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Abstract The traditional approach for specifying adaptive behavior in em-
bedded applications requires developers to engage in error-prone programming
tasks. This results in long design cycles and in the inherent inability to ex-
plore and evaluate a wide variety of alternative adaptation behaviors, critical
for systems exposed to dynamic operational and situational environments. In
this paper, we introduce a domain-specific language (DSL) for specifying and
implementing run-time adaptable application behavior. We illustrate our ap-
proach using a real-life stereo navigation application as a case study, highlight-
ing the impact and benefits of dynamically adapting algorithm parameters.
The experiments reveal our approach effective, as such run-time adaptations
are easily specified in a higher-level by the DSL and thus at a lower program-
ming effort than when using a general-purpose language such as C.

Keywords Embedded systems · Domain-specific languages · Run-time
adaptations · Adaptable behavior · Stereo navigation

1 Introduction

Embedded applications operate in resource-constrained environments subject
to constantly changing operational situations. These characteristics are chal-
lenging for developing such applications, since the volatility often causes a
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decrease in performance and an increase in computational cost. Furthermore,
embedded applications embody requirements such as reliability, maintainabil-
ity, availability, security, run-time performance, and energy efficiency, which
convey further development challenges [27].

Nowadays, it is becoming highly desirable to design software applications
that are adaptable at run-time, thus increasing application operational and
situational awareness. Adaptations can take various forms, namely: (i) at the
algorithmic level, where one can make use of different processing algorithms or
changing algorithm parameters (e.g., [14], [36]); (ii) at a system level, by simply
changing the period at which some computations are performed, or by relying
on alternate resources that provide equivalent information (e.g., [41]). Adapt-
ability can therefore be used and even required to keep applications running,
despite the changes in operational situation (e.g., loss of sensor connection) or
the presence of specific requirements (e.g., execution deadline).

Developing and maintaining adaptive applications, however, is a very chal-
lenging and error-prone process, as implementing dynamic behavior in an ap-
plication often requires low-level cumbersome programming tasks, or complex
architectural application restructuring. Moreover, frequently, functional appli-
cation logic and adaptation behavior get mixed, which is potentially risky due
to the high degree of complexity introduced by the intertwining of the appli-
cation and adaptation behaviors [30]. Furthermore, mixing two logics is also
a troublesome development process and an overall bad practice. To address
this challenge, we introduce a software architecture that allows applications
to adapt at run-time, by having their adaptable behavior defined in an ex-
ternal, high-level and platform-independent domain-specific language (DSL).
The DSL allows the specification of adaptation strategies, defined in terms of
rules that produce the required application adaptability, thus avoiding these
aspects from becoming intertwined within the application logic. Our approach
has been in continuous development, improving the DSL specification, support
infrastructure, and its real-world applicability [36, 37].

To highlight the benefits of the proposed approach, we describe and eval-
uate its use in the context of a case study based on an industry-developed
application for stereo navigation (StereoNav) [32]. StereoNav consists of an
embedded sub-system responsible for vehicle localization in cases where the
vehicle’s main satellite navigation system has failed or is temporarily unavail-
able and the vehicle has to localize itself through other methods during a
period of time. The StereoNav application is complex, executes in an em-
bedded environment, and includes a processing algorithm composed of several
parameterizable operations, so it becomes an ideal case study for the use of our
DSL-based approach to specify the adaptation behavior. By adjusting the pa-
rameters that influence computational cost (e.g., execution time), we ensure
a dynamic, real-time compliance with requirements defined by the industry
developer (e.g., quality-of-service).

The remainder of this paper is structured as follows. Section 2 describes
the approach and its characteristics. Section 3 overviews the implementation
toolchain for the approach. Section 4 presents the case study and the experi-
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mental evaluation conducted. Section 5 provides an overview of related work.
Finally, Section 6 concludes the paper and suggests future work.

2 A DSL-based Approach for Adaptation Specification

General-purpose languages (GPLs), such as object-oriented languages like Java
or C++, are used to program nearly any application or system, addressing po-
tentially any problem that needs to be tackled. However, as more complicated
problems arise, their complexity spawns the need for more concrete, domain-
tailored programming solutions that solve the problem more efficiently. To
this end, generally, DSLs allow the concise description of a domain logic re-
ducing the semantic distance between the problem and the programmed so-
lution [7, 39]. Deursen et al. [12] defined a DSL formally as: “a programming
or executable specification language that offers, through appropriate notations
and abstractions, expressive power focused on, and usually restricted to, a par-
ticular problem domain”.

