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The method of control variates has been intensively used for reducing the variance of estimated (linear) regression
metamodels in simulation experiments. In contrast to previous studies, this article presents a procedure for applying
multiple control variates when the objective is to estimate and validate a nonlinear regression metamodel for a single
response, in terms of selected decision variables. This procedure includes robust statistical regression techniques for
estimation and validation. Assuming joint normality of the response and controls, confidence intervals and hypothesis
tests for the metamodel parameters are obtained. Finally, results for measuring the efficiency of the use of control
variates are discussed.
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1 INTRODUCTION

Computer simulation models are commonly used for estimating and validating metamodels.
A simulation metamodel is a mathematical relationship between the input (input para-
meters or design variables) and the output (response) of the computer simulation model; see
Barton (1992). If this auxiliary model is an accurate representation of the simulation model,
it can be very useful for prediction and sensitivity analysis, although it uses fewer computer
resources, when compared with the more time consuming and expensive simulation program.
To improve the efficiency of metamodel estimation, it is common to use the control variates
technique. This technique is one of the most widely used variance reduction methods, because
it is not very difficult to implement, it is a general method and it does not alter the underlying
stochastic process.

Many authors have studied the method of control variables in the context of linear meta-
model estimation; see, for example, Nozari et al. (1984), Porta Nova and Wilson (1989)
and Shih and Song (1995). In particular, the polynomial form of the general linear regres-
sion model has been extensively analyzed. However, polynomials are unable to produce a
global fit to curves of arbitrary shape. Moreover, in real-life systems nonlinearity is common
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and approximation using polynomials becomes unrealistic. Consequently, in these problems,
polynomials often do not provide good fits, e.g., in problems involving queuing systems (Fried-
man and Friedman, 1985). An alternative that provides better and more realistic global fits is
the use of statistical nonlinear regression techniques (Santos and Porta Nova, 1999). In this
article, we apply the method of control variates to the estimation and validation of a nonlinear
metamodel of a single simulation response, expressed in terms of multiple inputs. In fact, the
procedure presented here is a generalization of the work of Nozari et al. (1984) to nonlinear
simulation metamodels.

This article is organized as follows. In Section 2, we formulate the nonlinear metamodeling
problems, both without and with control variates. In Section 3, we obtain some distribution-
free results. In Section 4, we discuss the metamodel estimation problem under a joint normality
assumption. The minimum variance ratio and the loss factor are also obtained. In Section 5,
the methodology described in this article is illustrated using a simple M/M/1 queuing system.
Finally, Section 6 is reserved for conclusions.

2 NONLINEAR METAMODEL ESTIMATION

2.1 Nonlinear Metamodels

Consider an experimental design consisting of n different design points, defined by the d

decision variables {Xil : i = 1, . . . , n; l = l, . . . , d}. For each design point, r independent
replications of the simulation model are carried out and the experiment yields {(Yij , Cij ): i =
1, . . . , n, j = 1, . . . , r}, where Yij is the relevant system response and Cij is a vector of
q concomitant control variables, with a known mean. Without loss of generality, we assume
E[Cij ] = 0, with i = 1, . . . , n and j = 1, . . . , r . Suppose that the simulation model (computer
program) can be represented by the metamodel

Yij = f (Xi., θ) + εij , (1)

for i = 1, . . . , n and j = 1, . . . , r , where εij ∼ NID(0, σ 2), with σ > 0, and θ is an m × 1
vector of unknown parameters. Under mild regularity conditions, every nonlinear control
variable scheme behaves asymptotically like a linear control variable scheme; see Glynn and
Whitt (1989) and Loh (1994). As a result, we only consider linear schemes involving control
variables. Thus, we assume that the error εij = Yij − f (Xi., θ), in problem (1), has a linear
regression on the control vector Cij , with an unknown q × 1 vector of control coefficients
δ and an error εij . This way, the simulation model can also be represented by the replicated
simulation metamodel

Yij = f (Xi., θ) + Cijδ + εij , (2)

with i = 1, . . . , n and j = 1, . . . , r .
Let Z be the following random matrix:

Z =



Y11 C111 · · · C11q

...
...

...

Yn1 Cn11 · · · Cn1q

...
...

...

Y1r C1r1 · · · C1rq

...
...

...

