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Abstract

Linear regression metamodels have been widely used to explain the behavior of computer simulation models,
although they do not always provide a good global fit to smooth response functions of arbitrary shape. In the case study
discussed in this paper, the use of several linear regression polynomial results in a poor fit. The use of a non-linear
regression metamodeling methodology provides simple functions that adequately approximate the behavior of the tar-
get simulation model. The importance of metamodel validation is emphasized by using the generalization of Rao�s test
to non-linear metamodels and double cross-validation.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Frequently, the main objective in discrete event
simulation studies is the prediction and sensitivity
analysis of a system response, for different combi-
nations of a particular set of controllable input
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variables. However, it is not generally an easy task
to interpret the large amounts of data yielded by
simulation runs and it becomes increasingly diffi-
cult to make decisions about design modifications
in the target system (e.g., in queuing systems). De-
tailed models are particularly valuable for repre-
senting explicitly the underlying phenomena.
However, much of our knowledge of the world
comes from low-resolution sources. Whenever pos-
sible, it is more suitable to construct a simple math-
ematical relationship that relates the inputs and
ed.
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outputs of the computer simulation model; that is,
a model of the simulation model—called a meta-
model (Barton, 1998). Blanning (1974) suggested
the use of metamodels to perform sensitivity anal-
ysis for all kinds of models in management science
and Kleijnen (1975) proposed some statistical tools
to make metamodels commonly usable. There are
different types of metamodels; for example, poly-
nomial regression models (which uses linear regres-
sion), artificial neural networks (one type of neural
networks, named regression supervised neural nets,
is trained using non-linear regression), splines
(which is based on piecewise polynomial functions)
and Kriging (which uses interpolation); see Kleij-
nen (in press), van Beers and Kleijnen (2004), Bar-
ton (1994), Hurrion (1992), and Másson and Wang
(1990). Metamodels are very useful in simulation
optimization and �what if?� questions, without hav-
ing to perform additional simulation runs. Also,
the simple mathematical expression of a meta-
model can expose—more clearly than the simula-
tion model—the fundamental nature of the
system input–output relationships.
Traditionally linear regression procedures are

frequently used for constructing simulation meta-
models. In particular, the general linear regression
model has been intensively studied—e.g., Kleijnen
and Sargent (2000), Panis et al. (1994), Kleijnen
(1992), Porta Nova and Wilson (1989) and Kleij-
nen et al. (1979). However, polynomials are unable
to produce a global fit to curves of arbitrary shape.
Moreover, in real-life systems, non-linearity is
common and the approximation using polynomi-
als becomes unrealistic. Consequently, in these sit-
uations, polynomials often fail to provide good
fits, namely in problems involving queuing systems
(Friedman and Friedman, 1985). An alternative
that may provide better and more realistic global
fits is non-linear regression; see Santos and Porta
Nova (1999, 2001).
However, any metamodel can be used to ana-

lyze simulation output only if it is �good enough�.
So, after estimating the metamodel, it is advisable
to check if the estimated (fitted) metamodel is, in
fact, an accurate representation of the simulation
model (Kleijnen and Sargent, 2000). For this pur-
pose, robust statistical validation techniques from
non-linear regression are used.
This paper is organized as follows. In Section 2,
estimation procedures for the general non-linear
metamodel are presented. In Section 3, the issue
of metamodel validation is discussed. In Section
4, an actual problem concerning a center for
inspecting and repairing automobiles is analyzed
and several candidate metamodels, including lin-
ear and non-linear ones, are considered. Section
5 gives conclusions and suggestions for further
work.
2. Non-linear regression metamodels

A simulation model attempts to describe the
relationship between a set of input parameters
and variables and the output of the real system.
As a consequence, the most important variables
and parameters should be selected and repre-
sented. A parameter is a quantity that cannot be
observed in the real system, whereas a variable is
directly observable (Kleijnen and Groenendaal,
1992); customer arrival times is an example of a
variable, and the arrival rate of a Poisson process
is an example of a parameter. The response of the
real system is modeled by the output variable of
the simulation program. If the problem has several
output variables, separate metamodels can be
developed for each output (Kleijnen and Sargent,
2000, p. 15). As a result, the simulation model
can be represented by