The use of DSLs is justified by numerous advantages, namely to enhance
productivity, reliability and maintainability, since they are more concise and
thus written more quickly and therefore easier to maintain; and also to allow
easier reasoning and validation since they provide the notation to express the
semantics of a domain. In addition, there are other relevant general benefits to
the use of DSLs [38]: (i) concrete expression of domain knowledge as DSLs are
tailored towards a narrow, specific domain and thus are designed to provide
the exact formalisms suitable for that domain; (ii) possible direct involve-
ment of domain experts, often non-programmers; (iii) modest implementation
cost as DSLs are typically implemented by a translator that transforms the
DSL code into other compatible code; (iv) reliability and correctness that is
easily verified. As disadvantages, the generation of a new language for every
domain can have potential high startup costs due to design, implementation
and documentation. Also, initial tool limitation, lesser trained programmers
and additional required mechanisms for integration slow language ramp-up.
There is also the difficulty of balancing between domain-specificity and GPL
programming constructs. However, on the long run, DSLs payoff.

Considering both advantages and disadvantages mentioned, the bottom
line is that DSLs offer substantial gains in expressiveness and ease of use com-
pared with GPLs in their domain of application, since they provide a notation
close to an application domain, and is based only on the concepts and features
of that domain [29]. As such, a DSL is a means of describing and generating
members of a program family within a given problem domain, without the
need for extensive knowledge about general programming, and thus raise the
level of abstraction beyond coding and consequently make development faster
and easier [35]. Moreover, DSLs allow independence from the implementa-
tion platform, thus the need for specific knowledge of each platform is greatly
avoided, as well as the intervention of an expert in the technology [35].
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2.1 DSL-based Approach

Our approach defines an adaptation logic that is external to the application,
and takes the form of an adaptation policy entity composed of strategies that
can target specific adaptation concerns (see Figure 1). Our implementation for
the adaptation policy entity is accomplished with a DSL, tailored specifically
for defining adaptation strategies in an independent, scalable, flexible and task-
specific way; namely for: (i) activating and deactivating specific sections of
code to enable/disable computational steps, (ii) changing function parameters
to reconfigure algorithms, (iii) modifying the frequency of function execution.

DSL Adaptation Policy

Software Application and System

connection and interface points

Strategy

Declarations Code

Operations

Rules

declares functions
and variables

used in/for

defines extensions
to the DSL
used in/for

adapt the
behavior in
locations
defined at

Strategy Strategy

Fig. 1 Overview of an adaptation policy structure for a softwares adaptable behavior.

The proposed DSL embodies the adaptation-related concerns as it defines
a set of high-level abstractions for looping and for periodic tasks, algorithm
parameter changes, testing of conditions, and rule declarations. Within the
adaptation domain, the proposed DSL is thus more succinct and its notation
more intuitive than using code written in a GPL, such as C. Also, a proper
specification of adaptation behavior provides a more powerful mechanism to
define different configurations and their triggering conditions, as opposed to
using external libraries or APIs. Being high-level and with domain abstractions
also allows a wide applicability to most general applications. Consequently,
the behavior that is specified through the DSL allows rapid prototyping of
adaptable processes, flexible behavior management, and a clear evaluation of
possible conflicting adaptations. In addition, we believe that the use our DSL-
based approach provides:

– An easy and non-intrusive way to express adaptability behavior due to the
domain-specific language constructs. Abstractions, such as the ones related
to periodicity and execution rates, concentrate in simple DSL constructs
complex behavior and avoid the cumbersome code needed in the final im-
plementation using the target programming language (e.g., C or Java).
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– An easy way for exploring different adaptability rules during the develop-
ment of the solution (Section 4 shows experiments when developing rules
incrementally). This is an important aspect as it may reduce the develop-
ment time considerably considering that in a traditional approach, modi-
fying rules usually requires changes to the application code.

– An easy way to verify adaptability behavior as the DSL may also be used
to insert code for monitoring and debugging (Section 4.7 shows an exam-
ple). The separation of concerns and the rule-based approach provided by
our DSL makes easier a verification process. For example, we show in Sec-
tion 3.2 how to use automata to verify possible rule conflicts during static
analysis. In fact due to the extraction of finite automata from the rules
expressed using the DSL, users may consider to insert code that follows
the automata states and compares those states to the rules applied during
runtime. This brings an additional verification process during execution.

