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Abstract
Fairness plays a fundamental role in decision-making, which
is evidenced by the high incidence of human behaviors that
result in egalitarian outcomes. This is often shown in the con-
text of dyadic interactions, resorting to the Ultimatum Game.
The peculiarities of group interactions – and the correspond-
ing effect in eliciting fair actions – remain, however, astray.
Focusing on groups suggests several questions related with
the effect of group size, group decision rules and the interre-
lation of human and agents’ behaviors in hybrid groups. To
address these topics, here we test a Multiplayer version of the
Ultimatum Game (MUG): proposals are made to groups of
Responders that, collectively, accept or reject them. Firstly,
we run an online experiment to evaluate how humans react
to different group decision rules. We observe that people be-
come increasingly fair if groups adopt stricter decision rules,
i.e., if more individuals are required to accept a proposal for it
to be accepted by the group. Secondly, we propose a new an-
alytical model to shed light on how such behaviors may have
evolved. Thirdly, we adapt our model to include agents with
fixed behaviors. We show that including hardcoded Pro-social
agents favors the evolutionary stability of fair states, even for
soft group decision rules. This suggests that judiciously intro-
ducing agents with particular behaviors in a population may
leverage long-term social benefits.

Introduction
Contrarily to what mainstream economics postulates, in-
dividuals often act in favor of others and develop other-
regarding preferences, seemingly deviating from stylized
models of rationality (Camerer 2003). In fact, individuals re-
veal a strong bias towards fairness, incurring sizable costs to
favor others or punishing those that behave unfairly (Fehr
and Fischbacher 2003). Unveiling the origin of those be-
haviors is a multidisciplinary challenge. Understanding how
such actions will be altered when interacting with artificial
agents – and knowing how to design multiagent systems ac-
cordingly – remains, today, a conundrum in Artificial Intel-
ligence (AI) (Parkes and Wellman 2015).

In this context, the Ultimatum Game (UG) stands as a
simple interaction paradigm that is capable of capturing
the essential clash between rationality and fairness (Güth,
Schmittberger, and Schwarze 1982). In its original form, two
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players interact in two distinct roles: Proposer and Respon-
der. The Proposer is endowed with some resource and has
to propose a division to the second player, the Responder.
The Responder has to accept or reject. If the proposal is re-
jected, none of the players earns anything. If accepted, they
will divide the resource as it was proposed. A fair outcome
is usually defined as an egalitarian division, in which both
the Proposer and the Responder earn a similar reward.

The minimalism of the UG is convenient to attempt pre-
dicting, mathematically, how humans will play it. A first ap-
proach assumes that each agent is rational and seeks to max-
imize individual rewards. In this case, thinking in a back-
ward fashion, one may realize that the Responder should al-
ways accept any offer; the Proposer should, thereafter, offer
the minimum possible amount. Indeed, this line of thought
gives an intuition for the sub-game perfect equilibrium of
the UG: low offers by Proposers and low acceptance thresh-
olds by Responders (Osborne 2004). These predictions are,
however, misleading. A vast number of works report exper-
iments in which people behave differently from the ratio-
nal prediction. Humans tend to reject low proposals and to
make high offers (Güth, Schmittberger, and Schwarze 1982;
Fehr and Fischbacher 2003; Camerer 2003).

While the UG constitutes a quite general interaction
paradigm, there are several human and human-agent inter-
actions not covered by such a pairwise interaction model.
Take the case of democratic institutions, economic and cli-
mate summits, collective bargaining, markets, auctions, or
the ancestral activities of proposing divisions regarding the
loot of group hunts and fisheries. All those examples go be-
yond a pairwise interaction. Indeed, there is a growing inter-
est in analyzing multiplayer versions of the UG (Grimm et
al. 2017; Takesue, Ozawa, and Morikawa 2017). A simple
extension may turn the UG adequate to study a wide vari-
ety of ubiquitous formats of people encounters: in the Mul-
tiplayer UG (MUG) proposals are thereby made to groups
and the groups should decide, through suffrage, about its ac-
ceptance or rejection (Santos et al. 2015).

