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Abstract. The goal of process mining is to discover process models from
event logs. However, for processes that are not well structured and have
a lot of diverse behavior, existing process mining techniques generate
highly complex models that are often difficult to understand; these are
called spaghetti models. One way to try to understand these models is
to divide the log into clusters in order to analyze reduced sets of cases.
However, the amount of noise and ad-hoc behavior present in real-world
logs still poses a problem, as this type of behavior interferes with the
clustering and complicates the models of the generated clusters, affecting
the discovery of patterns. In this paper we present an approach that
aims at overcoming these difficulties by extracting only the useful data
and presenting it in an understandable manner. The solution has been
implemented in ProM and is divided in two stages: preprocessing and
sequence clustering. We illustrate the approach in a case study where it
becomes possible to identify behavioral patterns even in the presence of
very diverse and confusing behavior.
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1 Introduction

The main application of process mining is the discovery of process models. For
processes with a lot of different cases and high diversity of behavior, the models
generated tend to be very confusing and difficult to understand. These models are
usually called spaghetti models. Clustering techniques have been investigated as a
means to deal with this complexity by dividing cases into clusters, leading to less
confusing models. However, results may still suffer from the presence of certain
unusual cases that include noise and ad-hoc behavior, which are common in real-
world environments. Usually this type of behavior is not relevant to understand
a process and it unnecessarily complicates the discovered models.

In this paper we present an approach that is able to deal with these prob-
lems by means of sequence clustering techniques. This is a kind of model-based
clustering that partitions the cases according to the order in which events oc-
curred. For the purpose of this work the model used to represent each cluster is
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a first-order Markov Chain. The fact that this clustering is probabilistic makes
it suitable to deal with logs containing many different types of behavior, pos-
sibly non-recurrent behavior as well. When sequence clustering is applied, the
log is divided into a number of clusters and the correspondent Markov Chains
are generated. Additionally, the approach also comprises a preprocessing stage,
where the goal is to clean the log of certain events that will only complicate
the clustering method and its results. If after both techniques are applied the
models are still confusing, sequence clustering can be re-applied hierarchically
within each cluster until understandable results are obtained. This approach has
been implemented in ProM [1], an extensible framework for process mining that
already includes many techniques to address challenges in this area.

The paper is organized as follows: Section 2 provides an overview of existing
work involving clustering and process mining. Section 3 presents the proposed
approach, including the preprocessing stage and the sequence clustering algo-
rithm. Section 4 demonstrates the approach in a real-world case study where the
goal was to understand the typical behavior of faults in an application server.
Section 5 concludes this paper.

2 Clustering in Process Mining

When generating process models, conventional control-flow mining techniques
tend to over-generalize. In the attempt to represent all the different behavior
present in the log these techniques create models that allow for more behavior
than the one actually observed. When a log has process instances with very
different behavior the generated models are even more complex and confusing.
One way to address the problem is by means of clustering techniques [2].

One such approach has already been implemented in ProM and is known
as the Disjunctive Workflow Schema (DWS) mining plug-in [3]. According to
this methodology, first the complete log is examined and a model is generated
using the HeuristicsMiner [4]. If the model generated is optimal and no over-
generalization is detected the approach stops, otherwise the log is divided into
clusters using the K-means clustering method. If the cluster models still allow
for too much behavior the clusters are repartitioned and so on until optimal
models are achieved.

Trace Clustering [5] is another technique implemented in ProM that aims
at partitioning the log by grouping similar sequences together. The motivation
for this technique is the existence of flexible environments, where the execution
of processes does not follow a rigid set of rules. This approach makes use of
distance-based clustering along with profiles, with the purpose of reducing the
diversity and the complexity of models by lowering the number of cases ana-
lyzed at once. Each profile is composed by a set of features that describe and
numerically classify a case from a particular perspective. Distance metrics (like
the Euclidean distance or the Hamming distance) are then used to calculate the
distance between two cases. Clustering methods such as K-means Clustering or
Self-Organizing Maps (SOM) can then be used to group closely related cases
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into the same cluster. Recent work in trace clustering includes the use of an edit
distance between sequences, where the cost of edit operations can be determined
by taking into account the context of an event within a sequence [6].

3 Sequence Clustering for ProM

Like the techniques described above, sequence clustering can take a set of se-
quences and group them into clusters, so that similar types of sequence are placed
in the same cluster. But in contrast with the above techniques, sequence cluster-
ing is performed directly on the input sequences, as opposed to being performed
on features extracted from those sequences. Sequence clustering has been exten-
sively used in the field of bioinformatics, for example to classify large protein
datasets into different families [7]. Process mining also deals with sequences, but
instead of aminoacids the sequences contain events that have occurred during
the execution of a given process. Sequence clustering techniques are therefore a
natural candidate to perform clustering on workflow logs.