– Additional support when mapping adaptation-related computations to the
target architecture. The separation of concerns provided by our approach
allows mapping tools to decide about the use for different target architec-
ture cores, responsible to execute the adaptive behavior (i.e., mapping it
to the same core of the application or to a different core). This is especially
important in the presence of complex, computational intensive, adaptive
behavior as using a specific core makes the execution of the adaptation-
related computations concurrent (Section 4.7 shows an example using an
architecture with two cores).

– A specification of adaptability requirements that can provide a more formal
notation when eliciting non-functional requirements. Also, analysis specific
to the DSL which can report errors and warnings that otherwise may not
be possible to identify.

– Code reusability and consequently portability across platforms. This is a
key advantage in the context of applications that need to be maintained
across different platforms and may require architecture-specific strategies.

Due to the independency characteristics of the DSL, integrating the adap-
tation code into the application can be accomplished through several different
mechanisms, such as libraries and APIs, middleware layers, compilers, or in-
terpreters. In spite of the multiple solutions for integrating DSL code into
the application code, one of the benefits of a DSL towards interfacing, is the
freedom to develop and use any supporting infrastructure that best fits the de-
velopers needs. This freedom prevails whether the interfacing and integration
is intended to be static or dynamic, less or more intrusive, at compile time or
run-time, and using whichever weaving techniques. Nevertheless, regardless of
the mechanism, for better logical partitioning and conceptual separation, the
original application code should not require major modifications in order to
work with our approach. In the end, adaptation specifications are abstracted
from the details that defined how the DSL code is integrated into the software
application and underlying system.
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2.2 DSL Specification

In our DSL, an adaptation policy is specified as strategies composed of the fol-
lowing components: declarations, operations, rules, and an additional auxiliary
code section. Declarations are reserved for static information that is required
for the specification of the adaptation process (e.g., variables to be used, al-
gorithm parameters, function imports). Operations specify mainly where the
adaptation rules are triggered (e.g., oeprational points for evaluation and ac-
tion). The rules section specifies the actions for adaptability; and in the code
section, external functions can be defined in supported GPLs. A commented
example of adaptation specified with the DSL is shown in Figure 2. It depicts
a possible strategy for StereoNav where the resolution of the captured images
is adjusted according to the vehicle speed.

1 // −−−− s t r a t e g y −−−−
2 s t r a t eg y stereoNav ImgResAdapt1{
3 // −−−− d e c l a r a t i o n s s e c t i o n −−−−
4 // impo r t i ng a r e f e r e n c e to the r e c u r r e n t s te r eoNav f u n c t i o n
5 import f unc t i o n s te r eoNav ( i n t r a n s a c I t e r a t i o n s =5000 , i n t

imgWidthRes=640 , i n t imgHeightRes=480) ;
6 // impo r t i ng a r e f e r e n c e to a f u n c t i o n to get v e h i c l e speed
7 import f unc t i o n [ i n t speed ] g e tVeh i c l eSpeed ( ) ;

8 // −−−− op e r a t i o n s s e c t i o n −−−−
9 ope r a t i o n s {

10 // r u l e to be ev a l ua t ed b e f o r e the e x e cu t i on
11 // o f the s te r eoNav f u n c t i o n
12 r1 eva l u a t i o n be fo re s t e r eoNav ;
13 }

14 // −−−− r u l e s e c t i o n −−−−
15 r u l e s {
16 // r u l e i nvoked at e v e r y s te r eoNav ex e cu t i on
17 r1 : eve ry ( s te r eoNav ) {
18 // depending on speed , change the image parameter v a l u e s
19 i f ( g e tVeh i c l eSpeed ( ) . speed <= 50) {
20 s t e r eoNav . imgWidthRes = 640 ;
21 s t e r eoNav . imgHeightRes = 480 ;
22 } e l s e {
23 s t e r eoNav . imgWidthRes = 320 ;
24 s t e r eoNav . imgHeightRes = 240 ;
25 }
26 }
27 }