In AI, a multiplayer version of the UG can further consti-
tute a convenient interaction model to test the emergence of
fairness in groups composed by humans and agents (Correia
et al. 2018), which can be of natural interest for areas such
as multiagent resource allocation (Chevaleyre et al. 2006)
or multilateral automated bargaining (Jennings et al. 2001).
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Additionally, with the possibility that humans and artificial
agents co-exist in populations it is, more than ever, funda-
mental to understand how human behavior changes when
taking part in collective decisions with agents. Studies show
that fairness in the UG relies on a complex neural architec-
ture: when facing unfair proposals by other humans, the ar-
eas of the brain that get activated are those associated with
negative emotional states, such as anger and disgust (San-
fey et al. 2003). Introducing machines and artificial agents
in the game may thus result in different responses, as the
attribution of causality shifts (Blount 1995). Designing ar-
tificial agents that incorporate the mechanisms responsible
for the levels of fairness observed in human interactions is
non-trivial. Will humans infer causes and assign responsibil-
ities to artificial agents? Will agents blame humans (or other
agents) for unfair behaviors?

From a population dynamics standpoint, understanding
the long-term evolution of behaviors when playing the MUG
can help designing agents that perform better in the long-
run, in human-agent interactions – a purely selfish agent that
always offers close to nothing to a human Responder will
naturally have a lot of proposals rejected (de Jong and Tuyls
2011). Additionally, understanding the evolutionary dynam-
ics of the MUG can help designing agents that are able to
steer collective human behavior towards fair, cooperative or,
in general, socially desirable states (Paiva, Santos, and San-
tos 2018). In this realm, we shall highlight a recent result
showing how noisy bots aid coordination in populations of
humans and agents (Shirado and Christakis 2017).

Here we study the dynamics of Multiplayer Ultimatum
Games both experimentally and theoretically. First, we con-
duct a behavioral experiment involving humans on Amazon
Mechanical Turk (AMT) (Mason and Suri 2012). We ask
people to play the MUG and we record their strategies, test-
ing different responses when subject to different group deci-
sion rules. Secondly, we propose a new theoretical model
– inspired in Evolutionary Game Theory (EGT) (Weibull
1997) – to understand the experimental results. The model
that we propose will also be extended to incorporate a small
set of agents with fixed behaviors (hard-coded agents). With
these experiments and model, we seek to answer:
1. How do humans play MUGs and how do human propos-

als – and ensuing fairness – depend on group decision
rules?

2. How do different group decision rules impact the evolu-
tionary dynamics of strategy adoption in MUG?

3. What is the impact, in the evolutionary dynamics of the
MUG, of including hardcoded Pro-social agents in a hy-
brid human-agent population?

As detailed below, we confirm experimentally that particular
group decision criteria have an important role in the strate-
gies adopted by people: stricter group acceptance rules in-
duce individuals to be fairer. Furthermore, through our the-
oretical model, we can obtain a similar conclusion: we ob-
serve an increase in the basin of attraction towards Pro-social
strategies (i.e., proposing and accepting high values) when-
ever we test stricter group decision rules. Finally, and impor-
tantly, we conclude that fairness can emerge even for softer

decision rules, if a small number of agents with hardcoded
Pro-social behavior is introduced in the population. This re-
sult highlights the potential of designing intelligent agents
able to support and generate pro-social behaviours among
Humans, envisioning a broader pro-social computing effort
within AI (Paiva, Santos, and Santos 2018).

Related work
Several models try to justify the evolution of fairness in the
context of Ultimatum Games. Resorting to EGT, Nowak et
al. suggested that if Proposers are able to get pieces of in-
formation about previous actions of the opponents, then it
is worth for the Responders to cultivate a fierce reputation
(Nowak, Page, and Sigmund 2000). This way, Proposers
would offer more to Responders that are used to reject low
offers and this naturally incentivizes Responders to nurture
an intransigent reputation by rejecting unfair offers. Other
models attribute the evolution of fairness to repeated in-
teractions over time (Van Segbroeck et al. 2012). A slight
different approach suggests that fair Proposers and Respon-
ders may emerge due to the topological arrangement of their
network of contacts: if individuals are arranged in lattices
(Page, Nowak, and Sigmund 2000) clusters of fairness may
emerge. Rewiring links with neighboring agents was also
noted to promote fairness in the UG, specially among agents
that resort to learning algorithms to adapt their strategies
over time (de Jong, Uyttendaele, and Tuyls 2008). While
these results apply to the two-person UG, their generatiza-
tion to a multiplayer setting is not straightforward.