3.1 Sequence clustering

The sequence clustering algorithm used here is based on first-order Markov
chains [8, 9]. Each cluster is represented by the corresponding Markov chain
and by all the sequences assigned to it. For the purpose of process mining it
becomes useful to augment the simple Markov chain model with two dummy
states: the input and the output state. This is necessary in order to represent
the probability of a given event being the first or the last event in a sequence,
which may become useful to distinguish between some types of sequences. The
use of input and output states is an extension to the work described in [10].

Figure 1 shows a simple example of such a chain depicted in ProM via the
sequence clustering plug-in developed in this work. In this figure, darker elements
(both states and transitions) are more recurrent than lighter ones. By analyzing
the color of elements and the probability associated with each transition it is
possible to decide which elements should be kept for analysis, and which elements
can be discarded. For example, one may choose to remove transitions that have
very low probabilities, so that only the most typical behavior can be analyzed.
Although this kind of model is not as expressive as a Petri net, it can be useful
to understand and apply post-processing to the generated cluster models.

The assignment of sequences to clusters is based on the probability of each
cluster producing the given sequence. In general, a given sequence will be as-
signed to the cluster that is able to produce it with higher probability. Let (◦)
and (•) denote the input and output states, respectively. To calculate the prob-
ability of a sequence x = {◦, x1, x2, · · · , xL, •} being produced by cluster ck the
following formula is used:

p (x | ck) = p (x1 | ◦; ck) ·
[

L∏

i=2

p (xi | xi−1; ck)

]
· p (• | xL; ck) (1)
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Fig. 1. Example of a cluster model displayed in the sequence clustering plug-in.

where p (xi | xi−1; ck) is the transition probability from xi−1 to xi in the Markov
chain associated with cluster ck. This formula handles the input and output
states in the same way as any other regular state that corresponds to an event.

The goal of sequence clustering is to estimate these parameters for all clusters
ck (with k = 1, 2, . . . , K) based on a set of input sequences. For that purpose, the
algorithm relies on an Expectation–Maximization procedure [11] to improve the
model parameters iteratively. For a given number of clusters K the algorithm
proceeds as follows:

1. Initialize randomly the state transition probabilities of the Markov chains
associated with each cluster.

2. For all input sequences, assign each sequence to the cluster that can produce
it with higher probability according to equation (1).

3. Compute the state transition probabilities of the Markov chain of each clus-
ter, considering the sequences that were assigned to that cluster in step 2.

4. Repeat steps 2 and 3 until the assignment of sequences to clusters does not
change, and hence the cluster models do not change either.

In other words, first we randomly distribute the sequences into the clusters
(steps 1 and 2), then in step 3 we re-estimate the cluster models (Markov chains
and their transition probabilities) according to the sequences assigned to each
cluster. After this first iteration we re-assign the sequences to clusters and again
re-estimate the cluster models (steps 2 and 3). These two steps are executed
repeatedly until the algorithm converges. The result is a set of Markov models
that describe the behavior of each cluster. In this work we have implemented
this algorithm as a sequence clustering plug-in for ProM.
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3.2 Applications of sequence clustering

Sequence clustering algorithms have been an active field of research in the area
of bioinformatics [7, 12] and although this has been the area where it finds most
applications, some work has been done with this type of algorithms in other
areas as well. In [8], the authors analyze the navigation patterns on a website,
where these patterns consisted of sequences of URL categories visited by users.
Sequence clustering was used to identify common user profiles by placing users
with similar navigation paths in the same cluster.

Sequence clustering has also been used in the field of process mining [10],
where the authors described two experiments of identifying typical behavior.
One experiment used an event log collected manually from the activities of a
software development team, and allowed the discovery of the typical interac-
tion patterns between members of that team. The other experiment was con-
ducted over traces collected from a datavase system in order to identify common
routines. In both experiments the authors made use of the sequence clustering
algorithm implemented in Microsoft SQL Server [13].

3.3 Preprocessing

Although the sequence clustering algorithm described above is robust to noise,
all sequences must ultimately be assigned to a cluster. If a sequence is very
uncommon and different from all the others it will affect the probabilistic model
of that cluster and in the end will make it harder to interpret the model of that
cluster. To avoid this problem, some preprocessing must be done to the input
sequences prior to applying sequence clustering. This preprocessing can be seen
as a way to clean the dataset of undesired events and also a way to eliminate
undesirable sequences. For example, undesired events can be those that occur
only very rarely, and undesired sequences can be single-step sequences that have
only one event.