28 // −−−− code s e c t i o n −−−−
29 // ( no a d d i t i o n a l code r e q u i r e d f o r t h i s example )
30 }
Fig. 2 DSL code for adapting image resolution according to the vehicle current speed.
Additional comments added to help with the comprehension of the example.
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In the DSL code presented, lines 3–7 refer to declarations. They specify
the import of two functions: stereoNav and getVehicleSpeed. The provided
default parameter values for stereoNav allow for a baseline failsafe execution
with no adaptation. Lines 8–13 define the operations, highlighting the evalu-
ation location for rule r1, which is triggered before the execution of the call
to stereoNav. Lines 14–27 enclose the rules section, defining rule r1. Rule r1
retrieves the vehicle speed through the provided function, and depending on
its value assigns different values for the image resolution parameters of the
stereoNav function. Line 17 specifies that rule r1 must be executed for each
call of the stereoNav function. The auxiliary code section could be provided
in the end of the specification.

2.2.1 Policies and Strategies

A policy is the adaptation “program” specifying the modifications to be ap-
plied within the application. Any software application is assigned one adap-
tation policy, while, an adaptation policy can potentially be used by one or
more software applications, allowing reusability.

A policy defines strategies of adaptation, further composed of multiple
properties and other components that characterize how the strategy is en-
forced. As an aggregator entity, the policy allows the administration and con-
trol over strategies, such as their activation and deactivation, or extension
composition schemes. A policy is required to be composed of at least one
strategy, however, the possibility to include multiple strategies allows for bet-
ter adaptive behavior organization. With the definition of multiple strategies,
only the first strategy defined is activated, being all others inactive.

The execution of a strategy can often be perceived as a parallel component
to the main application logic, in the sense that its execution is concurrent
to the application’s main workflow. Furthermore, strategy entities can be de-
fined to receive configuration parameters and output values, further promoting
reusability to different operational situations with particular characteristics.

2.2.2 Declarations

Declarations are the initial structural section in the arrangement of a DSL
strategy. This section’s purpose is to describe the necessary fields to be used
within the strategy, that provide state, such as variables; and also to indi-
cate references to functions from the target software application that are used
within an adaptation specification defined with the DSL.

Variables are declared by specifying a type, an identifier, an initial value,
and a DSL-specific supplementary property for value ranges to define (when-
ever known) the set or range of valid values that a numerical variable may
assume. Ranges allow a mechanism for variable saturation, e.g., increments
are only considered until the defined maximum value. Regarding functions, it
is possible to declare references to application defined functions, and therefore
their identifier specified in the strategy must be equal to the original function
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name and must exist within the application source code. Within a DSL-defined
policy, for functions accepting or returning multiple values (i.e., inputs and
outputs), the different values are accessed with the DSL using a dot syntax.
The DSL also provides additional macro instructions related to functions that
encompass sets of instructions and actions that allow for useful functionalities
when specifying the adaptations to be performed (e.g., elapsed_time, rate).

2.2.3 Operations

The operations section is responsible for specifying the adaptation’s opera-
tional connections to the system’s computational process. The structure of
this section is composed mainly from blocks that specify the special locations
for adaptation evaluation and action.

The operations section is built with a main block, and a set of possible sub-
block structures that are used to define to frame specific steps or components
of the system’s workflow. Such sub-block structures are used to concentrate
operation steps that may be activated or deactivated. An operation point de-
fines a reference to the evaluation and action locations where the referenced
rule will be triggered and therefore executed in the source code. Operation
points are associated with function calls or with specific locations in the appli-
cation’s source code. Multiple points can be defined for the same rule, allowing
the evaluation/action at different points in time. Operation points only define
the target location for rule evaluations, and other rule properties, such as rule
execution periodicity, are defined in the rule itself. Without the specification
of the specific points where rules should be evaluated, it would be a task of the
weaver to analyze the application code and to select the observation/monitor-
ing and the action points. In the current weaver, this analysis is not performed
and it is a task of the user to explicitly specify those points using the DSL.

2.2.4 Rules

The rules section specifies multiple adaptation rules, responsible for perform-
ing the necessary adjustments that adapt the behavior of the target applica-
tion, at the points specified within the operations section. Each rule is com-
posed by a rule identifier, a triggering periodicity and condition, and a set of
actions. Rule management is concentrated in this section and thus adding, re-
moving or modifying existing rules is accomplished without an added overhead
and without changes scattered across several locations. For prioritization and
dependency, an evaluation order for rules can be provided, as well as predi-
cates to constrain the execution of their actions (e.g., execution of one action
requires the prior execution of another).

