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Frequently, the main objective of statistically designed simulation experiments is to
estimate and validate regression metamodels, where the regressors are functions
of the design variables and the dependent variable is the system response. In this
article, a weighted least squares procedure for estimating the unknown parameters
of a nonlinear regression metamodel is formulated and evaluated. Since the validity
of a fitted regression model must be tested, a method for validating nonlinear
regression simulation metamodels is presented. This method is a generalization
of the cross-validation test proposed by Kleijnen (1983) in the context of linear
regression metamodels. One drawback of the cross-validation strategy is the need
to perform a large number of nonlinear regressions, if the number of experimental
points is large. In this article, cross-validation is implemented using only one
nonlinear regression. The proposed statistical analysis allows us to obtain Scheffé-
type simultaneous confidence intervals for linear combinations of the metamodel’s
unknown parameters. Using the well-known M/M/1 example, a metamodel is built
and validated with the aid of the proposed procedure.

Keywords Cross-validation; Nonlinear least squares; Parameter estimation;
Simulation.
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1. Introduction

Digital simulation is a commonly used tool in the analysis of complex systems.
However, running a simulation program for a large number of input combinations
can be very time-consuming and it may become very hard to interpret the statistical
results. Whenever possible, it is preferable to use a simple mathematical model
to relate the system response with the decision variables, that is, a model of the
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124 Santos and Porta Nova

simulation model, or a metamodel (Barton, 1998). Metamodels are very useful
for prediction and sensitivity analysis of the system response for different factor
settings. Besides, a metamodel can expose more clearly, than the simulation model,
the essential nature of the system input—output relationship.

Simulation metamodels have received a lot of attention in recent years. The
most widely used ones have been linear regression metamodels (e.g., Friedman and
Friedman, 1985; Kleijnen, 1983, 1992; Kleijnen et al., 1979; Porta Nova and Wilson,
1989; Panis et al., 1994). A strong reason for that choice is the availability, in
many statistical software packages, of analysis tools to obtain estimators for the
unknown parameters of the metamodel, characterize the metamodel fit, and use the
metamodel for prediction. In real-life problems (e.g., problems involving queueing
systems), however, the relationship between the response and the input variables is
usually nonlinear, and polynomials do not have the ability to provide a global fit
to curves of arbitrary shape. As a consequence, polynomials often have poor fits
in that kind of problems. An alternative that usually produces more realistic and
better fits, is the use of nonlinear regression metamodels. The nonlinear metamodels
can be estimated using nonlinear least squares, assuming non homogeneous error
variances, and can be validated using statistical tools (Santos and Porta Nova,
1999). Additional validation tests are applied to a case study (Santos and Porta
Nova, 2001). Instead least squares criterion, maximum likelihood estimation may be
used. However, with normal errors, the maximum likelihood estimate is the same as
the least squares estimate (Seber and Wild, 1989, p. 576). In Santos and Porta Nova
(2006), the previous work is combined and augmented with statistical confidence
intervals. A nonlinear metamodel regression methodology is introduced in Santos
et al. (2006), including a statistical test for variance heterogeneity, estimation
assuming constant error variances, validation with respect to the real system, and
graphical analysis of the residuals. It also introduces normal probability slopes as
measures, and extends the curve selection from a catalog, as suggested in Santos
and Porta Nova (2006). The methodology is fully implemented in Matlab as an
automated process.

Simulation can be used for constructing nonlinear regression metamodels that
appropriately describe the behavior of real systems. The unknown parameters of
the regression metamodels are estimated using the weighted least squares method.
Before a metamodel can be used to make decisions, it must be validated. Kleijnen
(1983) proposed a cross-validation test for validating linear regression metamodels
in simulation. One drawback of this method, observed by Kleijnen, is the need to
obtain a large number of regressions. Panis et al. (1994), however, showed that
the test can be implement using only a single regression. They used a relationship
between the usual regression residuals and the deleted residuals, that involves the
diagonal elements of the har matrix, to speed up the computation in the cross-
validation method. For nonlinear metamodels, the referred drawback becomes even
more important since each regression requires an iterative numerical method for
solving nonlinear systems of equations (e.g., the Levenberg-Marquardt method). In
this article, the Kleijnen cross-validation test is adapted to nonlinear metamodels,
and it is shown that, also in this case, we need only one regression to implement the
method.

