure of the mean within the experimental region.
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