Rules are triggered by events, fired when particular conditions occur or pe-
riodically. Common triggering conditions are related to memory, CPU, energy,
and execution times (e.g., when memory is low, when energy consumption is
high). These triggering conditions are provided by imported functions or by
the infrastructural support of the DSL (e.g., code generated when integrating
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adaptations). The execution of a rule may change the application to a new
operational state, and there should always exist a transition or a sequence of
transitions that allows the application to return to its initial state. In prac-
tice, rule executions are modelled as finite state machines. Furthermore, the
execution of a rule is atomic, in the sense that when the execution is started it
must complete entirely, to avoid partially applied changes, which could result
in incomplete and erroneous situations of the application. Such problematic
actions could compromise the integrity of the entire application and also the
benefits expected from the adaptations.

2.2.5 Code

The code section is an auxiliary section to the main DSL structure. Its purpose
is to allow developers to extend the DSL specification in order to add func-
tionality using the target programming language. This section also helps the
integration with applications. In the code section, functions and other external
components can be defined in any supported programming language (e.g., C,
Java). The code section must be parameterized with the name of the program-
ming language in which the code is written.

Regarding integration, the target language code in this section is added to
the application source code. Depending on the language, the weaver integrates
the code differently. Mainly, the code within this section is inserted to the
application code near the adaptations and must be without errors and with
all necessary components. For example, in Java, a method defined in the code
section is placed within the class where the adaptations that use it are weaved.

3 Implementation: Programming Toolchain

Regarding implementation, the toolchain to support our approach incorporates
the adaptations statically into the target source code of the program to be
adapted. This toolchain currently supports C and Java programs and involves
the validation of the DSL code, compilation of DSL code, injection of the DSL
code into the program code, and the compilation of the adaptive program
source code. An overview of the toolchain is presented in Figure 3.

For the integration and interfacing between the adaptation and the appli-
cation code, we are currently applying a joint-compilation process. As such,
aiming to support different target programming languages, the compilation
process must translate the DSL code into the target programming language,
through a compiler tool that knows how the domain abstractions defined with
the DSL are represented in another language. Initially, a compilation process
translates the DSL code into a target GPL of the application, secondly, the
compiled adaptation code is weaved in the application’s source code. To imple-
ment this process, several solutions surface depending on the target language
and platform. Our solution aims at weaving the adaptation code within the ap-
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plication source code at compile-time, and thus requires access to the original
source code of the application.

  Compilation and Weaving

DSL code

DSL 
verification 

and 
validation

Application
code

Application
code

Adaptation 
Policies

Adaptation 
Policies

Adaptation 
stubs

Application
source 
code

DSL compilation
to target 

language and 
weaving

Mapping 
configurations

(option inline)

Adaptable
application

source code

(option stubs)

Fig. 3 Overview of the DSL’s implementation and programming toolchain.

3.1 Application Source Code Analysis and Adaptation Specification

Each application is different in the sense that its functionality and require-
ments may constrain or enable certain adaptations. Furthermore, if the appli-
cation has not been developed having adaptable behavior in mind, the coding
style may also determine the range of possible adaptations. Having a set of
adaptations in mind to be applied, an analysis of the source code must be
conducted to evaluate if these adaptations can, in fact, be applied.

If the application source code was not developed with the intention for the
implementation of adaptations, some modifications may need to be applied
before adaptations are incorporated, namely to explicitly identify functions,
their inputs and outputs, variables, etc. Some code restructuring may also
be accomplished, as non-structured code complicates the implementation of
adaptations. Nevertheless, the need for these modifications is fairly reduced
or even completely mitigated if the application is developed based on best
practices, i.e., well-formed and well-developed code (e.g., [5], [10]). The bottom
line is that nameable components, clearly identified variables, parameters, and
clear conceptual separation between application functionalities allow a more
direct integration of adaptations within the application code.

With knowledge of the application’s source code and with its restructuring
to accommodate the incorporation of adaptations, it is possible to specify the
adaptation policies using the DSL. After specification, the adaptation code is
verified to provide a validation of the adaptable behavior.