The formalization of the MUG that we follow here was
proposed in (Santos et al. 2015). A more recent study re-
sorts to reinforcement learning (the Roth-Erev algorithm) to
show that higher proposals are likely to emerge when stricter
rules are considered (Santos et al. 2016). The overall dynam-
ics of strategy adoption that pertains different decision rules,
together with the impact of including agents with a prede-
termined behavior, have, however, remained unaddressed is-
sues, to date. An alternative multiplayer formulation of the
UG was proposed in (Takesue, Ozawa, and Morikawa 2017).

On the one hand, the topic of this work is related with
the broad agenda of multiagent resource allocation (Cheva-
leyre et al. 2006), particularly the endeavor of fairly allo-
cating divisible goods (often called cake-cutting). Multia-
gent resource allocation constitutes a common ground be-
tween economics and computer science: while economics
typically asks what constitutes a good division (Chevaleyre
et al. 2006), computer science tries do advance algorithms
to reach divisions that satisfy desirable properties – such as
proportionality, envy-freeness (Segal-Halevi, Hassidim, and
Aumann 2015), strategyproofness (Brânzei et al. 2016) or
truthfulness (Chen et al. 2010). Here, it is noteworthy how
the complexity of algorithms increases when moving from
the two-agent scenario – where the simple proportional and
envy-free ”cut-and-choose“ algorithm can be applied – to
the n-person scenario. By moving from the two-person UG
to the multiplayer UG we face several challenges alike, par-
ticularly related with the many possible ways of mapping in-
dividual interests into collective decisions. However, some
aspects differentiate our work from traditional research on
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cake-cutting algorithms: 1) here we assume that all agents
have the same valuation function and the goods to be divided
are homogeneous; 2) we focus on the strategic dimension
of the division process and the contrast between individual
gain and social welfare (equality); 3) lastly and importantly,
rather than building an algorithm to divide a good in a de-
sirable way, we try to predict the allocations that are more
likely to emerge given the decentralized interaction of adap-
tive self-regarding agents.

Finally, we shall highlight recent works that use similar
methodologies as the one employed here, namely EGT to
study behavioral dynamics. The Han et al. proposed an an-
alytical model – with a similar basis as the one we provide
below – to show that if the costs of committing to cooper-
ation are smaller than the costs of cooperating itself, then
cooperation is able to evolve (Han, Pereira, and Lenaerts
2017). The same authors used an EGT model to show how
centralized commitments can be achieved in the context of
Public Goods Games, when they are managed by a central-
ized entity (Han et al. 2017). Recently, EGT was employed
to evaluate the emergence of cooperation through norms and
reputations (Santos, Pacheco, and Santos 2018) and the sta-
bility of normative systems (Morales et al. 2018).

Model and Methods
Multiplayer Ultimatum Game
Let us start by describing the Multiplayer Ultimatum Game
(MUG), the interaction paradigm used throughout this pa-
per. We assume that an offer p is made by a Proposer to a
group of N − 1 Responders. Each of the Responders states
acceptance or rejection. Overall acceptance by the group de-
pends on having a minimum number M of individual ac-
ceptances. In this case, the Proposer keeps what she did not
offer (1−p) and the offer is evenly divided by all the Respon-
ders (p/(N − 1)); otherwise, if the number of acceptances
remains below M , the proposal is rejected by the group and
no one earns anything.

The payoff function of a Proposer i, with strategy pi, fac-
ing a group of Responders with strategies q−i = {qj : j =
1, ..., N−1∧j 6= i} reads as ΠP (pi, q−i) = (1−pi)api,q−i

,
where api,q−i

summarizes the group acceptance of the pro-
posal made by agent i, pi, standing as

api,q−i
=

{
1, if

∑
qj∈q−i

Θ(pi − qj) ≥M.

0, otherwise.
(1)

Θ(x) is the Heaviside unit step function, having value 1
whenever x ≥ 0 and 0 otherwise. This way, Θ(pi − qj) = 1
if agent j accepts agent i proposal.
Similarly, the payoff function describing the gains of a Re-
sponder belonging to a group with a strategy profile q−j =
{qk : k = 1, ..., N − 1 ∧ k 6= j} listening to a Proposer j
with strategy pj , is given by ΠR(pj , q−j) =

pj
N−1apj ,q−j .