Ynr Cnr1 · · · Cnrq


(3)
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Assume that the row vector Zl. is continuous and has the same probability density function
for all l = 1, . . . , N = nr , such that the following dispersion matrix exists:

� = D[Zl.] =
[

σ 2 σYC

σCY �C

]
, (4)

where σ 2 = Var[Yij ].As a consequence, �C = D[Cij ] is nonsingular and also positive definite
with probability one, for all replications of all experimental points (Porta Nova and Wilson,
1989). The covariance vector between Yij and Cij , denoted by σYC = C[Yij , Cij ], is assumed
to be constant for all i = 1, . . . , n and j = 1, . . . , r , with σCY = σT

YC .
To simplify the estimation procedure, instead of problems (1) and (2), we consider respec-

tively the equivalent least squares problems, in which the individual observations, at each
design point, are replaced by their averages across runs:

Ȳi. = f (Xi., θ) + ε̄i., i = 1, 2, . . . , n, (5)

with ε̄i. ∼ NID(0, σ 2
Y ), σ 2

Y = Var[Ȳi.] = σ 2/r and

Ȳi. = f (Xi., θ) + C̄i.δ + ε̄i., i = 1, 2, . . . , n, (6)

where C̄i. = (C̄i.1, . . . , C̄i.q), with C̄i.k = 1/r
∑r

j=1 Cijk .

2.2 Objectives

In this article, two kinds of results are exposed:

(i) Assuming that the metamodel (2) is valid, we obtain the approximated minimum variance
ratio, the nonlinear least squares estimator δ̂ (for the true vector of control coefficients
δ), and the corresponding controlled nonlinear least squares estimator θ̂(δ̂) (to estimate
the true vector of metamodel coefficients θ).

(ii) Assuming that the response and the control variables have a joint multivariate normal dis-
tribution, we derive the approximated loss factor and we construct asymptotic confidence
regions for θ. We also propose procedures for testing hypotheses about the metamodel
parameters.

3 GENERAL RESULTS ON METAMODEL ESTIMATION

In this section, we present results on metamodel estimation using control variables that do not
depend on the assumption of joint normality between the response and the control variables.

3.1 Minimum Variance Ratio

If the Jacobian matrix F of f = (f (X1., θ
∗), . . . , f (Xn., θ

∗))T has full column rank m, then
we apply result (12.21) of Seber and Wild (1989) to problem (5), obtaining the following
asymptotic ordinary nonlinear least squares estimator of θ:

θ̂ ≈ θ∗ + (FTF)−1FT[Ȳ − f], (7)

where θ∗ is the exact value of θ and Ȳ = (Ȳ1., . . . , Ȳn.)
T (to simplify the notation, we

use F = F(θ∗) and f = f(θ∗)). The mean and the covariance of this estimator are obtained
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applying (12.23) of Seber and Wild (1989) to problem (5),

E[θ̂] = θ∗, D[θ̂] = σ 2

r
(FTF)−1. (8)

When control variables are observed, and for a fixed vector of control coefficients φ, the least
squares estimator of θ is given approximately by

θ̂(φ) ≈ θ∗ + (FTF)−1FT[Ȳ − C̄φ − f], (9)

where

C̄ =
 C̄1.1 · · · C̄1.q

...
...

C̄n.1 · · · C̄n.q


This estimator is obtained representing problem (6) in the form Ȳi. − C̄i.φ = f (Xi., θ) + ε̄i.

and then determining the ordinary nonlinear least squares estimator as in Eq. (7) (considering
a fixed φ).

The approximation (9) is equivalent to

θ̂(φ) ≈ θ∗ + (FTF)−1FT[Ȳ − f] − (FTF)−1FTC̄φ,

and, when control variables are not used, the least squares estimator is given by Eq. (7),
therefore

θ̂(φ) ≈ θ̂ − (FTF)−1FTC̄φ,

that is, θ̂(φ) �= θ̂, or in other words, observing control variables with known means results in
a different estimator of θ. As a consequence, if the random matrix has a probability density
function, then using E[C̄] = 0 and E[θ̂] = θ∗, we obtain

E[θ̂(φ)] = θ∗. (10)

To obtain the dispersion matrix D[θ̂(δ)], it is useful to write the estimator (9) in the
form θ̂(φ) ≈ A[Ȳ − C̄φ] + b, where A = (FTF)−1FT and b = θ∗ − (FTF)−1FTf. Thus, we
can write

D[θ̂(φ)] = AD[Ȳ − C̄φ]AT, (11)

where Ȳ − C̄φ = (Ȳ1. − C̄1.φ, . . . , Ȳn. − C̄n.φ)T. As this work is in the context of the method
of independent replications, we have

Cov[Ȳi. − C̄i.φ, Ȳi ′, − C̄i ′,φ] = 0, i �= i ′. (12)

Moreover,

Var[Ȳi. − C̄i.φ] = σ 2
Ȳ

+ φT�C̄φ − 2φTσC̄Ȳ . (13)

The vector of control coefficients that minimizes this variance is given by δ = �−1
C̄