This article is organized as follows. In Sec. 2 the general nonlinear regression
metamodel is presented. The cross-validation test for this metamodel and confidence
intervals for the metamodel’s unknown parameters are developed in Sec. 3. In Sec. 4
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it is shown how the cross-validation test can be implement with only a single fitted
nonlinear regression model. In Sec. 5 numerical results for an M/M/1 queueing
application are discussed. The validation techniques of Sec. 3 are used to validate
a metamodel constructed with results from the simulation program that represents
this system. Also, the validation with respect to the real system is performed.
Section 6 is reserved for conclusions.

2. Nonlinear Regression Metamodels in Stochastic Simulation

Frequently, the purpose of a simulation experiment is to estimate a metamodel for a
selected response, that is, a mathematical model of the expected response, expressed
in terms of relevant decision variables. The metamodel can be a linear or nonlinear
function of the unknown coefficients. An example of a metamodel preferred by some
simulation practitioners is the following linear regression metamodel

d
Y=0,+) 0X +e

k=1

with d decision variables (Kleijnen and van Groenendaal, 1992). An example of a
nonlinear metamodel is the logistic model

Y = 01/(1 +02 3793)() +€,

with one decision variable, X (Seber and Wild, 1989).

Suppose that the underlying simulation model has k factors or decision
variables. Suppose further that each simulation run yields a single response, denoted
by W; W can represent, for example, the average time in the system. Although
simulation designs are usually used to generate multivariate response outputs, in
practice, each output is analyzed individually (Kleijnen et al., 2005).

A simulation experiment is performed according to some experimental design,
consisting of n different factor combinations or design points, {Z, :i=1,...,n;
I=1,...,d}. Each design point is replicated r, times using non overlapping,
pseudo-random number streams. Thus, the simulation experiment yields N =
> », r; independent observations, {W,-j, i=1,....n55=1,...,r} W,; denotes the
jth observation at the ith experimental point. We assume that no common random
numbers are used. Common random numbers may increase the efficiency but they
also complicate the regression analysis (Kleijnen, 1987, p. 170). For simplicity’s
purpose it is assumed that all experimental points are replicated an equal number of
times (r; = r); that is, factor combinations with higher variability are not replicated
more often. Let W= (W,,..., W, )T be the average simulation output vector,
containing the sample averages of the response,

This allows us to formulate a nonlinear metamodel of the form
Y, =fX.,0)+e, i=1,....n, (1)

where €; are independent random variables with €, ~ N(0, 6?/7), 0, = Vv Var[W;] >

0, and Y; is the metamodel prediction for the expected simulation response E[W, ].

1
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Each variable X; can either be identical to a variable in the set {Z,,...,Z,}
or a transformation of one or more elements of this set; for example, in the
M/M/1 queue system it may be useful to consider X = Z,/Z,, where Z, and Z,
are the arrival and the service rates, respectively. We assume that the variance o7,
i=1,...,n,is estimated by

62 = (W, — W)2/(r — 1), @

j=1

The metamodel’s unknown parameters are estimated using nonlinear least squares,
that is, 0 is the vector such that S(0) < S(0) over 6 € @ € R™, where S(0) is the error
sum of squares S(0) = Y"_, {W, — f(X,, 0)]*/c?. For large N and given appropriate
regularity conditions, the nonlinear weighted least squares estimator of 6 in (1) is
approximately (Santos and Porta Nova, 2006)