The interesting values of M range between 1 and N − 1.
If M < 1 all proposals would be accepted (resulting in the
so-called Dictator game) and having M > N − 1 would
mean unconditional rejection. We shall add that the sub-
game perfect equilibrium of this game is, as in the tradition

two-person UG, composed by the lowest possible values of
p and q (Santos et al. 2016).

Behavioral experiments
In order to test the most likely values of p and q used by
people, we recruited individuals using Amazon Mechanical
Turk (AMT) (Mason and Suri 2012) – for examples of AMT
usage in the community, see (Azaria, Aumann, and Kraus
2012; Rosenfeld and Kraus 2015). For each combination of
M = {1, N − 1} with N = {5, 10} we collected 100 pairs
of strategies (p, q). We followed the strategy method (de
Melo, Marsella, and Gratch 2018), informing people about
the game rules, group size and group decision rule, and ask-
ing participants to submit their proposal as a Proposer (p)
and the minimum acceptable offer as a Responder (q). We
provide an eliminatory test, used to guarantee that individ-
uals actually understood the rules of the MUG. Only after
passing this test people were able to introduce the real strate-
gies to play the MUG. The average values of the strategies
presented in the tests were similar in the 4 treatments. Each
participant was paid a base amount of 0.4 USD and a bonus
value between 0 and 0.6 USD was endowed depending on
the performance when playing the MUG. After all strategies
were collected for a given treatment, random groups were
assembled and the strategies introduced by participants were
used to calculate the resulting bonus. Each participant was
paid accordingly and strategies were recorded.

Analytical model
In the analytical Evolutionary Game Theoretical (EGT)
model, we consider a simplified version of the Multiplayer
Ultimatum Game (Mini-MUG), inspired by a similar simpli-
fication of the UG proposed in (Nowak, Page, and Sigmund
2000). We constrain the values of proposal (p) and accep-
tance threshold (q) to two values, named high (h) and low
(l, 0 < l < h < 1). This way, defining a strategy as a duple
(p, q) of proposal p and acceptance threshold q, individuals
can select one out of four possible options: Pro-social (h, h),
Asocial (l, l), Generous (h, l) and Paradoxical (l, h). Follow-
ing previous works (Nowak, Page, and Sigmund 2000), we
focus on the evolutionary dynamics between three of those
strategies: Pro-social (P ), Asocial (A) and Generous (G).

Once a group with size N is assembled, one individual is
randomly selected to be the Proposer. Each individual has
a probability 1/N of being the Proposer and (N − 1)/N to
play as a Responder. This said, the average payoff of an indi-
vidual playing strategy P in a group where i′ other individu-
als adopt strategyP , j′ individuals adoptA andN−i′−j−1′

individuals adopt G, is

ΠP =
1− h
N

+
j′

N

A(i′ + 1)l

N − 1
+
N − j′ − 1

N

h

N − 1
, (2)

where, as before, A(i′) = Θ(N − 1− i′ −M) is the Heav-
iside unit step function: Θ(x) = 0 if x < 0 and Θ(x) = 1 if
x ≥ 0. This means that A(i′) yields 1 if a proposal l is ac-
cepted (i.e., the number of acceptances is at minimum M ).
The right-hand side of ΠP is constituted by three terms: 1)
the amount a Pro-social individual earns as a Proposer: 1−h,
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a quantity that is always accepted; 2) what the individual
earns as the Responder of a low offer that may (or may not)
be accepted and 3) what that individual earns as a Responder
to a high offer. Similarly, when facing the same group com-
posed by i′ Ps and j′ As, the average payoff of an individual
using A is

ΠA = (
1− l
N

+
j′

N

l

N − 1
)A(i′)+

N − j′ − 1

N

h

N − 1
, (3)

and the average payoff of an individual G stands as

ΠG =
1− h
N

+
j′

N

A(i′)l

N − 1
+
N − j′ − 1

N

h

N − 1
. (4)