σC̄Ȳ ; see
Eqs. (8) and (9) of Lavenberg and Welch (1981). But �C̄ = �C/r and σC̄Ȳ = σCY /r , and as
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a result

δ = �−1
C σCY. (14)

Substituting Eq. (14) in Eq. (13), we obtain

Var[Ȳi. − C̄i.δ] = 1

r
τ 2, (15)

where

τ 2 = σ 2 − σYC�−1
C σCY . (16)

Equation (12), (15) and (16) imply that D[Ȳ − C̄δ] = 1/r(σ 2 − σYCΣ−1
C σCY )In. Substituting

this dispersion matrix in Eq. (11) and as A = (FTF)−1FT, we have

D[θ̂(δ)] = 1

r
(σ2 − σYC�−1

C σCY )(FTF)−1. (17)

Using Eqs. (8) and (17), we conclude that the maximum reduction in variance that is possible
to obtain, with the use of control variables is given approximately by the minimum variance
ratio

η(δ) = |D[θ̂(δ)]|
|D[θ̂]| ≈ 1 − ρ2

YC, (18)

where ρ2
YC = σYCΣ−1

C σCY /σ 2 is the multiple correlation coefficient between Yij and Cij ,
i = 1, . . . , n and j = 1, . . . , r . In general, as in the linear case, δ is unknown, so it must
be estimated and, as a consequence, the variance will increase. We will use a loss factor to
quantify the percentage increase in variance when δ must be estimated.

3.2 Controlled Nonlinear Least Squares Estimator

To obtain estimators for the unknown true parameters δ and θ, δ̂ and θ̂(δ̂), we resort to the
method of nonlinear least squares. Given appropriate regularity conditions (Seber and Wild,
1989), then for large N , the least squares estimators of θ and δ in Eq. (6) satisfy, approximately:

θ̂(δ̂) ≈ θ∗ + (FTF)−1[Ȳ − f − Cδ̂], (19)

δ̂ ≈ (CTPC)−1CTP[Ȳ − f], (20)

where

P = In − F(FTF)−1FT. (21)

These results are obtained as follows. Taylor’s series expansion of fi = f (Xi., θ) about the
point θ = θ∗ yields f(θ) ≈ f(θ∗) + F(θ − θ∗). As a result, Eq. (6) becomes

Ȳ − f(θ∗) ≈ F(θ − θ∗) + Cδ + ε̄. (22)

Applying Eqs. (6) and (8) of Searle (1971), pp. 341 and 342, to this (linearized) problem (22),
we can write

θ̂(δ̂) − θ∗ ≈ (FTF)−1FT(Ȳ − f) − (FTF)−1FTCδ̂,

As a consequence, we obtain Eq. (19). Finally, Eqs. (20) and (21) are obtained using Eqs. (10)
and (11) of Searle (1971), p. 342.
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3.3 Validation Procedure

After estimating the metamodel parameters, we must test the ability of the estimated metamodel
to approximate the simulation model response (i.e., to ascertain if the estimated metamodel
adequately fits the simulation data). To test the adequacy of the metamodel (6), we propose
the following F -test for lack of fit (see Seber and Wild (1989), p. 32):

F = (SSE − SSPE)/(n − m − q)

SSPE/(N − n)
,

where, in this situation, SSE = ∑n
i=1

∑r
j=1[Yij − f (Xi., θ̂) − Cij δ̂]2 is the usual residual

sum of squares and SSPE = ∑n
i=1

∑r
j=1(Yij − Ȳi.)

2 is the pure error sum of squares. When
the metamodel is valid and if there exists a parameterization for which it can be adequately
approximated by a linear model, then F is roughly distributed as an Fn−m−q,n(r−1) distribution.

4 RESULTS FOR NORMAL NONLINEAR METAMODELS

To simplify the presentation of the results, when the response and the control variables have
a joint normal distribution, we will introduce some additional notations and hypotheses.
Consider the models (5) and (6). Suppose that, for the lth design point,

Zl. ∼ Nq+1((µl , 0T), �), (23)

where � is given by Eq. (4). As a result, the N × (q + 1) random matrix, defined by Eq. (3),
has a multivariate normal distribution

Z ∼ NN,q+1(µZ, �, �), (24)

with unknown σ and E[Z] = µZ = (µY , 0), where

µY = (f (X1., θ), . . . , f (Xn., θ), . . . , f (X1., θ), . . . , f (Xn., θ))
T.