0~ 0+ [F'='F] 'FTE ' [W — 1], 3)

where 0" is the exact value of 0, f = £(0) = (f(X,,0%), ..., f(X,, 0%))T defined in
(1), F = F(6") is the Jacobian matrix of f evaluated at 6%, X is the diagonal matrix
¥ = diag(a?, ..., 02), and 0 is asymptotically normally distributed

N 1 -
0~N, (0*, ~[F'z'F] 1). )
r
In practice, X must be replaced by

¥ = diag[62, ..., 8] 5)
and, as a result, the estimated generalized nonlinear least squares estimator is
obtained. The consequences of replacing the deterministic matrix X by its estimator
will be discussed in the next section.

3. Validation and Confidence Interval Procedures

After the metamodel’s unknown parameters have been estimated, the metamodel
can be used for future work only if it acceptably represents the behavior of the
input/output transformation that produced the simulation data. In order to assess
the adequacy of the fitted metamodel, a lack-of-fit test is proposed. This test is
an adaptation, to nonlinear regression metamodels, of the cross-validation test
presented by Kleijnen (1983).

3.1. Cross-Validation Procedure

The cross-validation procedure presented here is based on the comparison of
predicted values, obtained using the fitted metamodel, with observations that were
not used for metamodel estimation. For nonlinear regression metamodels this
validation test consists of the following steps:

1. Consider the data set that is obtained by removing, from the original
data set, information corresponding to the ith experimental point, that is,
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{(X;,W;):j=1,...,r}. Based on this data set, obtain the corresponding nonlinear
weighted least squares estimator, denoted by 6_,.

2. Predict the response for the experimental point i, using @)_,., that is, (1) gives
?i,ﬂ‘ = f(Xi., éfi)'

Since W;; (j=1,...,r) is not used in the estimation in Step (1), ’17,4,_1» and W, are
statistically independent and, as a consequence,

Var[W, — Y, _,] = Var[W,] + Var[Y, _],

where Var[W, ] = ¢2/r. In order to obtain the variance of the predicted value ?L,,.,
we use Taylor’s series expansion of f(X,, _;) about the point (X;, 68*) and write

’Y\i,—i ~ (X, 0°) + fir(é—i -0,

where f7 = f7(0%). As a result, we have Var[/fi,,i] ~ fTVar[0_]f.. Since (4) applies,
we obtain

Var[¥,_] ~ 1ff[F?):*!F_i]”f, 6)

r —17 =1 1
where F_;, = F_,(6*).

3. Compare 37,-,_5 with the sample average obtained from simulation, W, , using
the following z-statistic
W7
ti = —_ - A ~ 1/2 (7)
{Var[W,] + Var[Y, _]}

where Var[W,] = 62/r with 62 given by (2), and

— 14 ~ i~ a_]A
VarlY, ]~ ~f FZiE:ilF—i] lfia
’ r
with ¥, =F ,(0_,) and {7 ={7(_,); see (6).

These three steps are repeated for each i = 1, ..., n and, consequently, a set of
n dependent z-statistics are obtained. The metamodel is rejected if

iEIllaXn |ti| > tr—l;atE/(Zn)’

using the Bonferroni’s inequality, where o is the experiment-wise error rate (valid
for the whole experiment), that is, each individual z-statistic is tested at the o,/n
level of significance.

3.2. Confidence Intervals

We now develop 100(1 — «)% simultaneous confidence intervals for a’ for all
a € N", enabling the testing of the null-hypothesis that a given factor effect
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(for example, its main effect) is unimportant or a given factor (that is, its main
effect and higher-order effects) is unimportant. The nonlinear weighted least squares
estimator 6 satisfies approximately

b~N, (0*, lmﬂ) , ®)

where F = F(0) and T is given by (5) (Santos and Porta Nova, 2006). As a result,
applying Theorem 3.3.3 of Anderson (1984), we obtain approximately

0 — 09" rF'E'F(0 — 0°) ~ 1. ©)