W ¼ gðZ; aÞ; ð1Þ

where W is a univariate response, Z =
(Z1, . . . ,Zk)

T is a vector of input variables and a
represents a set of random streams that drive the
simulation at Z. For example, in the simulation
of a supermarket, the vector Z can include the
mean interarrival time, the mean service time and
the number of physical lanes. The response W
can be, for example, the delay in the queue or
the time in the system.
Assume that the simulation model can be repre-

sented by the simulation metamodel

Y ¼ f ðX; hÞ þ �; ð2Þ
where X = (X1, . . . ,Xd) is a vector of d explanatory
variables, h = (h1, . . . ,hm)

T represents a vector of
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unknown parameters, � represents the error and f
is an unknown function simpler than g (the error
� includes both effects of the inadequacy of f as a
representation of g, and intrinsic effects encoun-
tered in any stochastic simulation model); see
Fig. 1. The variable Xi may be the same as the sim-
ulation variable Zi, or a transformation of one or
more variables Zj. For example, in the M/M/1
queue, the utilization factor X = q = k/l (where
Z1 = k is the arrival rate and Z2 = l is the service
rate) can be a better explanatory variable than k
and l. In this paper, f is a non-linear function of
the unknown parameter vector h, so we are dealing
with non-linear metamodels. The unknown
parameter vector must be estimated.
In the M/M/1 queue, an example of a non-lin-

ear metamodel is

Y ¼ Xh1
1� Xh2

þ �;

where the decision variable X = q and the response
Y represents the expected number of customers in
the queue (Santos and Porta Nova, 1999), whereas
a linear metamodel could be

Y ¼ hX 2 þ �;

where Y represents the average waiting time in the
queue (Kleijnen and Groenendaal, 1992); or
ln(Y) = h lnX + e (Friedman and Friedman,
1985).
Suppose that a simulation experiment is per-

formed according to some experimental design,
consisting of n different design points, {Xil : i =
1, . . . ,n; l = 1, . . . ,d}. For each design point, ri
independent replications of the simulation model
are obtained, so the simulation experiment yields
fðW ij; r̂

2
i Þ : i ¼ 1; . . . ; n; j ¼ 1; . . . ; rig, where Wij is

the jth observation at experimental point i and r̂i
Z kZ1
...

Simulation
    Model

Metamodeling

X 1
...X d

Metamodel

YW

Fig. 1. Simulation model versus metamodel.
is the estimated variance at the design point i,
based on ri observations,

r̂2i ¼
Xr

j¼1
ðW ij � W i:Þ2=½riðri � 1Þ	; i ¼ 1; . . . ; n:

ð3Þ
The average

W i: ¼
Xr

j¼1
W ij=ri; i ¼ 1; . . . ; n;

is the metamodel response of interest. The simula-
tion model (1) defines a statistic population of
observations W. The members of the population
correspond to all possible pseudorandom number
seeds, that is, in theory the population has an infi-
nite dimension. So, in a classical hypothesis, the
population has Gaussian distribution.
This allows us to express the metamodel (2) as

Y ij ¼ f ðXi:; hÞ þ �ij; i ¼ 1; . . . ; n; j ¼ 1; . . . ; ri;
ð4Þ

where Yij =Wij, �ij are independent random varia-
bles with �ij 
 Nð0; r2i Þ, and ri > 0. We shall as-
sume the same number of replications per design
point, ri = r (i = 1, . . . ,n). Note that if and only if
each input combination is replicated an equal
number of times, we may replace the individual
observations Yij by their averages Y i:, and apply
least squares to the vector with the n averages
Y ¼ ðY 1:; . . . ; Y n:ÞT (Kleijnen and Groenendaal,
1992, p. 152); since this hypothesis is not restrictive
(it is not difficult to verify it using an adequate
experimental design), it is possible to use the
dimension n instead of N ¼

Pn
i¼1r.