Evolutionary Dynamics: Within a finite population of
size Z, groups of size N are randomly sampled and indi-
viduals will accumulate payoff according with the payoff
functions defined above. In a population composed by i in-
dividuals with strategy P , j individuals with strategy A and
Z−i−j individuals with strategyG, the probability of sam-
pling a group with i′, j′ and N − i′ − j′ individuals using,
respectively, strategies P , A and G, is given by the mul-
tivariate hypergeometric distribution S(i, j, i′, j′, N, Z) =(
i
i′

)(
j
j′

)(
Z−i−j
N−i′−j′

)
/
(
Z
N

)
. This said, the fitness (or average

payoff) of an individual using strategy P in a population
state (i, j) is given by

fP =

N−1∑
i′=0

N−1−i′∑
j′=0

ΠP (i′, j′)S(i− 1, j, i′, j′, N − 1, Z − 1). (5)

The fitness of individuals using strategy A and G are
similarly constructed and are not explicitly written for the
sake of space. These fitness functions allow defining a
stochastic process over all the possible population states, de-
fined by each possible combination of strategies, (i, j). For
that, we assume that individuals will change their strategy
through social learning, imitating the strategies of the best
performing (i.e., with higher fitness) individuals (Nowak,
Page, and Sigmund 2000; Han, Pereira, and Lenaerts 2017;
Han et al. 2017). The transition probability from a state (i, j)
to a state (i+ 1, j) is calculated as the probability that an A
or G individual imitates a P individual. As an example, the
probability that A imitates P is given by the probability of
selecting an A ( jZ ), times the probability of selecting a P
( i
Z−1 ), times the probability that A imitates P (pA→P ). All

together, the probability of having one more P is,

T+
P =

(1− µ)i

Z − 1
(
j

Z
pA→P +

Z − j − i
Z

pG→P ) +
µ(Z − i)

2Z
.

(6)
pX→Y , the probability that an individual with strategy X
imitates one with strategy Y , is calculated resorting to the
sigmoid function pX→Y = (1 + eβ(fX−fY ))−1, which al-
lows defining this imitation step as a probabilistic event
event, prone to errors (Traulsen, Nowak, and Pacheco 2006).
The value β controls the selection strength, i.e., the extent to
which the evolutionary process depends on the fitness dif-
ference between individuals: high β implies that small devi-
ations in fitness differences strongly impact the probability
of imitation; low β means that imitation depends weakly on
fitness differences, which in social systems may be due to

imitation errors or the incorrect assessment of peers’ per-
formance. We set β = 1 throughout this work, yet simi-
lar results were verified for β = {0.5, 2}. Also, an explo-
ration term is introduced: we consider that imitation occurs
with probability 1 − µ and, with probability µ, an individ-
ual spontaneously adopts other strategy, without resorting to
any fitness-driven heuristic: with probability µj

Z
1
2 an individ-

ual with strategy A mutates to strategy P ; with probability
µ(Z−i−j)

Z
1
2 an individual with strategyGmutates to strategy

P ; when summed, we obtain the term µ(Z−i)
2Z in Eq. (6). The

transition probability from (i, j) to (i− 1, j) is given by

T−P =
(1− µ)i

Z
(

j

Z − 1
pP→A +

Z − j − i
Z − 1

pP→G) +
µi

Z
.

(7)
Following an analogous reasoning for the update of strategy
A, we can define the transition probability from a state (i, j)
to a state (i, j + 1) as

T+
A =

(1− µ)j

Z − 1
(
i

Z
pP→A+

Z − j − i
Z

pG→A)+
µ(Z − j)

2Z
,

(8)
and the transition probability from a state (i, j) to a state
(i, j − 1) as

T−A =
(1− µ)j

Z
(

i

Z − 1
pA→P +

Z − j − i
Z − 1

pA→G) +
µj

Z
.

(9)

Gradient of Selection and Stationary Distribution: The
probabilities defined above allow us to define a Markov
Chain whose transition matrix T is defined as

T(i,j)→(i+1,j) = T+
P (i, j)

T(i,j)→(i−1,j) = T−P (i, j)

T(i,j)→(i,j+1) = T+
A (i, j)

T(i,j)→(i,j−1) = T−A (i, j)

T(i,j)→(i,j) = 1− T+
P (i, j)− T−P − T

+
A − T

−
A

TX→Y = 0, otherwise.