Some of the steps that can be performed during preprocessing are described in
[9] and include, for example, dropping events and sequences with low support. In
this work we have extended these steps by allowing not only the least but also the
most recurring events and sequences to be discarded. This was motivated by the
fact that in some real-world applications the log is filled with some very frequent
but unrelated events that must be removed in order to allow the analysis to
focus on the relevant behavior. Spaghetti models are often cluttered with events
that occur very often but only contribute to obscure the process model one aims
to discover.

The preprocessing steps implemented within the sequence clustering plug-in
are optional and configurable. They focus on the following features:

1. Event type – The events recorded in a MXML log file [14] may represent
different points in the lifetime of workflow activities, such as the start or
completion of a given activity. For sequence clustering what is important is
the order of activity execution, so we retain only one type of event and that
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is usually the completion event for each activity. Therefore only events of
type “complete” are kept after this step.

2. Event support – Some events may be so infrequent that they are not rel-
evant for the purpose of discovering typical behavior. These events should
be removed in order to facilitate analysis. On the other hand, some events
may be so frequent that they too became irrelevant and even undesirable if
they hide the behavior one aims to discover. Therefore, this preprocessing
can remove events both with too low and too high support.

3. Consecutive repetitions – Sequence clustering is a means to analyze the tran-
sitions between states in a process. If an event is followed by an equal event
then it should be considered only once, since the state of the process has
not changed. Consecutive repetitions are therefore removed, for example:
the sequence A → C → C → D becomes A → C → D.

4. Sequence length – After the previous preprocessing steps, it may happen that
some sequences collapse to only a few events or even to a single event. This
preprocessing step provides the possibility to discard those sequences. It also
provides the possibility to discard exceedingly long sequences which can have
undesirable effects in the analysis results. Sequence length can therefore be
limited to a certain range.

5. Sequence support – Some sequences may be rather unique so that they hardly
contribute to the discovery of typical behavior. In principle the previous
preprocessing steps will prevent the existence of such sequences at this stage
but, as with events, sequences that occur very rarely can be removed from
the dataset. In some applications such as fault detection it may be useful to
actually discard the most common sequences and focus instead on the less
frequent ones, so sequence support can also be limited to a certain range.

The order presented is the order in which the preprocessing steps should be
applied, because if the steps are applied in a different order the results may
differ. For example, rare sequences should only be removed at the final stage,
because previous steps may transform them into common sequences. Imagining
we have the rare sequence A → B → C → D, but in step 2 state B is considered
to have low support and is removed, then it becomes A → C → D. This new
sequence might not be a rare sequence and therefore should not be removed.

3.4 Implementation within ProM

The above preprocessing steps and the sequence clustering algorithm have been
implemented and are available as a new plug-in for the process mining framework
ProM1. Figure 2 shows the inputs and outputs for this plug-in.

The preprocessing stage receives an input log in MXML format [14] and also
some options provided by the user, which specify the parameters to be used in
the preprocessing steps described above. The result is a filtered log. This log is
made available to the ProM framework, so that it may be analyzed with other
1 The ProM framework can be found at http://prom.win.tue.nl/tools/prom
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Fig. 2. Sequence Clustering plug-in in the ProM framework

plug-ins if desired. Instead of acting just as a first stage to sequence clustering,
the preprocessing stage can also be used together with other types of analysis
available in the framework. Figure 3 presents a screenshot of this stage, depicting
the options available for the user to pre-process the input log (top-right corner).

Fig. 3. Preprocessing stage for the Sequence Clustering plug-in

The sequence clustering stage receives the filtered log as input from the pre-
processing stage and also the desired number of clusters. In general the plug-in
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will generate a solution with the provided number of clusters except when some
clusters turn out to be empty. The plug-in provides special functionalities for
visualizing the results, both in terms of sequences that belong to each cluster
and in terms of the Markov chain for each cluster. Each cluster can be used
again as an event log in ProM, so it becomes possible to further subdivide it
into clusters, or for another process mining plug-in to analyze it. These features
allow the user to drill-down through the behavior of clusters.

On one hand, sequence clustering is a mining plug-in that extracts models
of behavior for the different behavioral patterns found in the event log. Figure
1 shows the type of results that the plug-in is able to present. When visualizing
the results, the user can adjust thresholds that correspond to the minimum and
maximum probability of both edges and nodes (right-hand side of fig.1). This
allows the user to adjust what is shown in the graphical model by removing
elements (both states and transitions) that are either too frequent or too rare.
This feature facilitates the understanding of spaghetti models without having to
re-run the algorithm again.