Before estimation, one or more types of meta-
models must be selected. Ideally, the form of the
metamodel should be dictated by theoretical con-
siderations. For example, in the M/M/1 queuing
system, a metamodel for the expected queue length
Y might be Y = h1X

2/(1 + h2X), where X is the uti-
lization factor X = k/l. However, in many simula-
tion studies we have little or no idea about the
relationship between the simulation response and
the decision variables. In these cases, we suggest
that the choice of metamodels should be made vis-
ually, just like we compare empirical histo-
grams with known density functions for selecting
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a specific random distribution. Following this ap-
proach, it is convenient to represent the dispersion
diagrams (or scatter plots) of the response versus
each independent variable, plotting, for each fixed
l = 1, . . . ,d, the corresponding pairs (Xil,Yij),
where i = 1, . . . ,n and j = 1, . . . , r. Then, we should
compare the graphical representations with differ-
ent analytical curves from a comprehensive cata-
log, in order to select the best candidates.
2.1. Non-linear metamodel estimation

The metamodel estimation procedure may use
the non-linear least squares method for estimating
the unknown parameters of the hypothetical meta-
model; there are other methods for model estima-
tion like maximum likelihood estimation
commonly used in Kriging metamodels (Seber
and Wild, 1989, Chapter 2; van Beers and Kleij-
nen, 2004). The well known non-linear least
squares method from regression analysis mini-
mizes the sum of squared errors (SSE)

SSEðhÞ ¼
Xn

i¼1

Xr

j¼1
½Y ij � f ðXi:; hÞ	2=r2i ; ð5Þ

that is, it obtains a vector ĥ such that
SSEðĥÞ < SSEðhÞ, for all h in a region of Rm. For
most non-linear metamodels, the SSE(h) function
cannot be minimized analytically and, as a conse-
quence, an iterative numerical method is used.
We chose the Levenberg–Marquardt method be-
cause the almost unanimous opinion is that, for
many non-linear least squares problems, this
method works very well. However, in problems
with large residuals, Levenberg–Marquardt algo-
rithms may converge unacceptably slowly—or
may even not converge at all. In these cases, it is
convenient to use numerical methods adapted to
each situation—see, for example, Seber and Wild
(1989, Section 14.3).
In contrast to the linear case, the SSE(h) func-

tion in (5) can have several local minima, in addi-
tion to the global minimum. For ĥ to be a local
minimum, it is sufficient that: (i) the partial deriv-
atives of SSE(h) with respect to h1, . . . ,hm be zero;
and (ii) the Hessian matrix of SSE(h), calculated at
ĥ, be positive definite.
In Proposition 1, the non-linear least squares
estimator ĥ is established. Under the hypothesis
that the �ij are independent and normally distrib-
uted, �ij 
 Nð0; r2i Þ, and assuming some further
regularity conditions, it is shown that ĥ is asymp-
totically normally distributed as N = nr! 1 (see
the verification of these results in Appendix A).

Proposition 1. Given appropriate regularity condi-

tions (White, 1980) and for large N = nr, the least
squares estimator of h, ĥ, in (4) satisfies,

approximately:

ĥ  h� þ ½FTR�1F	�1FTR�1½Y� f	; ð6Þ

ĥ 
 Nm 0;
1

r
½FTR�1F	�1

� �
; ð7Þ

where h* is the exact value of h,
f = f(h*) = (f(X1.,h*), . . . , f(Xn.,h*))

T, F = F(h*) is

the Jacobian matrix of f, evaluated at h*,

Y ¼ ðY 1:; . . . ; Y n:ÞT and R is the diagonal matrix

R ¼ diagðr21; . . . ; r2nÞ. In order to simplify the nota-

tion, we omit that f and F are evaluated at h*.

Frequently, R must be replaced bybR ¼ diag½r̂21; . . . ; r̂
2
n	 and, as a result, we have the

estimated generalized non-linear least squares
estimator.
3. Metamodel validation

In order to use the estimated metamodel (as a
surrogate of the simulation model) for prediction
and sensitivity analysis, we have to be sure that
it is indeed an accurate representation of the simu-
lation model. For this purpose, we use robust sta-
tistical validation techniques from regression
analysis. The validation procedure tests the meta-
model adequacy and the metamodel validity with
respect to the simulation model. To verify the
metamodel adequacy, we investigate if the deter-
ministic portion of the metamodel is adequate in
the statistical sense and if the predictive capacity
of the metamodel is satisfactory. We assert the
validity with respect to the simulation model inves-
tigating if the metamodel is sufficiently close to the
simulation model, taking into account the general
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objective of using the metamodel (Kleijnen and
Sargent, 2000).