The dispersion matrix between the ith and the kth rows is D[Zi., Zk.] = �ik� for 1 ≤ i, k ≤
N and the dispersion matrix between the j th and the lth columns is D[Zj., Z.l] = �jl� for
1 ≤ j , l ≤ q + 1. Suppose also that � and σ are positive definite. Moreover, the rows of Z are
mutually independent, because they correspond to independent executions of the simulation
program. As a consequence, we consider � = IN in the following development. If the q × q

matrix �C is positive definite, then the conditional distribution of Y given C is given by

Y|C ∼ NN(µY.C, τ 2IN), (25)

with τ2 given by Eq. (16) and

µY.C = µY + C�−1
C σCY ; (26)

see Theorem 17.2-g) of Arnold (1981). As a consequence, conditioning on C, we conclude
that the correct metamodel is Eq. (2). In the following development, we will see that the
asymptotic nonlinear least squares estimators are unbiased, both conditionally and uncondi-
tionally. Moreover, the approximated confidence region, for the true metamodel parameter
vector, centered at θ̂(δ̂) will also be obtained.
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4.1 Distribution of the Controlled Estimator

If Z ∼ NN,q+1(µZ, IN, �) with unknown θ and �, then we will use the fact that the condi-
tional distribution of Y given C is normal and given by Eq. (25). Conditioning on C, we see
that the correct nonlinear metamodel for a normal response is

Y = f̃(X, θ) + Cδ + e, (27)

where f̃(X, θ) = (f (X1., θ), . . . , f (X1., θ), . . . , f (Xn., θ), . . . , f (Xn., θ))
T (a vector with

N components) and e = (ε11, . . . , ε1r , . . . , εn1, . . . , εnr )
T. Using Taylor’s expansion in a

neighborhood of (X, θ∗), we obtain

f̃(X, θ) ≈ f̃(X, θ∗) + F̃(θ − θ∗), (28)

where F̃ is the Jacobian matrix of f̃, calculated at (X, θ∗). As a result, Eq. (27) can be rewritten
as

G ≈ F̃λ + Cδ + e (29)

where G = Y − f̃(X, θ∗) and λ = θ − θ∗. Applying Searle (1971), p. 342, to problem

(29), we obtain λ̂(δ̂) ≈ (F̃
T
F̃)−1F̃

T
G − (F̃

T
F̃)−1F̃

T
Cδ̂, where δ̂ = (CTP̃C)−1CTP̃G and

P̃ = IN − F̃(F̃
T
F̃)−1F̃

T
. That is,

λ̂(δ̂) ≈ BG with B = (F̃
T
F̃)−1F̃

T[IN − C(CTP̃C)−1CTP̃]. (30)

As Eq. (25) is verified, we have approximately G|C ∼ NN(µG.C, τ 2IN), where µG.C =
µY.C − f̃(X, θ∗). Using this result and Eq. (30), we can apply Theorem 17.2-d) of Arnold
(1981) and therefore λ̂(δ̂)|C ∼ Nm(BµG.C, τ 2BBT). Suppose that F̃ has rank m, then P̃
is an orthogonal projection of R

N into R(F̃ )⊥; see Seber and Wild (1989). As P̃ is an

orthogonal projection, then (F̃
T
F̃)−1F̃

T
P̃ = P̃F̃(F̃

T
F̃)−1 = 0 and, as a consequence, BBT =

(F̃
T
F̃)−1[Im + F̃

T
C(CTP̃C)−1CTF̃(F̃

T
F̃)−1]. Applying Nozari (1982), p. 121, to the linearized

problem (29), we obtain E[λ̂(δ̂)|C] = λ. As a result, BµG.C = λ and we have λ̂(δ̂)|C ∼
Nm(λ, τ 2BBT). But λ̂(δ̂) = θ̂(δ̂) − θ∗ and λ = θ − θ∗, therefore E[θ̂(δ̂)|C] = θ (given C, θ̂(δ̂)
is an unbiased estimator of θ), D[θ̂(δ̂)|C] = τ 2BBT and

θ̂(δ̂)|C ∼ Nm(θ, τ 2BBT). (31)

To construct a confidence region for θ centered at θ̂(δ̂), we will present an estimator of τ 2.
Applying Theorem 3.3 of Porta Nova (1985) to problem (29), we obtain

êTê|C ∼ W1(N − m − q, τ 2, 0),

that is, êTê|C ∼ τ 2χ2
N−m−q , where ê = G − F̃λ̂ − Cδ̂; see Theorem 17.6-b) of Arnold (1981).

