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Instituto Superior Técnico
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ABSTRACT
Linear regression metamodels have been widely used to
explain the behavior of computer simulation models, al-
though they do not always provide a good global fit to
smooth response functions of arbitrary shape. In the case
study discussed in this paper, using several linear regres-
sion polynomials results in a poor fit. The use of a non-
linear regression modeling methodology provides simple
functions that adequately approximate the behavior of the
target simulation model. The importance of metamodel
validation is emphasized by using the generalization of
Rao’s test to nonlinear metamodels and double-cross val-
idation.

KEY WORDS
Discrete event simulation; Nonlinear metamodels; Nonlin-
ear regression; Metamodel validation.

1. Introduction

Frequently, the main objective in digital simulation stud-
ies is the prediction and sensitivity analysis of system re-
sponse, for different combinations of a particular set of
controllable input variables. However, it is not generally
an easy task to interpret the large amounts of data yielded
by simulation runs (e.g., in queuing systems) and it be-
comes increasingly difficult to make decisions about design
modifications in the target system. Whenever possible, it is
more suitable to construct a simple mathematical relation-
ship that relates the inputs and outputs of the computer sim-
ulation model, that is, a model of the simulation model, or
metamodel [1]. Metamodels are very useful in design opti-
mization and “what if?” questions— all this, without hav-
ing to perform additional simulation runs. Also, the simple
mathematical expression of a metamodel can expose, more
clearly than the simulation model, the fundamental nature
of the system input-output relationships.

The construction of discrete event simulation meta-
models often uses traditional linear regression procedures.
In particular, the general linear regression model has been
intensively studied (e.g. [2], [3], [4] and [5]). However,
polynomials are unable to produce a global fit to curves of
arbitrary shape. Moreover, in real-life systems, nonlinear-
ity is common and approximation using polynomials be-

comes unrealistic. Consequently, in these situations, poly-
nomials often fail to provide good fits (e.g., in problems in-
volving queueing systems [6]). An alternative that provides
better and more realistic global fits is the use of statistical
nonlinear regression techniques [7].

After estimating the unknown metamodel parameters,
the metamodel can only be used to analyze simulation out-
put if it is ’good enough’. So, once the metamodel has
been estimated it is advisable to check if the hypothetical
metamodel is, in fact, an accurate representation of the sim-
ulation model. For this purpose, valid statistical validation
techniques from nonlinear regression are used.

This paper is organized as follows. In Section 2. we
present the general nonlinear metamodel, and techniques
for validating it. In Section 3. we describe an actual prob-
lem concerning a center for inspecting and repairing auto-
mobiles. We consider several candidate metamodels, in-
cluding linear and nonlinear ones, and we select the meta-
model that provides the best fit. This selection is based
on regression techniques of fit and validation described in
Section 2.. Section 5. is reserved for conclusions.

2. Nonlinear Regression Metamodels

Consider the following nonlinear simulation metamodel:���������
	��������	
(1)

where
�

is a univariate response,
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is a vector of � explanatory variables,
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represents a vector of unknown parameters,
�

is the er-
ror and

�
is an unknown function. Suppose also, an ex-

perimental design consisting of * different design points,+ �-,/.10321�54(	�������	 *%687 �59�	������8	 �;: . For each design
point, < independent replications of the simulation model
are carried out and the experiment yields
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is the relevant system
response and

@A , is the estimated standard deviation at the
design point
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based on < observations and is calculated us-

ing (8.4) of [8]
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where Q�P,"T � � L � L>�OG� �P,?> . This leads us to express the
metamodel (1) as a replicated simulation metamodel�P, > � ������,"T"	��������� ��	

(2)

for
2 � 4(	�������	 * and � � 4�	�������	 < , where

� ,?>���
	�����;	 A U,�� , with A ,���� .
For large * and given appropriate regularity condi-

tions (see Proposition 1 of [7], the vector of unknown pa-
rameters

�
is approximated through the estimated general-

ized nonlinear least squares estimator
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the Jacobian
matrix of * , evaluated at
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is the diagonal matrix
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simplify the notation, we omit that * and

�
are evaluated at� �

.

2.1 Validation Procedure

After estimating the metamodel parameters, we must test
the ability of the estimated metamodel to approximate the
simulation model response (i.e., to ascertain if the esti-
mated metamodel adequately fits the simulation data). To
test the adequacy of the metamodel (2), we assume that
the responses are normally distributed (when simulation
responses are averages, central limit theorems ensure nor-
mality), * �87 � <:9$*<; �&�  and < � * , and we propose the
following lack-of-fit test that is an adaptation of Rao’s test
[9] to nonlinear models:= � >@? Q) J+* ���
	 @�$BA / @! " � ? Q) J+* ���
	 @�$CA� > ,N , O)�ED Q�P,"T J ����� ,�T"	 @�$@A , F U 	 (4)

where
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When the metamodel is valid,
=

is roughly distributed
as an

=�, " 'LK L " ,�M)' distribution. Smaller values of
=ONQPSR

correspond to a better approximation metamodel, conse-
quently an ideal fit corresponds to

= NQPSR ���
.