3.1. Metamodel adequacy

To test the adequacy of the metamodel (4), we
propose a lack-of-fit test that is an adaptation of
Rao�s test (Rao, 1959) to non-linear models and
has the following requirements: (i) n > m = rank(F)
and r > n(>n � m) (so that bR is non-singular); (ii)
the simulation response is normally distributed—
in fact, it is enough to require the distribution to
be symmetric (Kleijnen and Groenendaal, 1992).
Given the previous requirements (i) and (ii), the

generalization of Rao�s test has the form:

F Rao ¼
rðr� nþmÞ
ðn�mÞðr� 1Þ ½Y� fðX; ĥÞ	TbR�1

½Y� fðX; ĥÞ	

¼ rðr� nþmÞ
ðn�mÞðr� 1Þ

Xn

i¼1

Y i: � f ðXi:; ĥÞ
r̂i

" #2
: ð8Þ

When the metamodel is valid, then FRao is
approximately distributed as an Fn�m,r�n+m distri-
bution for large N. Smaller values of FRao corre-
spond to a better approximation metamodel,
consequently an ideal fit corresponds to FRao = 0.
The predictive validity is verified using double

cross-validation and an adaptation of the predic-
tion sum of squares, PRESS; see Neter et al.
(1989) and Friedman and Friedman (1985). In
our problem, the PRESS statistic has the form

PRESS ¼
Xn

i¼1

Xr

j¼1
½Y ij � f ðXi:; ĥð�jÞÞ	2=r̂2i ;

where ĥð�jÞ is the estimated parameter vector based
on the set that we obtain if we delete the jth repli-
cation in all experimental points. Other useful sta-
tistics are the error sum of squares,
SSEðĥÞ ¼

Pn
i¼1

Pr
j¼1½Y ij � f ðXi:; ĥÞ	2=r̂2i , and the

mean sum of squares, MSE ¼ SSEðĥÞ=ðN � mÞ;
in order to simplify the notation, we will write
SSE instead of SSEðĥÞ.

3.2. Double cross-validation with respect to the

simulation model

We suggest the use of the double cross-valida-
tion method to validate the metamodel with re-
spect to the simulation model. In double cross-
validation, we split the data intuitively into two
subsets of, approximately, the same size (n/2).
Then, a regression metamodel is developed for
each subset and used for prediction of the other
subset of the data. In particular, for each meta-
model, two values of the coefficient of determina-
tion, R2, are calculated: the first one, R2bui, is
based on the observations from the subset used
to build it, and the second one, R2val, is based on
the remaining observations, for validation pur-
poses. Moreover, we compare the parameter esti-
mators of both metamodels.

3.3. Confidence intervals

After validation, and only if the validation tests
do not reject the regression metamodel, we can
build confidence intervals for the unknown meta-
model parameters. We propose the following
approximated 1 � a two-sided confidence rectan-
gle for the estimated parameter ĥk (k = 1, . . . ,m):

ĥk � ta=ð2mÞr�nþm�1½dVar½ĥk		1=2

� 1þ F Raoðn� mÞ=ðr � nþ mÞ
1þ ðn� mÞ=ðr � 1Þ

	 
1=2
;

where dVar½ĥk	 is the estimated variance of ĥk calcu-
lated by

dVar½ĥk	 ¼ ðrbFTbR�1bFÞ�1kk ;
(see Proposition 1) and FRao = Fn�m,r�n+m in (8).
This confidence rectangle is obtained adapting
(3.13) of Kleijnen (1992) to non-linear simulation
metamodels and, then, applying the Bonferroni
method.
4. Application: An inspection and repair center