As a consequence, an approximate confidence region, for 6*, with a probability of
coverage equal to 1 — o, is the following:

{0°: (0 — 6 FFTE'F(O—0") < 2.} (10)
In order to present the simultaneous confidence intervals for a’@* for all linear
combinations a”@, where 0 #£ a € %", the usual linear theory for Scheffé’s S-method

is applied (Seber, 1977, Ch. 5). First, the Cauchy-Schwartz inequality allows us to
write (Seber and Wild, 1989, Appendix A7.2)

X e 0 —67)a]’
-0 FF'E'F(@ — 07) = sup _LO—0af L :
waz0 a? (PFFTZ-1F) 'a

Using this equality and the confidence region (10), we have approximately
0 2 sreog-1)
{aT()* (2”0 — 0%)| < (X,MaT[rFTz— F] a) } .

As a result, for all a real such that a # 0, an approximate 100(1 — )% confidence
interval for a”0* is

. 1 12 a2
a70i<;xfm) (a"F'EF]'a) . (11)

In order to test the hypothesis H, : § = 0, versus H, : 0 # 0,, it is possible to
use (10) and to calculate the statistic

7 =r0—0,)"F'T'FO—0,), (12)

which has an approximate distribution 2 when H, is true. In this case, H, is
rejected with a confidence level of 1 — o, if ¥ > Xi;a‘

Suppose that we now partition 6 = (0], 0;)" and F = (F,,F,), where 0, is
my x 1, f] isnxmyg, E is n x m,, and we wish to test the hypothesis H, : 8, = 0,
versus H,, : 6, # 6,,. Then analogously to (12) we have the test statistic

7= 1(0, — 0,,)" (C2)7' (8, — 0y,); (13)
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see the verification in Appendix. This statistic is approximately distributed as anz
when Hy, is true, and

(C2)"! = (RF,)"(I, — Py )RF,

where R’R = £ and f’RF] = RF,[(RF,)"(RF,)]"'(RF,)” is a projection matrix (see
Seber and Wild, 1989, Appendix All).

4. Practical Implementation

The cross-validation method consists of obtaining n individual ¢-statistics, ¢;, where
for each evaluation of 7, a nonlinear regression is required. Since the number
of experimental points may be large, and the nonlinear regression software is
complex and time consuming, the proposed method may become rather inefficient.
An alternative proposed by Kleijnen (1983), in the linear case, is to validate the
metamodel at a randomly selected subset of the set of all experimental points; but
in this case, potential information is lost. Also in the linear case, Panis et al. (1994)
showed that only one regression is needed to implement the test. In the nonlinear
situation it remains possible to implement the method by making a single regression,
with the help of the following results (proved in the Appendix).

Proposition 4.1.  Suppose €, ~ N(0, 62/r) (with o; > 0) in (1) and let W, —/f,-,,
and W, —?; be the residuals that correspond to the nonlinear regression where the
experimental point i (i=1,...,n) is eliminated and the nonlinear regression with all
experimental points, respectively. Then

i

W, =Y, =, (14)
where the “leverage” h;; is the ith diagonal element of the hat matrix
H =RF(F’'F)"'F'R’,
corresponding to the regression with all experimental points, and
R = diag[l/oy, ..., 1/d,].

Moreover,

> U'zhii
Var[Y; _;] - = n (15)

_In practice, when necessary, F, X, and R can be replaced by F=F (9),
Y = diag[67, ..., 62] and R = diag[1/6,, ..., 1/6,], respectively.

In fact, substituting (14) and (15) into the -statistic (7), we obtain a simplified
version of this statistic that can be evaluated using only one nonlinear regression:

W. —Y.

_ i i

"= 6-[\/ (1 - hn‘)/r.
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Figure 1. Normal probability plot.