(10)

We can now determine the average fraction of time that the
population spends in each state, after a long period of time
elapses. For that, we study the limiting distribution of the
Markov process whose transition probabilities are given by
T . If matrix T defines a finite-state discrete-time Markov
Chain with a single recurrent class (which is the case when
µ > 0), then we can calculate the average fraction of time
spent on each state (after a long period of time and indepen-
dently of the starting state) by solving the equation

π = πT. (11)

π is the stationary distribution of this process and we can
calculate it by noting that π is the eigenvector of T associ-
ated with its highest (= 1) eigenvalue. We use π to calculate
the average usage of each strategy in Fig. 2 and 4. After ar-
ranging all the possible states (i, j) in a 2-dimensional sim-
plex (see Fig. 3 and 5) we can visually grasp the stationary
distribution by coloring each state with the corresponding
value in π (normalized). We assume that the darker the state
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Figure 1: Effect of M on the average proposal and accep-
tance threshold. Error bars represent the standard error of the
mean. A Mann-Whitney U test was conducted to compare
the average offer (p) and acceptance threshold (q) in M = 1
and M = N − 1 conditions, when the group size is N = 5
or N = 10. a) Considering N = 5, there was a significant
difference in the average offer (p) for M = 1 (Mean=0.279,
SD=0.117) and M = 4 (Mean=0.328, SD=0.123); U=3846,
n1=n2=100, p < 0.001. c) Considering N = 10, there was
a significant difference in the average offer (p) for M =
1 (Mean=0.265, SD=0.122) and M = 9 (Mean=0.354,
SD=0.121) conditions; U=2724.5, n1=n2=100, p < 0.001.
These results suggest that people care about group accep-
tance rule when making an offer: increasing M induces
higher – and fairer – proposals. Regarding the average ac-
ceptance threshold (q), for N = 5 b) there was a significant
difference forM = 1 (Mean=0.179, SD=0.123) andM = 4
(Mean=0.218, SD=0.127); U=3913.5, n1=n2=100, p<0.01.
For N=10 d) there was not a significant difference in q
forM=1 (Mean=0.202, SD=0.107) andM=9 (Mean=0.234,
SD=0.137) conditions; U=4373.5, n1=n2=100, p=0.124.
These results suggest that M can also play a role (yet less
significantly) in the acceptance threshold of individuals.

is the more time is spent there. Also, we can visualize the
most likely evolutionary path, starting in any state (i, j), as
a vector field defined by the so-called gradient of selection,

~g(i, j) = [T+
P (i, j)− T−P (i, j), T+

A (i, j)− T−A (i, j)]. (12)

Hardcoded agents: We extend the base model, defined
before, to account for the existence of a fixed number k
of Pro-social hardcoded agents that maintain their behav-
ior over time, never changing their strategy through social
learning or exploration. This implies changing the transition
probabilities T−P and T+

A (named T−kP and T+
kA) which now

become,

T−kP =
(i− k)Θ(i− k)

Z
((1− µ)(

j

Z − 1
pA→P

+
Z − j − i
Z − 1

pG→P ) + µ),

(13)
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Figure 2: Results from the evolutionary game theoretical
model: average values of proposal and acceptance threshold
increase with M . Whereas almost all the individuals adopt
the Asocial strategy (black squares) for low values ofM , we
note a significant increase in the usage of Pro-social (blue
circles) and Generous (red diamonds) strategy for M = 8
and M = 9. As in the experiments (Fig. 1) stricter group
decision rules induce fairer agents. The vertical dashed lines
represent the scenarios detailed in Fig. 3. Parameters used:
h = 0.6, l = 0.1, Z = 100, µ = 0.02, N = 10.

T+
kA =

(i− k)Θ(i− k)

Z
(
j(1− µ)

Z − 1
pP→A +

µ

2
)

+
Z − j − i
Z − 1

(
j(1− µ)

Z − 1
pG→A +

µ

2
),

(14)

As we will see, introducing Pro-social hardcoded agents al-
ters the evolutionary dynamics of fairness in the population,
implying long-term social benefit in terms of equality.