In this paper, we analyze a car inspection and
repair center. The car interarrival times are nor-
mally distributed with mean l and a variance of
15; negative numbers correspond to simultaneous
events (�censured� normal distribution). Only one
inspector services the cars; the time that he needs
to inspect one car is uniformly distributed between
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15 and 25 minutes. In the inspection queue, space
is available for only six cars. On the average, 85%
of the cars pass the inspection and leave the center.
The other 15% must go to the repair section, where
two mechanics work side-by-side. After being re-
paired, the cars have to go back to the inspection
queue. The time required to repair a vehicle is
exponentially distributed with a mean of 60
minutes.
Our goal is to express the average time in the

system, Y (response), as a function of the mean
time between arrivals, l (decision variable). We
considered 14 combinations of simulation input,
{li : i = 1,14} = {1,5,10,15,20,23,26,29,32,35,40,
50,60,90}, unevenly spaced to take into account
the different rates of variation of the output. At
each design point, we ran Welch�s procedure
(Welch, 1983), in order to determine adequate
run durations and points for initial-data deletion.
Welch�s moving averages are based on 20 replica-
tions of the simulation model, where each replica-
tion contains 2000 observations, that is,
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Fig. 2. Visualization of
�lðj;W Þ ¼

rð2W þ 1Þ�1
PW

s¼�W

Pr
i¼1Y i;jþs;

if j P W þ 1;
rð2j� 1Þ�1

Pj�1
s¼�ðj�1Þ

Pr
i¼1Y i;jþs

if j < W þ 1;

8>>>><>>>>:
where W is Welch�s window. For example, at the
design point li = 10, we deleted 100 observations
from the beginning of the run and we used only
the remaining 600 observations to estimate the re-
sponse Y; see Table 1.
We carried out r = 30 replications of each of the

n = 14 design points; in order to apply Rao�s vali-
dation test, r must be greater than n, and since r is
greater than nine, we can obtain an appropriate
estimate for r̂i; i ¼ 1; . . . ; n (Deaton et al., 1983).
With the objective of identifying a curve that

might fit the input–output relationship of the sim-
ulation program, we built the corresponding dis-
persion diagram, plotting the pairs
{(Xi,Yij) : i = 1, . . . ,n, j = 1, . . . , r}; see Fig. 2. Then,
we visually checked the scatter plot, comparing it
50 60 70 80 90 100

 VARIABLE

simulation results.
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Table 1
Initial data deletion

li Observations Welch�s window

Deleted In run

1, 5, 10 100 700 50
15 150 1000 100
20 200 1400 150
23, 26, 29, 32, 35 200 1400 300
40, 50, 60 100 700 200
90 50 350 200
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with graphical representations of some functional
relationships from an appropriate catalog; the
non-linear curves that seemed to be good candi-
dates are represented in Fig. 3. �Arctan� is based
on the arc tangent function and the others are
three sigmoidal growth models (Seber and Wild,
1989, pp. 329, 338 and 340): �Logistic� is the logis-
tic model, �Weibull� is Weibull�s growth curve and
�MMF� is the Morgan–Mercer–Flodin family. We
also considered polynomial functions of degree r,
with r = 2, . . . , 10.
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4.1. Estimating and validating the metamodel

Before estimating the metamodel parameters,
we must first check if the response has a constant
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Table 2
Metamodel diagnostics

Metamodel SSE MSE

Arctan 494.561 1.23025
logistic 537.977 1.33825
MMF 437.985 1.08951
Weibull 734.765 1.82777

pol2 15147.5 37.5867
pol3 15090.1 37.5376
variance across design points. We measure the var-
iance heterogeneity through the quantity

het ¼ maxi¼1;nr̂i

mini¼1;nr̂i
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rimental points 2, 6, 10 and 14).