But G = Y − f̃(X, θ∗) and λ̂ = θ̂ − θ∗, then ê = Y − f̃(X, θ̂) − Cδ̂. As a result, given C, an
unbiased estimator for τ 2 is given by

τ̂ 2|C = êTê
N − m − q

= 1

N − m − q

n∑
i=1

r∑
j=1

[Yij − f (Xi., θ̂) − Cij δ̂]2, (32)

where

τ̂ 2|C ∼ (N − m − q)−1τ 2χ2
N−m−q . (33)

The unbiasedness results from a property of the χ2 distribution: E[τ̂ 2|C] = E[êTê]/
(N − m − q) = (N − m − q)τ 2/(N − m − q) = τ 2.
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4.2 Asymptotic Variance Ratio and Loss Factor

Just like Venkatraman and Wilson (1986) and Porta Nova and Wilson (1989), and in contrast to
Nozari et al. (1984) and Rubinstein and Marcus (1985), we consider that the adequate general-
ization of the performance measures (variance ratio and loss factor), introduced by Lavenberg
et al. (1982), is based on the unconditioned dispersion matrix of the controlled coefficients in
metamodel (2). As a consequence, we will now obtain the unconditioned variance of θ̂(δ̂).

As Eq. (31) is verified, we have

E[θ̂(δ̂)|C] = θ and D[θ̂(δ̂)|C] = τ 2BBT.

Therefore,

D[θ̂(δ̂)] = E[D[θ̂(δ̂)|C]] + D[E[θ̂(δ̂)|C]] = E[D[θ̂(δ̂)|C]] (34)

and

D[θ̂(δ̂)|C] ≈ τ 2(F̃
T
F̃)−1[Im + F̃

T
C(CTP̃C)−1CTF̃(F̃

T
F̃)−1].

Let U = (F̃
T
F̃)−1F̃

T
C and V = CTP̃C. Then, we can write

D[θ̂(δ̂)|C] ≈ τ 2(F̃
T
F̃)−1 + τ 2UV−1UT. (35)

Since C ∼ NN,q(0, IN, �C) and P̃ is an orthogonal projection of R
N into a space of dimension

N − m(R(F)⊥), we apply Theorem 17.7 of Arnold (1981) to obtain V = CTP̃C ∼ Wq(N −
m, �C).

Using the fact that (F̃
T
F̃)−1F̃

T
(F̃

T
F̃)−1F̃

T
P̃ = 0 and, as P̃ is positive definite, we apply

Theorem 17.7-b.2) of Arnold (1981) and we can conclude that U and V are independent.
Taking the expected value in Eq. (35), we obtain

E[D[θ̂(δ̂)|C]] ≈ τ 2(F̃
T
F̃)−1 + τ 2E[UV−1UT]

Using the results in Appendix of Nozari et al. (1984), we have

E[UV−1UT] = q

N − m − q − 1
(F̃

T
F̃)−1.

Combining the two previous results, we obtain

E[D[θ̂(δ̂)|C]] ≈ τ 2 N − m − 1

N − m − q − 1
(F̃

T
F̃)−1.

But F̃
T = [FT · · · FT], therefore (F̃

T
F̃)−1 = FTF/r and, as a result,

E[D[θ̂(δ̂)|C]] ≈ τ 2 N − m − 1

r(N − m − q − 1)
(FTF)−1,

that is, from Eq. (34), we have the following asymptotic result

D[θ̂(δ̂)] ≈ τ 2(FTF)−1 N − m − 1

r(N − m − q − 1)
.

This approximation, in conjunction with Eqs. (8) and (16), allows us to obtain the following
approximated generalized variance ratio:

η(δ̂) = |D[θ̂(δ̂)]|
|D[θ̂]| ≈ N − m − 1

N − m − q − 1

τ 2

σ 2
= N − m − 1

N − m − q − 1
(1 − ρ2

YC). (36)
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Comparing this with the minimum variance ratio (18), we observe a degradation of the
maximum variance reduction, namely the loss factor:

LF(δ̂) = N − m − 1

N − m − q − 1
. (37)

4.3 Asymptotic Confidence Regions for the Metamodel Coefficients

The objective of this section is to determine a confidence rectangle consisting of m confidence
intervals for θj , j = 1, . . . , m. In fact, it is simpler to represent graphically and to explain
the meaning of a confidence rectangle of this type, when compared with the more common
approximated confidence ellipsoid.

As Eq. (31) is verified, then using Theorem 3.10 of Arnold (1981), we can ensure that
conditioning on C:

(θ̂(δ̂) − θ∗)T(BBT)−1(θ̂(δ̂) − θ∗)
τ 2

|C ∼ χ2
m (38)

On the other hand, Eq. (33) can be rewritten as

(N − m − q)
τ̂ 2

τ 2
|C ∼ χ2

N−m−q . (39)

Combining Eqs. (38) and (39), we obtain

(θ̂(δ̂) − θ∗)T(BBT)−1(θ̂(δ̂) − θ∗)
mτ̂ 2

|C ∼ Fm,N − m − q.