Results
Here we present the results obtained from our behavioral
experiments employing humans (Fig. 1), from the proposed
evolutionary game theoretical model (Fig. 2 and 3) and the
theoretical model adapted to consider the existence of hard-
coded Pro-social agents (Fig. 4 and 5). We collect a total
of 400 strategies, submitted by 400 individuals using Ama-
zon Mechanical Turk (AMT), in 4 different treatments: i)
N = 5,M = 1; ii)N = 5,M = 4; iii)N = 10,M = 1; iv)
N = 10, M = 9. In Fig. 1 we present the results for the av-
erage proposal (p, left) and acceptance threshold (q, right),
considering N = 5 (top) and N = 10 (bottom), M = 1
(blue) and M = N − 1 (red). We shall first note that the
average proposal, p, significantly increases when M goes
from 1 to N − 1. For M = 1, a single accepting Responder
is enough to confer overall group acceptance to a proposal.
In this case, we need consensus of rejecting Responders in
order for a proposal to be rejected. Contrarily, M = N − 1
stands as a stricter consensus threshold, meaning that all the
Responders need to accept a proposal for it to be accepted.
The average value of proposal increases regardless of the
group size (N = 5 or N = 10). Notwithstanding, the ef-
fect is more pronounced for N = 10 (average p goes from
0.265 when M = 1 to 0.354 when M = 4, Fig. 1c) than for
N = 5 (average p goes from 0.279 when M = 1 to 0.328
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Figure 3: Evolutionary dynamics of Pro-social (P ), Asocial (A) and Generous (G) strategies when increasing M . Streamlines
represent the gradient of selection, i.e., a picture of the most likely evolutionary paths starting from each possible state, cal-
culated from the vector field generated through Eq. (12); to compare the relative norm of each vector – which translates how
high/low transition probabilities are – we color the streamline such that warmer (colder) colors represent higher (lower) mag-
nitudes. The gray scale represents the stationary distribution depicting the average time that the system spends in each possible
state (see Model and Methods for details). The darker the color, the larger the fraction of time spent. On the right edge of each
simplex, we represent the one-dimensional gradient of selection when strategy G is absent from the population (assuming an
imaginary Y-axis perpendicular to that edge of the simplex). This allows us to better grasp the dynamics between strategy P
and A: whenever the curve assumes positive values, strategy P is favored. The fixed points are represented through full circle
(stable fixed point) and empty circles (unstable). We can observe that increasing M from M = 5 (panel a) to M = 8 (b) and
M = 9 (c) moves the unstable fixed point between P and A towards vertex A, thus increasing the basin of attraction to the
states where P and G prevail. This leads to the results portrayed in Fig. 2, in which increasing M leads to an increase in the
fraction of P and G (and a corresponding increase of p and q values). Same parameters as in Fig. 2.
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Figure 4: Stationary frequency of strategies P (blue
squares), A (black circles) and G (red triangles) after in-
troducing a number k of hardcoded Pro-social agents (i.e.,
agents keeping the same strategy and not adapting over
time). The thick black line represents the number of hard-
coded Pro-social agents introduced in the population. There
is a significant increase in the number of Pro-social agents,
in the long-run – much higher than the number of hard-
coded agents directly introduced. The vertical dashed lines
represent the scenarios detailed in Fig. 5. Parameters used:
h = 0.6, l = 0.1, Z = 100, µ = 0.02, N = 10, M = N/2.

when M = 4, Fig. 1a). Second, we observe that also the av-
erage individual Responder threshold, q, increases with M ,
yet less significantly than what occurs with p (we only find
statistical significance in the case N = 5, Fig. 1b). In any
case, the average values of q always remain below p, as tradi-

tionally occurs in the bilateral UG (Camerer 2003). Finally,
we stress that neither p nor q vary monotonously with N .
In fact, depending on M , the mean value of p can decrease
(M = 1) or increase (M = N − 1) with N . In a word, fair-
ness increases following the particular decision rule agreed
by the group (M ) and not with the group size (N ).

In Fig. 2 and 3 we show the results from the analytical
model detailed in the section Model and Methods. Differ-
ently from what would be expected theoretically by assum-
ing purely rational agents, in Fig. 2 we observe that increas-
ing M has a positive effect on the average values of p and
q, as agents have a higher probability of adopting the Pro-
social strategy (high offer and high acceptance threshold)
and the Generous strategy (high offer and low threshold).