The residuals W, —/ﬁ,,i, in (14), are called the deleted residuals and play an
important role in regression diagnostics. As in the linear case, when building a
nonlinear regression metamodel it is of the utmost importance to closely inspect the
aptness of the fitted metamodel, by making use of diagnostic techniques based on
analysis of the residuals (see Sec. 3.1 and Figs. 1 and 2).

5. Numerical Example: M/M/1 Simulation

In this section we use the simple M/M/1 queueing system to illustrate the application
of our validation and confidence interval procedures. We assume that customers
arrive according to a Poisson process with a constant expected arrival rate, /,
and that service times follow an exponential distribution with a constant expected
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Figure 2. Residuals versus the independent variable and the predicted values.
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Table 1
Simulation input combinations for M/M/1
Combination 1 2 3 4 5 6 7 8 9
A 0.10 030 05 06 070 075 085 090 095

service time, 1/u. The performance measure of interest is the steady-state average
waiting time in the queue. Our goal is to express this response as a function of
the queue utilization factor p = A/u. We fix 1/u = 1, and we select intuitively nine
combinations of the ; see Table 1.

This simulation is an example of a non terminating simulation. For the purposes
of output analysis, we distinguish between two types of simulation experiments,
terminating and non terminating, depending on whether there is a specified natural
event or set of events that stop the simulation; see, for example, Law and Kelton
(2000). The warm-up problem arises in non terminating simulation, where the initial
conditions defined by the analyst introduces bias in the simulation output means.
A simple and general method for mitigating the initialization bias is the Welch’s
(1983) procedure. At each design point, we ran this procedure in order to determine
the length of each simulation and the initial-data deletion. Welch’s moving average
is based on 20 replications of the simulation model:

L 20
(rQL+1)7" Y Y W, ifj>=L+1,
_ . s=—L i=1
fG, L) = o
(rRji—1)™" Y Y w,,, ifj<L+1.

s=—(j—1) i=1

For example, at the design point (1/u, 1/4) = (1, 2.0) (that corresponds to a traffic
rate p = A/u=0.5), we used Welch’s window equal to 1,000 and we deleted
1,500 observations from the beginning of the run. Thus, only the remaining 8,500
observations (approximately 85% of the observations per run) were used to estimate
the response W.

We carry out r = 20 replications of each of the n = 9 design points in Table 1;
r must be at least nine in order to obtain an appropriate estimate for 6;,, i =1, ..., n,
(Deaton et al., 1983).

Based on knowledge from queueing theory, we propose the metamodel

X, \"
Y. =0, ——— S oi=1,...,n 16
i l(l-'-gle) +El l n ( )

where X = p = 1/u.
The variance heterogeneity is measured by the quantity (Kleijnen, 1992)

het = max 6;/ min g;.

i=l,n i=l,n

A value quite different from 1 is obtained: het = 256.13. As a consequence, we
infer that error variance is not constant. Thus the method of (nonlinear estimated)
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Table 2
Estimates for the unknown parameters 6 of the
nonlinear metamodel

Regression Standard
coefficient Estimate deviation
0, 0.999622 1.90 x 103
0, —0.999659 5.28 x 10~
0, 1.000819 1.75 x 1073

weighted least squares is used. The estimators for the unknown parameters, in (16),
were obtained using the Levenberg-Marquard method implemented in MATLAB,
with a termination tolerance equal to 107® and a maximum number of function
evaluations equal to 600 (the default is 100 x number of parameters). This gives
Table 2.

In general, the Levenberg—-Marquard algorithms are robust and work well in the
solution of nonlinear least squares problems. Nevertheless, their linear convergence
can be very slow, and they may even not converge if we are solving problems with
large residuals. In the latter case, methods for large residual problems can be used
(Seber and Wild, 1989, Sec. 14.3).

Our analysis of the weighted residuals indicated that the normality assumption
for the underlying metamodel is met, i.e., the normal probability plot in Fig. 1 is
approximately linear. We observe that in Fig. 2 the weighted residuals are within
a horizontal band centered around 0 and that there is no systematic trend toward
being positive or negative (for example, negative residuals for small X values and
positive residuals for large X values). These graphs suggest that our nonlinear fitted
regression metamodel is appropriate.