3.2 Verification and Validation Process

Verification and validation of an adaptation policy defined using the DSL is a
required process for checking specification consistency, and for determining po-
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tential conflicts (e.g., incompatibilities, integrity errors). The verification and
validation process is conducted at several levels, each one evaluating different
aspects (e.g., rule inter-operability verification), and different targets (e.g., all
or only specific sections). Due to its importance, we focus on the specific veri-
fication step for analyzing possible conflicts within the rules section, which is a
core component in the specification of the adaptable behavior. The existence
of multiple rules with several triggering conditions and adaptation actions,
may cause potential conflicting situations to arise, namely: (i) rules that share
at least a subset of triggering conditions; (ii) rules that manipulate a subset of
the same parameters; (iii) overriding or overlapping rules; (iv) rules incompat-
ible due to requirements or objectives. In order to verify the set of adaptation
rules defined, we propose a verification process based on automata theory [21].

Adaptation rules are interpreted as automata with a set of adaptation
states, a set of triggering conditions, and a transition function that maps
the transformation from one adaptation state to another, according to the
provided input conditions. Also, automata can hold supplementary data, such
as guards, conditions and time restrictions. This process thus allows to model
the rules section as different automata, and through automata operations,
potential conflicting situations are identified, both statically and dynamically,
and through automatic and manual mechanisms. Modeling and translating
an adaptation rule to an automaton is based on the rule’s code control flow
graph [2], to identify operational states and the paths that might be traversed
with the rule’s actions during execution. For example, as rules are often defined
as if-then-else statements, each branch may hold information defining a new
adaptation state, its triggering condition and the set of actions (see Figure 4).

Adaptation StateAdaptation State

Start

End

Branch

Adaptation
Actions

Adaptation
Actions (…)

Statement

Statement

Statement

(…)

Statement

Adaptation
Trigger

cpuLoad() >= 30%cpuLoad() < 30%
Adaptation

Trigger

Fig. 4 Rule control-flow translation between domain concepts and automaton components.
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3.3 Adaptation Compilation and Weaving

With a valid DSL adaptation specification, the DSL code is translated into the
target source code language (e.g., DSL → Java, DSL → C). This translation
is accomplished through specific DSL code generators that allow the posterior
incorporation of the adaptations into the application’s original source code. A
static weaving is used to support the integration of adaptation code with the
application’s code at compile time. Our current prototype implementation for
compilation and weaving is defined by the multiples components, which we
describe in the following sections.

For further costumization, there are supplementary compilation and weav-
ing options that extend the configurability of the developed toolchain to spe-
cific languages, platforms, devices, etc. At the DSL compilation and code
generation stage, the additional compilation-specific mapping and translation
characteristics describe details on how the DSL specification is translated and
implemented. These configurations are optional and simply allow more cus-
tomizations for the adaptation policies specified. The supplementary config-
urations could be defined within the DSL or as a separate parallel auxiliary
configurability mechanism.

3.3.1 Compilation

The adaptations defined within DSL code are translated to code abstractions of
the target programming language. The compiler currently supports C and Java
as target languages. This process stage allows a direct translation of concepts,
being rules the DSL section where most of the compilation is concentrated.
The most relevant compilation translations are:

– Declared variables are translated to global scope variables with the same
type and initialization. Saturation enforcing is performed by capping the
variable value using if-then-else statements.

– Dot syntax access to variables in the DSL are translated to the appropriate
access format depending on the type of variable and scope.

– DSL specific macros are compiled to functions and the necessary support
code (e.g., the elapsed_time macro requires the measurement of a func-
tion’s start and end time).

– Rule temporal triggers (i.e., periodicity) are implemented as timers. In
Java, the implementation uses Timer and TimerTask classes. In C the
implementation uses a developed library which steers the implementation
with specific adjustments according to the platform, i.e., hardware timers
with our Xilinx embedded boards, and in Linux using the signal library.

– Rule prioritization, evaluation order, and predicates are implemented using
control variables and branching statements.
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3.3.2 Weaving

The parts of the DSL code compiled to the target language need to be in-
tegrated with the application. Our current weaving process is based on the
aspect-oriented approach, as the generated code from the DSL is woven within
the application source code at specific code locations. For code insertion, the
current implementation requires the processing of the application source code
to obtain a data structure that is used to aid with DSL code insertion. The
most relevant weaving operations are as follows:

– An analysis of the source code for verification of the existance of the oper-
ation point locations defined earlier in the DSL code.