Given C, an asymptotic confidence region for θ, with conditional coverage probability of
atleast 1 − α, is given by{

θ∗: (θ̂(δ̂) − θ∗)T(BBT)−1(θ̂(δ̂) − θ∗)
mτ̂ 2

≤ Fm,N−m−q;1−α . (40)

Although this confidence region has conditional coverage of atleast 1 − α, it has also
unconditional coverage of atleast 1 − α.

Let θ̂i (δ̂) be the ith component of the vector θ̂(δ̂) and let τ̂ 2[BBT]ii be the corresponding
variance estimator (the ith diagonal element of τ̂ 2BBT). As θ̂i (δ̂) is conditionally inde-
pendent of τ̂ 2[BBT]ii given C, the results (31) and (33) imply that

θ̂i (δ̂) − θ∗
i

τ̂
√

[BBT]ii
|C ∼ tN−m−q,

where tN−m−q represents the Student t-distribution with N − m − q degrees of freedom. As
a consequence, using the Bonferroni method, a confidence rectangle for θ with conditional
coverage probability of atleast 1 − α has the form

θ̂k(δ̂) ± tN−m−q;1−α/(2p)τ̂ [BBT]1/2
kk , k = 1, . . . , p, (41)

where 1 ≤ p ≤ m. This confidence region has conditional coverage probability of atleast
1 − α, therefore it also has unconditional coverage probability of atleast 1 − α.
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4.4 Hypothesis Testing on the Metamodel Coefficients

Suppose that we want to test the hypothesis H0: θ∗ = θ0 versus H1: θ∗ �= θ0. As Eq. (31) is
verified and using Theorem 3.10 of Arnold (1981), we observe that conditioning on C:

(θ̂(δ̂) − θ0)
T(BBT)−1(θ̂(δ̂) − θ0)

τ 2
∼ χ2

m, (42)

if H0 is true. Combining Eqs. (42) and (39) and following an identical procedure to the one
considered in Section 4.3, we reject H0, with confidence level 100(1 − α)%, if

(θ̂(δ̂) − θ0)
T(BBT)−1(θ̂(δ̂) − θ0)

mτ̂ 2
> Fm,n−m−q;1−α. (43)

5 NUMERICAL RESULTS FOR QUEUING APPLICATION

We illustrate our methodology using a simple M/M/1 queuing system. We assume that cus-
tomers arrive according to a Poisson process with a constant expected arrival rate, λ, and
that service times follow an exponential distribution with a constant expected service time,
1/µ ≡ 1. The performance measure of interest is the average waiting time in the queue. The
objective is to express this response as a function of the queue utilization factor, ρ = λ/µ

(a single decision variable). The available concomitant output variables, that can be used
as controls, are the average service time and the average inter-arrival time. In this experi-
ment, after some minor adjustments, 12 (n = 12) different values for ρ were considered: {ρi :
i = 1, 12} = {0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.7, 0.75, 0.85, 0.9, 0.95}. There were r = 20
replications for each of the n = 12 design points. Different replications used the same value
for the independent variable ρi , but different pseudo-random number seeds. Each of these 20
replications started with an empty and idle system (no customers waiting). At each design
point, we ran Welch’s procedure (Welch, 1983) to determine the length of each simulation
run and the initial data deletion. For example, at the design point ρ = 0.95, we ignored 3500
observations from the beginning of each run and we used only the remaining 36,500 obser-
vations (approximately 85% of the number of observations in the run), while considering a
Welch window of 10,000; see Table I.

We then compared the dispersion diagram based on the collected data (Fig. 1) with
commonly available theoretical curves.

To relate the average waiting time in the queue with the utilization factor, we chose the
hyperbolic metamodel Yij = θ1Xi/(1 + θ2Xi) + εij (where Yij is the average queue waiting
time during the j th run at experimental point i), with εij ∼ N(0, σ 2

i )(i = 1, . . . , 12; j =

TABLE I Initial data deletion.

Observations

ρi Deleted In run Welch’s window

0.10, 0.20, 0.30 500 3,500 1,000
0.40 1,000 7,000 1,000
0.50 1,500 10,000 1,000
0.55, 0.60, 0.70, 0.75 1,500 10,000 4,000
0.85 2,000 20,000 8,000
0.90 2,500 20,000 10,000
0.95 3,500 40,000 10,000
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FIGURE 1 Dispersion diagram of the M/M/1 queue.