These results can be understood by assessing the full evo-
lutionary portrait of strategies P , G and A, and how that
depends on M . In Fig. 3 we observe that increasing M en-
larges the basin of attraction towards states where strategies
P and G prevail, thus increasing the fraction of time that
agents spend, on average, adopting such strategies.

Finally, we discuss the extension of the model to contem-
plate the existence of a given number of individuals that
adopt a predetermined and fixed behavior, thus providing
the opportunity to study, theoretically, the long-term effect
of engineered behaviors on a population of adaptive agents.
From Fig. 4 we can conclude that introducing a small num-
ber of hardcoded Pro-social agents (labeled P ′) leverages
the overall adoption of strategy P to an extent much higher
than the fraction of hardcoded agents considered. For in-
stance, including 10% of hardcoded P agents is enough to
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obtain, in the long-run, more than 80% of Pro-social indi-
viduals (Fig. 4, third vertical dashed line).

This result can, again, be clarified by looking to the evolu-
tionary portrait of the P , A and G strategies (Fig. 5, for the
same scenario of Fig. 3a). By introducing hardcoded Pro-
social agents (P ′), we can observe that the closest fixed point
to vertex A is moved right (i.e., towards vertex P ) and the
unstable fixed point is moved left (i.e., towards vertex A),
eventually merging. This results in a bigger basin of attrac-
tion towards strategy P and the consequent increase in the
long-term adoption of this strategy – much higher than the
initial fraction of hardcoded P introduced. This occurs for
two main reasons: 1) a larger pool of Pro-social agents is
available to imitate and learn with; 2) the ubiquity of Pro-
social agents dictates that Asocial agents are less likely to
have their unfair proposals accepted.

Discussion and Conclusions
In this work we study a Multiplayer version of the Ultima-
tum Game (MUG). We perform behavioral experiments with
this game in Amazon Mechanical Turk (AMT). Departing
from the traditional two-person UG, in the MUG we con-
sider groups of N individuals in which 1 Proposer makes
an offer to the remaining N − 1 Responders. Two central
parameters are added: group size (N ) and group acceptance
threshold (M ). Similarly to the UG, the Responders should
always accept any offer (q = 0) and the Proposers should
offer the minimum possible (p = 0). This would naturally
occur independently of N and M . We find that, however,
increasing M leads to higher average proposals (p) and in-
dividual acceptance thresholds (q) (Fig. 1). Stricter decision
rules lead to fairer outcomes.

This result can be understood theoretically by means of
an evolutionary game theoretical (EGT) model. We show
that increasing M significantly augments the population
states that most likely lead to configurations where agents
adopt Pro-social strategies (offering high proposals). In
other words, there is an increase of the basin of attraction
towards the Pro-social strategies.

Equipped with a theoretical model that leads to predic-
tions that match the results of behavioral experiments, we
then show that introducing a small fraction of hardcoded
Pro-social agents in the population results in a long-term
increase in the number of Pro-social agents – substantially
higher than the number of hardcoded agents introduced. This
study suggests, therefore, that judiciously introducing agents
with particular behaviors (Pro-social) can have a long-term
social benefit by shaping the behaviors of humans and agents
(Paiva, Santos, and Santos 2018). We highlight that the
model we present and apply in the context of MUG can be
tuned to assess the role of hardcoded pro-social agents in the
context of other multiplayer games, such as N-Person Snow-
Drift (Chiong and Kirley 2012) or Trust Games (Chica et al.
2017) – to name a few.

To conclude, several extensions can be considered in fu-
ture works. It would be interesting to study the effect of tar-
geted proposals and offers that discriminate between differ-
ent Responders. Also, while here we consider that group de-
cision rules are exogenously imposed, it would be relevant
to test the adherence to a particular group decision rule as
part of an agent’s strategy. Finally, the reputational effect of
not conforming with the majority, by, e.g., being the only
one accepting/rejecting a proposal, could be taken into ac-
count, given the studies that highlight the important relation
between peer pressure, group incentives and group monitor-
ing. Testing this game in behavioral experiments, including
robots or virtual agents with predetermined behaviors and
studying how humans play along with those, is certainly an
additional relevant research avenue to complement the theo-
retical conclusions that we present here.
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