– Insertion of the compiled DSL code for rule execution is accomplished at
the operation locations defined.

– DSL defined function default values are translated and within the applica-
tion code as initialization values for the functions. Besides initializations,
rules may further influence the assignments of these values.

– Additional code provided in GPL is inserted as-is near the code location
where it is used. In Java, a method defined in the code section is placed
within the class where the adaptations that use it are weaved; whereas in
C, a function is placed within the same file.

Moreover, additional mapping-specific configurations can describe imple-
mentation details on how the DSL code should be integrated, namely on the
type of adaptation code produced or platform particularities. Such configu-
rations defined steer the type of mapping options that are used when both
translating source-to-source the DSL code to the application code, and the
mechanisms used in weaving. Figure 3 depicts two different targets of the pro-
cess of compilation: an application with embedded inline adaptations, and an
application with stub functions to connect to the adaptation code. Although
adding stub functions for adaptations may cause additional computational
complexity (i.e., function calling), this solution is more modular and maintains
the separation between the main application logic and the adaption logic. Fig-
ure 5 shows an example in C of the generated code relative to adaptations
implemented within stub functions or inlined within the application code.

With explicit mapping configurations and using the stub function gener-
ation, more beneficial solutions can be defined. For example, in a multicore
scenario and considering direct communication between cores, a specific map-
ping configuration could be defined so that the adaptation logic sits within an
independent processing core. Adaptation stub functions within the application
code would be replaced with the appropriate calls to the other core, since the
adaptation code itself would be defined inside another function to be executed
in the other core (see Figure 6).
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1 // ( . . . )
2 i f ( v e h i c l e S p e e d < 25) {
3 // ommitted f o r s i m p l i c i t y o f the example
4 } e l s e {
5 r a n s a c I t e r a t i o n s = 5000;
6 }
7 // ( . . . )

1 // ( . . . )
2 r r a n s a c s p e e d ( v e h i c l e S p e e d ) ;
3 // ( . . . )

Fig. 5 Generated code excerpts for the same adaptation defined inlined (top) or within
stub functions (bottom) in the application code (in C).

1 // ( . . . )
2 v o i d r r a n s a c s p e e d pu t ( i n t v e h i c l e S p e e d ) {
3 p u t f s l ( 3 , 0 ) ; // code f o r a dap ta t i on r e q u e s t
4 p u t f s l ( v eh i c l eSpeed , 0 ) ; // send the v e h i c l e speed
5 }
6 v o i d r r a n s a c s p e e d g e t {
7 p u t f s l ( 4 , 0 ) ; // code f o r s p e c i f i c a dap ta t i on get
8 g e t f s l ( r a n s a c I t e r a t i o n s , 0 ) ; // r e c e i v e i t e r a t i o n s
9 }

10 // ( . . . )

1 // ( . . . )
2 . . . {
3 g e t f s l ( codeRece ivedFromProducer , 0 ) ; // s t r a t e g y i d e n t i f i e r
4 sw i t ch ( codeRece ivedFromProduce r ){
5 // ( . . . )
6 ca se 3 : // adap ta t i on r an s a c i t e r a t i o n speed
7 upda teRansac I t e ra t i onNumberThroughVeh i c l eSpeed ( ) ;
8 break ;
9 ca se 4 : // adapted r an s a c i t e r a t i o n

10 s e n dR an s a c I t e r a t i o n s ( ) ;
11 break ;
12 }
13 }
14 v o i d upda teRansac I t e ra t i onNumberThroughVeh i c l eSpeed ( ) {
15 g e t f s l ( v eh i c l eSpe ed , 0 ) ;
16 i f ( v e h i c l e S p e e d < 25) {
17 // ommitted f o r s i m p l i c i t y o f the example
18 } e l s e {
19 r a n s a c I t e r a t i o n s = 5000;
20 }
21 }
22 v o i d s e n dR an s a c I t e r a t i o n s ( ) { p u t f s l ( r a n s a c I t e r a t i o n s , 0 ) ; }
23 // ( . . . )

Fig. 6 Generated code for adaptations as stub functions targeted at two cores with com-
munication via direct channels using port number 0 (in C). The first section defines the code
that sits within the application code, and the second section the adaptation code.
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3.4 Adaptive Code Compilation and Deployment

With the adaptations compiled and incorporated into the application source
code, the complete program is again compiled using now the standard tools
approriate for the application source code language (e.g., gcc [18], javac [31]).
In short, the application has now been compiled from a new program code,
based on the original source code plus the adaptations, and therefore the new
application can now be deployed and executed in the target environment.