PRESS SSE/PRESS

510.829 0.968
554.005 0.971
454.28 0.964
751.049 0.978

15162.9 0.998
15105.4 0.998
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(Kleijnen, 1992). We obtained het = 3.946 (quite
different from 1), and so we have heterogeneous
variances. Thus, we will use non-linear weighted
least squares for non-linear curves, and weighted
least squares for polynomials. The non-linear
parameter estimators were obtained using the
Levenberg–Marquardt method implemented in
MATLAB, with the termination tolerance equal
to 10�6 and the maximum number of function
evaluations equal to 600 (the default is 100 · the
number of parameters). When we tried to fit poly-
nomials of degree r, with r = 4, . . . , 10, we obtained
matrices that were close to singular or badly
scaled. Since the results might be highly inaccu-
rate, these metamodels were rejected.
To check the validity of the remaining meta-

models, we evaluated the statistics presented in
Section 3. The SSE and PRESS statistics are quite
close, so MSE is a reasonably valid indicator of the
selected model�s predictive capability; see Table 2.
As a consequence, we conclude that polynomial
models have lack of predictive validity, and so they
Table 4
Double cross-validation test

Coefficient Arctan

Subset 1 Subset 2

ĥ1 91.494 92.474
ĥ2 �37.9318 �38.4031
ĥ3 0.3296 0.3213
ĥ4 �7.8454 �7.6333
R2bui 0.9922 0.9971
R2val 0.9786 1.0113

MMF

Subset 1 Subset 2

ĥ1 144.58 145.29
ĥ2 35.681 35.855
ĥ3 0.0422 0.0420
ĥ4 7.7327 7.7974
R2bui 1.0003 0.9934
R2val 0.9866 1.0073

Table 3
Rao�s test

Metamodel Arctan Logistic MMF Weibull

FRao 6.108 9.102 2.206 22.673
are not good approximations for the target simula-
tion model.
Before using Rao�s test, it is convenient to verify

if the simulation responses are normally distrib-
uted. Since the variance depends on the design
point (i = 1, . . . ,n) normal probability plots for
their original simulation responses, {Yij :
j = 1, . . . , r}, were obtained. All of the resulting
graphics appear to be nearly linear, but the slope
varies with the corresponding design point; see
Fig. 4. This agrees with the fact that the value of
het is quite different from 1. Thus, there is no evi-
dence to reject the normality of the response, at
each design point, with the variance depending
on the design point. As a result, Rao�s test can
be used to select the metamodel that better
approximates the simulation results, comparing
the FRao values with the F critical value,
F 1�a

n�m;r�nþm ¼ F 0:9510;20 ¼ 2:348. The elected meta-
model, according to this criterion, is the one based
on the MMF curve—all others are rejected; see
Table 3. Also, we observe that MMF is the model
that has the smallest PRESS in the Table 2 (i.e.,
MMF is the curve that has the smallest prediction
errors).
To gain more insight into the predictive validity

of the metamodels, we analyzed the results of dou-
ble cross-validation; see Table 4. In each model,
Logistic

Subset 1 Subset 2

�109.0 �109.7
1925.8 2193.7
0.3 0.3

145.4 146.4
975.5 0.9882
989.2 1.0023

Weibull

Subset 1 Subset 2

36.9817 37.427
145.50 146.45
0.0386 0.0385
4.9014 5.0609
0.9841 0.9828
0.9706 0.9969



Table 5
95% Confidence intervals for individual parameters

Metamodel
coefficient

Estimator ĥ Standard
deviation

Confidence
interval

h1 144.882 0.1185 144.882 ± 0.3067
h2 35.797 0.0761 35.797 ± 0.1968
h3 0.0421 0.0001 0.0421 ± 0.0003
h4 7.776 0.0704 7.776 ± 0.1821
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we observe a good agreement between the coeffi-
cients obtained based on subsets 1 and 2. Also,
the coefficients of determination are quite similar.
Finally, we obtained confidence intervals for the

individual metamodel parameters, with coverage
probability 1 � a = 0.95; see Table 5. The stand-
ard deviations of the estimators are also shown.
We observe that the standard deviations and the
confidence interval half-lengths have quite small
values, compared with the absolute values of the
estimators. These are good indicators of the preci-
sion of the regression estimators obtained in this
work.
5. Conclusions