The predictive validity is verified using double cross-
validation and an adaptation of the prediction sum of
squares, TVU
W%XYX (see [10] and [6]. In our prob-
lem, the TVU
W%XYX statistic has the form TZU
WZX[X �� ,,/O)� � L>�O)� � � , > J ����� ,�T 	 @��\ " >^] C$ U I=@A U, , where

@��\ " >^] is the
estimated parameter vector based on the set that we ob-
tain if we delete the � -th replication in all experimental
points. Other useful statistics are the error sum of squaresXYX3W � � ,,/OG� � L>�OG� � �S, > J ������,"T"	 @��B$ U I @A U, and mean sum
of squares _`X3W � XYXYW I � <�* J 7C .

In double cross-validation we split the data intuitively
into two subsets of approximately equal dimension. Then

a regression metamodel is developed for each subset and
used for prediction on the other subset of the data. In par-
ticular, for each metamodel we calculate two values of the
coefficient of determination, U U : the first one is based on
observations from the subset used in building it, U U a�b , , and
the second one is based on the other half, U Uc P . . Moreover,
we compare the estimated parameters of both metamodels.

3. An Inspection and Repair Center

The problem studied in this paper is a center for inspecting
and repairing automobiles. The time between car arrivals to
the center is normally distributed with mean d and variance4fe

minutes. One inspector waits for a car and the time
required to inspect it is uniformly distributed between

4fe
and g e minutes. In the inspection queue, space is available
for only six cars. On the average, h e percent of the cars pass
inspection and leave the center. The other

4ie
percent must

go to the repair section where two repairmen work side-by-
side. After being repaired, the cars have to go back to the
inspection queue. The time required to repair a vehicle is
exponentially distributed with mean j � minutes.

Our goal is to express the average time in system,
�

(response), as a function of the mean time between arrivals,d (decision variable). We consider
4lk

combinations of sim-
ulation input, d , selected intuitively,

+ d , 0 2�� 4(	�4lk : �+ 4�	�e;	�4m� 	�4ie 	 g �;	 g�n 	 g�j 	 gpo 	 nqg 	 n e 	^kq�;	rep�;	 j �;	 o � : . At each
design point, we run Welch’s procedure [11] in order to de-
termine the length of each simulation and the initial-data
deletion. Welch’s moving average is based on g � replica-
tions of the simulation metamodel, where each replication
contains s � g �q�<� observations, that is,

Qd � s 	rt  �vuw x ��yz�{Y| y~}����� zUr� M)� 2 � s�� t!� 4�	� � |��z�{Y|�� � |��&� }����� zU . " � 2V� 4 ��sO� t � 4�	
with Qd .�MQ� � � .�MQ�,/O)� � ,JK \ .�MQ�.] I;� s ���  and where

t
is

Welch’s window. For example, at the design point d ,)� 4f� ,
we delete

4f�q�
observations from the beginning of the run

and only the remaining j �q� observations, approximatelyh e�� of the observations in run, are used to estimate the
response

�
(see Table 1 and Figure 1).

Table 1. Initial data deletion.

Observations Welch’s��� Deleted In run window�
, � , �0� �0�(� �r�(� � �� � � � � �0�(�(� �0�(��(� �(�(� ���S�(� � � ��(�

,
�(�

,
�(�

,
�(�

,
� � �(�(� ���S�(� �(�(��S�

, � � , �(� �0�(� �r�(� �(�(��(� � � � � � �(�(�
We carry out < �H�q� replications of each of the * � 9l�

design points; in order to apply Rao’s validation test, < must
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Figure 1. Moving average Qd � g �q�<�;	re��� based on g � repli-
cations.

be greater than * , and since < is greater than nine, we obtain
an appropriate estimate for

@A , , 2G� 4(	�������	 * [12].
With the objective of identifying a curve that might fit

the input/output of the simulation program, we performed a
visual check, plotting the pairs

��� , 	�� ,?> 
(
2���4(	�������	 * 	 D �9(	������8	 < ) and comparing them with the graphical represen-

tations of some functional relationships. The candidate
nonlinear curves, that resemble the simulation data repre-
sented in Figure 2, are in Table 2. ’ � � ��� ’ is the arc tangent
function and the others are three sigmoidal growth models
(see [13], pages 329, 338 and 340): ’Logistic’ is the logistic
model, ’Weibull’ is the Weibull growth curve and ’MMF’
is the Morgan-Mercer-Flodin family. We also considered
polynomial functions of degree � , with � � g 	������8	�4f� .

Table 2. Some functional relationships.