In order to ensure that the metamodel is a valid substitute for the simulation
model, the cross-validation test proposed in Sec. 3.1 is used, with an experiment-wise
error rate of oz = 0.10 so each individual 7,, i = 1, ..., 9 is tested at the significance
level of o = /9 = 0.01; see Table 3. Based on the critical value ¢,_;.,» = 19,0012 =

Table 3

Numerical results of the cross-validation test
Combination t;
1 —0.247506
2 1.15903
3 —2.67520
4 1.44943
5 2.14220
6 1.48058
7 —0.0641741
8 —0.332590
9 0.228656

max |7;| = 2.67520
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2.861, we conclude that there is no evidence for rejecting the model, since all ¢; are
much smaller than the critical value. Observe that no leverage value A, is large (all
h;; are smaller than twice the mean leverage value 0.8889,i=1,...,9).

The validation test allows us to choose the metamodel Y = X/(1 — X) as
representative of the simulation model. Next, since y..,/r = 13.s/20 = 7.81, we
obtained the 95% approximate confidence region for @, centered at ) (see Eq. (10)):

{0°: (0 — 0)"F"Z'F (B — 0°) < 0.3905),
where

23.706 —68.646  5.9140
FIT'F=| —68.646 65131 —123.01 | x 10°.
59140 —123.01  42.510

The corresponding approximate simultaneous confidence intervals for a’0* for
all linear combination a’0 (0 # a = [a, a, a;]" € N?) are (see Eq. (11)):
0.999622a, — 0.999659a, + 1.000819a,
:I:(4.5af +0.35a% + 3.843 + 1.6a,a, + 3.2a,a; + 1.8a,a;) x 107°. 17)
For this numerical example, the 95% confidence interval for each 0, was
computed from Eq. (17) as
0, € 0.999622 + 4.5 x 107>, 0, € —0.999659 +0.35 x 107,
05 € 1.000819 4+ 3.8 x 107°.
In linear regression—especially polynomial regression—we can use classical

design of experiments. In nonlinear problems no general experimental designs exist.
For each particular nonlinear problem, a good enough experimental design needs to

Table 4
Analytical solution versus metamodel prediction

Exp. point Analytical Metamodel Absolute relative
i solution Y, Z,i error |0,
1 0.11111 0.11082 2.63 x 1073
2 0.42857 0.42786 1.67 x 1073
3 1.0000 0.99878 1.22 x 1073
4 1.4999 1.4983 1.11 x 1073
5 2.3333 2.3307 1.11 x 1073
6 3.0000 2.9964 1.20 x 1073
7 5.6666 5.6562 1.84 x 1073
8 9.0000 8.9737 2.92 x 1073
9 18.9999 18.874 6.65 x 1073

average % absolute relative error = 2.26 x 1073
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be found tentatively, with the aid of a computer (see Kleijnen and van Beers, 2004;
Santner et al., 2003); that is, an experimental design that allows the construction of
a valid simulation metamodel.

Since the analytical formula for the expected steady-state waiting time in an
M/M/1 system is given by A/[pu(r— )], we can compare the metamodel with
the true I/O function. Based on the results of Table 4, we compute an average
absolute relative prediction error of 0.2%, so the metamodel appears to be a reliable
and valid approximation; the absolute relative prediction errors are calculated by
|0;] = |(Y; — 2,,,.)/Yi|, i=1,...,9 (Kleijnen and Standridge, 1988).