This paper stresses the importance of using
valid reliable non-linear metamodels in simulation
studies. In the example discussed here, a poor fit
was obtained when various polynomial metamod-
els were tried, leading to a demand for more pre-
cise and flexible models. Linear models are
considerably simpler to fit than non-linear ones,
but they are unable to ensure a global fit to curves
of arbitrary shape. Non-linear regression meta-
models are attractive, because they do not have
this limitation, allowing to complex curves.
It is generally much more convenient to have a

ready-to-use and reliable metamodel, rather than a
more expensive and hard to calibrate simulation
model. In order to ensure that a specific meta-
model provides an adequate substitute for the sim-
ulation model, a series of adequacy tests must be
performed. If any one of these tests fails, the meta-
model is rejected.
The use of non-linear metamodels requires an

extensive catalog of curves and more complex
and time consuming regression software. The
selection of good candidate curves for the fitting
process influences dramatically the resulting meta-
model precision, as shown in the example. How-
ever, once a comprehensive catalog of curves is
provided, the choice of an adequate metamodel
is quite straightforward. The regression and vali-
dation software can be repeatedly used, as soon
as the user supplies a trial function and an initial
solution. Finally, the increased computation time
when compared to linear regression procedures,
is becoming less important with the ever growing
computing power of personal computers. More-
over, the computation time required for obtaining
non-linear regression metamodels can be orders of
magnitude smaller than the time needed to run and
analyze the actual simulation model.
Appendix A

(i) Verification of (6). Consider the usual
decomposition

SSEðhÞ ¼
Xn

i¼1

Xr

j¼1

1

r2i
½Y ij � f ðXi:; hÞ	2

¼
Xn

i¼1

Xr

j¼1

1

r2i
ðY ij � Y i:Þ2

þ r
Xn

i¼1

1

r2i
½Y i: � f ðXi:; hÞ	2;

where
Pn

i¼1
Pr

j¼1ðY ij � Y i:Þ2=r2i is the pure error
sum of squares.
To find the least squares estimate ĥ of h, SSE(h)

must be minimized with respect to h, which is
equivalent to minimizingXn

i¼1

r
r2i

½Y i: � f ðXi:; hÞ	2: ð9Þ

But (9) is the SSE (h) of the problem

W ¼ gðX; hÞ þ g; ð10Þ
where W ¼ RY, g(X,h) = Rf(X,h) and g = R�,
with R = (UT)�1 where U is obtained from the
decomposition R = UTU (assumption: R is a sym-
metric positive definite matrix, that accepts the
Cholesky decomposition, R = UTU) and
� ¼ ð��1:; . . . ;��n:ÞT.
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Then, we observe that E[g] = 0 and Var[g] =
RVar[�]RT = 1/rRRRT. But R = UTU (Cholesky
decomposition) and R = (UT)�1. Thus,
Var[g] = 1/r(UT)�1UTU[(UT)�1]T = 1/rIn, where In
is the identity matrix of order n. We conclude that
the problem (10) is an ordinary least squares prob-
lem. Thus, the least squares estimator of h is

ĥ  h� þ ½GTG	�1GT½W� g	; ð11Þ
where G = og(X,h)/ohT is the Jacobian matrix of
g, and we omit, in our notation, that both g and
G are evaluated at h*; see Theorem 2.1 in Seber
and Wild (1989).
But, since g(X,h) = Rf(X,h), we have

G(h) = Rof(X,h)/ohT = RF(h). Besides, W ¼ RY
and RTR = R�1, therefore (11) is equivalent to

ĥ  h� þ ½FTRTRF	�1ðRFÞT½RY� RfðX; h�Þ	

¼ h� þ ½FTR�1F	�1FTRTR½Y� fðX; h�Þ	

¼ h� þ ½FTR�1F	�1FTR�1½Y� fðX; h�Þ	:

Thus, the approximate result (6) has been
established.
(ii) Verification of (7). The result (7) is obtained

by applying Theorem 2.1 in Seber and Wild (1989),
item (i), to the problem (11): ĥ 
 Np½h; 1=
rðGTGÞ�1	. SinceG= RF and RTR= R�1, we obtain
ĥ 
 Np½h; 1=rðFTRTRFÞ�1	, and then ĥ 
 Np½h; 1=
rðFTR�1FÞ�1	.
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