1, . . . , 20), and σ 2
i varies with i. For stabilizing the variance, we took logarithms on both

sides of the above expression, obtaining

log Yij = log
θ1Xi

1 + θ2Xi

+ vij i = 1, . . . , 12, j = 1, . . . , 20, (44)

with vij = log(l − εij /E[Yij ]). E[vij ] ≈ 0, because εij is small when compared with E[Yij ]
and Var[vij ] is approximately constant for all i = 1, . . . , n and j = 1, . . . , r . We measure the
variance heterogeneity using the quantity

het =
max

i=1,...,12
V̂ar[vij ]

min
i=1,...,12

V̂ar[vij ]
,

with

V̂ar[vij ] =
 1

r − 1

r∑
j=1

log Yij − 1

r

r∑
j=1

log Yij

21/2

;

see Kleijnen (1992). We obtained a het value approximately constant and equal to 1. For
improving the efficiency of metamodel estimation, we chose the following control variates

Ckij = tkij − µki

ζki

, k = 1, 2, i = 1, . . . , n, j = 1, . . . , r,

where t1ij is the average inter-arrival time and t2ij is the average service time. Both were
sampled from exponential distributions with known means and variances: E[t1ij ] = µ1i =
1/ρi,Var[t1ij ] = ζ 2

1i = 1/ρ2
i , E[t2ij ] = µ2i = 1/µ2 = 1 and Var[t2ij ] = ζ 2

2i = 1/µ2 = 1. The
hypothesized controlled problem is

log Yij = log
θ1Xi

1 + θ2Xi

+ δ1C1ij + δ2C2ij + vij , i = 1, . . . , 12 j = 1, . . . , 20.
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5.1 Estimation and Validation

We obtained the least squares estimators θ̂ and θ̂(δ̂) using the Levenberg–Marquart method,
implemented in MATLAB, with a termination tolerance of 10−6 and maximum number of
function evaluations equal to 600; see Table II.

After estimation, the validation of the controlled metamodel was carried out. As
Fn−m−q,N−n;α = F8,228;0.05 ≈ 1.95, with N = 240, based on the F -test, we do not reject
the metamodel with control variables; see Table III. As a consequence, on the basis of this
validation procedure, we do not reject the controlled metamodel.

5.2 Confidence Regions and Hypothesis Testing

As Fm,N−m−q;α = F2,236;0.05 = 3.034 and τ̂2 = 8.184 × 10−3, the 95% approximated confi-
dence ellipsoid for θ , centered at θ̂(δ̂), is given by Eq. (40):{

θ∗ : (θ̂(δ̂) − θ∗)T(BBT)−1(θ̂(δ̂) − θ∗) ≤ 4.966 × 10−2
}

,

where

BBT =
[

3.2891 × 10−2 1.8495 × 10−3

1.8495 × 10−3 2.2099 × 10−4

]
.

The corresponding approximated confidence rectangle for θ, with coverage probability of
atleast 1 − α = 0.95, from Eq. (41), is given in Table IV. In the construction of this confidence
rectangle, we used tN−m−q;1−α/(2m) = t236;0.9875 ≈ 2.256.

We tested the hypothesis H0: θ∗ = θ0 = (1.0, −1.0)T versus H1: θ∗ �= θ0 = (1.0, −1.0)T,

with a confidence level of 0.95%, using Fm,N−m−q;1−α = F2,236;0.95 = 3.034. We obtained
(θ̂(δ̂) − θ0)

T(mτ̂ 2BBT)−1(θ̂(δ̂) − θ0) − 0.3848 (43). Therefore, we do not reject the null
hypothesis H0.

TABLE II Estimated metamodel coefficients.

Metamodel Direct estimator Controlled estimator
coefficients θ̂ θ̂(δ̂)

θ1 0.9982 1.0001
θ2 −0.9992 −0.9991

TABLE III Testing for lack-of-fit.

Source d.f. Sum of squares Mean of squares F

Lack-of-fit 8 0.008036 0.001004 0.119
Pure error 228 1.923 0.008435

TABLE IV Approximated Bonferroni 95% confi-
dence intervals.

Metamodel coefficients Controlled estimator

θ1 1.0001188 ± 3.35 ×10−3

θ2 −0.9991349 ± 2.74 ×10−4
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5.3 Experimental Variance Ratio and Loss Factor

In order to estimate the variance ratios and loss factors, we adapted the procedure described
by Porta Nova and Wilson (1989) to our situation. Thus, we performed a meta-experiment
with K = 30 independent replications of the basic experiment, consisting of 12 design points
(ρ = 0.1, 0.2, etc.) and 20 independent replications for each design point. For each kth repli-
cation of the basic experiment (k = 1, . . . , K), we calculate the direct estimator θ̂k and the
control-variate estimator θ̂(δ̂)k for the metamodel coefficient vector θ. From the random sample

{θ̂k: 1 ≤ k ≤ K}, we compute a unbiased estimator for D[θ̂] as follow:

D̂[θ̂] = 1

K

K∑
k=1

(θ̂
k − ¯̂

θ)(θ̂
k − ¯̂

θ)T, where ¯̂
θ = 1

K

K∑
k=1

θ̂
k;

and similarly from the random sample {θ̂k: 1 ≤ k ≤ K}, we compute an unbiased estimator
D̂[θ̂(δ̂)] of D[θ̂(δ̂)]. On the basis of this estimators, we compute the following estimator of
the variance ratio (36), which we call the observed variance ratio:

η̂(δ̂) = |D̂[θ̂(δ̂)]|
|D̂[θ̂]| . (45)

To obtain the minimum variance ratio (18), at each design point we compute unbiased estima-
tors for the variance of Y , σ 2, covariance vector between Y and C, σYC , and despersion matrix
of C, �C . For example, if Y k

i denotes the mean response observed at the ith design point on
the kth independent replication of the basic experiment, then the variance of Y is estimated by

(σ̂ 2)i = 1

K

K∑
k=1

(Y k
i − Ȳ )2,

where Ȳ = ∑K
j=1 Y

j

i /K . As a result, a pooled estimator of σ 2 based on all n experimental

points is given by: ¯̂σ 2 = ∑n
i=1(σ̂

2)i/n. The other estimators are obtained in a similar way:
¯̂σYC = ∑n

i=1 σ̂
i
YC/n, where

�̂i
C = 1

K

K∑
k=1

(C̄
k

i. − ¯̄Ci.)
T(C̄

k

i − ¯̄Ci.),

with ¯̄Ci . =
∑K

k=1 C̄k
i./K; and ¯̂σYC = ∑n

i=1 σ̂
i
YC/n, where

σ̂
i
YC = 1

K

K∑
k=1

(Ȳ k
i. − ¯̄Yi.)(C̄

k

i. − ¯̄Ci.).

Using this numerical values, we calculate the following estimator of Eq. (18) that we call
the estimated minimum variance ratio:

η̂(δ) = 1 −
¯̂σYC

¯̂
Σ−1

C
¯̂σT

YC

¯̂σ 2
(46)

Multiplying Eq. (46) by the loss factor (37), we obtain the predicted variance ratio

η̈ = η̂(δ)LF(δ̂).
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TABLE V Estimation of the variance ratios and loss factors.

Estimated variance ratios

Actual Loss factor

Minimum η(δ̂) Predicted η̈(δ̂) Observed η̂(δ̂) True LF (δ̂) Estimated L̂F (δ̂) %Error

0.613 0.618 0.993 1.008 1.620 60.6

The observed loss factor is given by

L̂F(δ̂) = η̂(δ̂)

η̂(δ)
.

The predicted variance ratio can be compared with the observed variance ratio and the observed
loss factor can be compared with the theoretical loss factor. The numerical results are reported
in Table V.

In the example described here, the maximum percentage reduction in generalized vari-
ance that can be achieved using control variates is approximately 100[1 − η̂(δ)]% = 38.7%.
Although we do not know δ, it must be estimated. Nevertheless the resulting estimator θ̂(δ̂)

has a smaller variance, when compared with the estimator θ̂ without control variates. The
numerical results presented here are in agreement with the theoretical results developed in this
article. The error obtained for the loss factor is similar to the value obtained by Porta Nova and
Wilson (1989), 57.7%. These authors analyzed a queuing network simulation in the context
of a linear metamodel estimation.

6 CONCLUSIONS

The main objective of this article is to establish some important results on the use of multiple
control variates for improving the precision of nonlinear regression metamodel estimation.
This technique can be useful in many situations where it is possible to identify effective con-
comitant control variables. Because nonlinear regression models are better than linear models,
in capturing the shape of arbitrary mathematical functions, we emphasize the importance of
using valid nonlinear metamodels in simulation studies. In addition, nonlinear metamod-
els allow us to characterize the precision of the fit by the use of confidence intervals and
they are more robust than linear models when extrapolating from the actual experimental
domain.

For experimental designs with a sufficiently large number of experimental points and under
certain regularity conditions, the efficiency of metamodel estimation can be improved using
the method of control variables. However, whether a regression metamodel is used in the
simulation context, it must be validated. The validation can be made using, for example,
the lack of fit F -test present in the statistical literature on nonlinear regression models. In
our experimental study, we observed a marked sensitivity of the variance ratio η(δ̂) and the
loss factor LF (δ̂) with respect to the validity of the assumed controlled problem (2). As
a consequence, it is imperative to resort to statistical validation techniques, like the above
mentioned F -test, to verify the capability of the controlled metamodel in representing the
simulation model.
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