On the other hand, sequence clustering can also be regarded as an analysis
plug-in since it generates new events logs that can be analyzed by other plug-
ins available in the ProM framework. This is also useful for analyzing spaghetti
models, which are hard to understand at first, but can be made simpler by
dividing their complete behavior into a set of clusters that can be analyzed
separately by other algorithms.

4 Case Study: Application Server Logs

Public administration and public services often have large-scale IT systems that
serve thousands of users. These systems are usually backed by an infrastruc-
ture that involves replication, redundancy and load balancing. Due to the large
number of replicated software applications and due to the large number of si-
multaneously connected users, it becomes exceedingly difficult to determine the
cause for some malfunctions that produce instabilities that propagate across the
system and negatively affect the experience of several users at the same time.

In this section we present one such case study based on the experience at
a public institution. At the time the institution was struggling with complaints
about a situation in which the applications would freeze or crash unexpectedly
for several users at the same time. The applications are Java-based and were
developed according to a client/server architecture where the end users had a
fat client and the back-end was implemented as a set of Enterprise JavaBeans
hosted in an application server that has been replicated across a server farm.

Since the root cause for this malfunction was hard to determine, we turned
to the application server logs in order to study the exceptions that had been
recorded for each Java thread. This proved to be quite difficult, not only for
the overwhelming amount of exceptions being recorded all the time, but also
for the fact that it was difficult to establish any causal relationship between
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those exceptions. Figure 4 depicts the result of a first attempt to analyze the
application server logs using the heuristics miner [4].
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Fig. 4. Spaghetti model obtained from the application server logs using the heuristics
miner.

Using the sequence clustering plug-in and its preprocessing capabilities, as
well as the possibility of visually adjusting the cluster models according to certain
thresholds, it was possible to identify several patterns involving different types of
exceptions. These patterns were found after several attempts of tuning with the
preprocessing parameters, selecting the number of clusters (typically from 3 to
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Fig. 5. Some of the behavioral patterns discovered from the application server logs
using the sequence clustering plug-in.
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12) and applying thresholds to the cluster models in order to make them more
understandable. Figure 5 shows a selection of four clusters from the analysis
results. Each of these clusters represents about 10% of the sequences in the
original event log.

Cluster 1 has to do with a condition where a given element that was being
searched in the database was not found. Usually, the user input is validated
prior to querying the database, so it was assumed that the search would always
produce some result. However, when it happened that the element being searched
for was actually not found in the database, this triggered different kinds of system
exceptions. This model helped identify the root cause for those exceptions.

Clusters 2 and 4 depict the two sides of what was thought to be a single
relationship between web service exceptions and queries that return empty result
sets. In cluster 2 we have the situation in which the application invokes a web
service that fails to insert data and this leads to errors in application code that
cannot find the data afterwards. In cluster 4 the application is invoking a web
service that queries the database; in this case the web service fails because no
records were found in the first place. This model helped realize that there were
actually two different problems involving these exceptions.

Cluster 3 had to do with platform exceptions that occurred when the system
was overloaded during peaks of activity. In this case the system was unable to
find application objects due to the lack of resources. This problem was mitigated
by adjusting the parameters of some application server components.

These and other behavioral patterns found via the sequence clustering plug-
in contributed to focusing the effort on the exceptions that were the most likely
cause for the observed problems. Otherwise, it would have been very difficult
to identify the relevant events amidst an overwhelming amount of data in the
application server logs. Besides the sequence clustering plug-in, it should be
noted that other functionalities available within the ProM framework – such as
the log summary and basic log filtering – have been very useful during the first
stages of log preprocessing.

5 Conclusion

Understanding the run-time behavior of business processes is made difficult by
the fact that real-world processes often involve a significant amount of unstruc-
tured and ad-hoc behavior, which produces confusing, spaghetti-like models. To
address this problem we have developed and presented in this paper a solution
that employs preprocessing techniques and that is based on a sequence clus-
tering algorithm. This becomes a very helpful technique to discover behavioral
patterns and to visualize them, since its probabilistic nature is inherently able
to deal with noise and to separate different behaviors into a set of cluster mod-
els. The approach has been implemented as a plug-in for the ProM framework
and has been applied in a real-world case-study to detect faulty behavior in a
large-scale application server. Presently, we are evaluating the results of sequence
clustering in comparison with other clustering methods based on fitness metrics.
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