Model Expression
atan ���	��
�����������������������������! #"

Logistic ��� $ �
&% $�'�( |*)&+�, ���� 
Weibull ���	� 
.- ��� 
.- � � "0/�12 $ +!354 )76
MMF ���	� �8- $9' 1 $ �
&% 2 $ +�354 )76

We measure the variance heterogeneity through the
quantity

:<; � �>= 4@? , O)�rK , @A ,
= 2BA , O)�(K , @A ,

(see [4]), and we obtained
:; � � n � o k j (quite dif-

ferent from
4
), so we are in the presence of non con-

stant variances. Thus we will use the method of nonlin-
ear weighted least squares in the case of nonlinear curves
and weighted least squares for polynomials. The estima-
tors for the cases included in Table 2, were obtained using
Lavenberg-Marquard method implemented in MATLAB,
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Figure 2. Visualization of simulation results.

Table 3. Metamodel diagnostics.

Metamodel CDCFE GHCFE IKJLEMCDC CDCFEON!IKJLEMCDCP5Q0P5R � �(� �DS �(� �TS �r�(�f�0� �0�(�#UTS �f� �TS �(�(�
logistic

�0�r�l�FS �(� �TS �(�(�(�(� �0�(�(�TS ��U �TS �S�m�
MMF

�0�(�(�TS �#U �TS �#U � �(� ���i�VUTS �(� �TS �(�r�
Weibull

�(�(�r�DS �(� � S �r�5Ur�l� �(�S�r�TS �(� �TS �S�r�
pol2

�(�S�m���DS�� � � S �(�S�(� � � �0�(�TS � �TS �f�0�
pol3

�S�(�r�i�#S � �(�TS � � �(� � � �0� � S � �TS � � �
with termination tolerance equal to

4m� "MW
and maximum

number of function evaluations equal to j �q� (default is
4m�q�

X number of parameters). In the cases of the estimation
using polynomials with degree � , with � � kS	������8	�4m� , we
obtained matrices close to singular or badly scaled. Since
the results might be inaccurate, we therefore rejected these
metamodels.

4. Validating the Metamodel

With the objective of checking the validity of the remain-
ing hypothesized metamodels, we evaluated the statistics
presented in Section 2.1.

The XYX3W and TVU WZXYX statistics for the nonlinear mod-
els exhibit similar values, in contrast to the linear poly-
nomial models (see Table 3). Also, the XYX3W values are
large for the linear models, compared to the nonlinear ones.
Based on these results, we conclude that polynomial func-
tions have lack of predictive validity, so they are not good
approximations for the target simulation model.

To gain more insight into the predictive validity, we
analyze the results of double cross-validation (see Table 4).
In each model, we observe a good agreement between the
coefficients obtained based in subsets

4
and g . Also, the

coefficients of determination are quite similar.
Rao’s test was used in order to select the metamodel

that better approximated the simulation results, by ordering



Table 4. Double cross-validation test.

P�Q0P5R logistic MMF Weibull
Coefficient subset
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�
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subset
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Table 5. Rao test.

Metamodel P�Q0P5R logistic MMF Weibull	�
 �� �TS��0�#U �TS��0�(� �TS �(�(� �(�TS �S�r�
the
= NQPSR

values and comparing them with the
=

critical
value

= � "��, " 'LK L " ,CMG' � =��
T ����
�
K U � � g � n k h . The elected meta-

model according to this criterion is the one based on the
MMF curve (see Table 5).

5. Conclusions

This article stresses the importance of reliable nonlinear
metamodels in simulation studies. In the example dis-
cussed here, a poor fit was obtained when various polyno-
mial metamodels were used, leading to a demand for more
precise and flexible models. Linear models are compara-
bly simpler to fit than nonlinear ones, but are unable to
ensure a global fit to curves of arbitrary shape. Nonlin-
ear regression metamodels are advantageous because they
do not have this limitation, allowing an adequate fitting of
complex curves. In the example illustrated in this paper,
a set of sigmoidal growth models and arc-tangent function
were compared against each other in a nonlinear regression
context.

It is of prime importance to have a ready-to-use and
reliable metamodel rather than a more expensive and hard
to calibrate simulation model. In order to ensure that a
specific metamodel provides an adequate substitute for the
simulation model, a series of adequacy tests must be per-
formed. If anyone of these tests fails, the model is rejected.
Firstly, the X[X3W and TVU
W%XYX statistics lead to the rejection
of the linear models. Then, the nonlinear metamodels were
checked using double-cross validation. Finally, the gen-
eralization of Rao’s test of lack-of-fit to nonlinear models
was used to refine the curve selection process, allowing us
to elect the best fitting curve: the MMF metamodel.

The use of nonlinear metamodels requires an exten-
sive catalog of curves and a more complex and time con-
suming regression software. The selection of a good fitting
curve influences dramatically the resulting metamodel pre-
cision, as shown in the example. However, once a compre-
hensive catalog of curves is provided, the choice of an ad-

equate curve is rather straightforward. The regression and
validation software can be reused repeatedly, as soon as the
user supplies a function to implement the chosen curve and
an initial value. Finally, the increased computation time,
when compared to linear regression procedures, is becom-
ing less important with the ever growing computing power
of recent computers. Nevertheless, the computation time
required for nonlinear model regression can be several or-
ders of magnitude smaller than the one needed to run the
simulation model.
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