6. Conclusions

The output of a simulation experiment can be analyzed using a nonlinear regression
metamodel that approximates the input/output behavior of the simulation model.
The metamodel’s parameters can be estimated with the least squares method.
Simulation is an important application of the estimation and validation of
regression statistical models. Whichever may be the application context (e.g.,
simulation) of a regression metamodel, its validity must be tested before using it.
In this article, a validation test is introduced and illustrated with an example;
also, the Scheffé-type confidence intervals are derived. The proposed validation test
is a generalization to nonlinear metamodels of Kleijnen’s (1983) cross-validation
test. This test should always be used together with regression diagnostic tools like,
for example, standard diagnostic residual plots for the estimated metamodel. The
validation tools give assurance in the use of a regression model as a substitute of a
simulation model.

The use of nonlinear regression metamodels in simulation is very important
because such metamodels can expose, more clearly than the simulation model itself,
the fundamental nature of the simulation model and the real system. Also, they
allow us to answer inverse questions. On the other hand, the software used for
constructing nonlinear regression metamodels is very time-consuming. However, the
advances in modern computer implementation of statistical procedures have made
the difference of computing time between nonlinear and linear regression methods
less significant. Also, the implementation of the cross-validation test using only a
single regression saves much computation time. Finally, when using a metamodel,
the computation time used in ‘what if” analysis is significantly smaller than required
for executing several simulation runs.

Appendix

Verification of (13)
Let C = F'E-'F = F'RRF, 0 = (07, 07)7, where 0, is m, x 1 and 0, is m, x 1, and

~ ~ -1 ~ ~
6—1 B C“ ClZ B Cll C12
- 621 622 - o2’
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We note from (8) that
0, ~ N 0; —1 (o
2 my 2> r ’

approximately. Partitioning F= (i?\,,fz), where E is n x m; and fz 1S n X m,, we
have

(€)' =Cp -G, G/ Cpy
=FIT'F, - FIS'F[FI2'F ] 'FTF,
= FIR'RF, — F/R'RF,[F/R'RF,] 'F'R'RF,
— FIR"{I, — RF,[FTR'RF,]  F/R"}RF,
= (RF,)" {1, - (RF,)[(RF,)" (RF,)] " (RF,)"}RF,
= (RF,)" (I, — Py, )RF,

n

where ﬁRFl is an orthogonal projection. Then, analogously to (9), applying
Theorem 3.3.3 of Anderson (1984) we have approximately

(0, — 03,)"r(C2) (B, — 03,) ~ 22,

and, as a result, the test statistic (13) that is approximately distributed as )(312 when
Hy, : 0, = 6, is true.

Verification of (14)

Let 0 be in a small neighborhood of 6*, the true value of 0. Then the following
linear Taylor’s expansion is valid (Seber and Wild, 1989, p. 23):

10,0 ~ 1%, 0 + 3 LC D o, gy, (19)
j=1 j
Substituting (18) into (1), we have approximately
T, = 106,00+ 3 0, 0) e
that is,
TS0 = L0, e,
or

Z=F0-0)+e. (19)
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Applying the linear regression theory to (19) (see, for example, (9) in Panis et al.,
1994), we have

- 7 -7
z,-7, =250 (20)

where h; is the ith diagonal element of H = RF(F"X~'F)~'F'R’. Since Z, = Y, —
X, 0*) Z = Y- f(X,;,0) and Z L= Y- — f(X;, 0, (20) is equlvalent to (14)

—1 —1

Verification of (15)

Consider g(X;, 0) = V7f(X,, 0)/0,, &; = /7€;/7;, and W, = /7Y, /5,. Then, we have
approximately & ~ N(0,1) in the problem W, = g(X;,0)+ ¢, and (6) can be
written, approximately, as

2
Varl?, ] = “/[61,6 ] g, @1

1

where G is the Jacobian matrix G = RF. The application of the Sherman—Morrison—
Woodbury Theorem (Myers, 1990) to (21) allows us to obtain

o? G'G)'gg’ (G'G)”!
Var[¥, ] = —¢f [(GTG)1+( ) 88 G0 }gi-

1 - hii
But gT(GTG) gl - hu’

2
o;hy

Var[ 171] = m
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