4 Case Study: Stereo Navigation

To validate our approach we use a case study application for avionics, which
consists of an industry-developed embedded navigation system, named as
Stereo Navigation Application (StereoNav), and whose main stages are de-
scribed in detail in [32]. The StereoNav application takes as input two inde-
pendent images from the same or multiple cameras, extracts features, and then
represents them in a 3D-space. The analysis of these features allows for pose
estimation of a vehicle, thus supporting its localization and navigation.

Furthermore, the StereoNav navigation process includes several input pa-
rameters such as image capture frequency or resolution, whose configura-
tion impacts both the output and the computation requirements of the pro-
cess (e.g., execution time, memory). Also, there is an explicit interest and
requirement of the original industry developer to easily manage these parame-
ters. These characteristics make StereoNav an ideal scenario to illustrate sev-
eral aspects of the use of our DSL-based approach to specify adaptations to
the algorithm and measure their impact.

However, additionally to the StereoNav case study, and to show the expres-
siveness of this approach and its applicability to most general applications,
we have been focusing on Java-based case studies that require adaptations,
namely: (i) physical activity context-inference application that executes on
constrained mobile phone environments and thus adaptions are applied to
optimize the context inference process, by customizing different methods to
better infer the desired contexts [36]; and (ii) mobile robot navigation appli-
cation used for localization where several adaptations provide configurations
that allow a more optimized execution of the algorithm, vital in constrained
mobile phone environments where it executes [37].

4.1 Experimental Setup

The StereoNav application is part of an industry-developed navigation system,
whose main algorithm was developed in the C programming language and
is prepared for execution on traditional personal computers and embedded
computing systems. For our experimental evaluation, we used three setups:
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– Setup 1: PC with a 2.0 GHz Intel Core 2 Duo and 2 GB of 667 MHz DDR2
SDRAM. C code was compiled with gcc. Execution times were measured
with the time.h library using the clock() function.

– Setup 2: Xilinx FPGA, with a PowerPC processor running at 400 MHz
and with heap size of 256 MB and stack size of 4 MB. The C code was
compiled using ppc-gcc, a gcc compiler instance targeting the PowerPC
processor, and -O2 optimization level. Execution times were measured us-
ing hardware timers implemented in the FPGA.

– Setup 3: ML510 FPGA Development Board – Xilinx Virtex-5 FPGA,
model XC5VFX130T. The architecture consists of two Xilinx MicroB-
laze (MB) processors (MB0 and MB1), each one with their own on-chip
data and instruction memories, an external 1 GB DDR2 SDRAM memory
shared by the two processors, direct and blocking communication chan-
nels (FIFOs) between the two processors, timers and UART components.
The StereoNav application data is loaded on the external memory.

4.2 Algorithm

The overall structure of the algorithm is presented in Figure 7 depicting its
key operations and parameters. The first three operations are performed con-
currently for each camera sensor, whereas the remaining operations execute
sequentially. An explanatory summary of each operation follows.

Debayering Feature 
Extraction

Pose 
EstimationRectification Feature 

Matching
3D

Reprojection

Image Size Tile Size
Number of 
Features

Ransac Trial 
Iterations

Frequency of 
Computation

Refinement

Fig. 7 StereoNav algorithm: main steps (solid boxes) and input parameters (dashed boxes).

Debayering interpolates the input image data in a Bayer grid to GRGB out-
put. Various interpolation methods can be used differing in the quality of the
produced output image and computational cost.

Rectification projects the stereo images onto a common image plane, allowing
correction of image distortion by transforming the images into a standard co-
ordinate system. Rectification can be performed through different “warping”
techniques, that yield different results both in terms of quality and computa-
tional cost (e.g., bilinear interpolation gives better results but it is ten times
slower than nearest neighbor [32]).
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Feature extraction detects elements that can serve as reference locations in the
image, and it is usually performed with corner detectors (e.g., Harris corner
detector [20]). Typically, around 100–1000 features are extracted [32] and this
information is stored as compactly as possible in a hash-like structure.

Feature Matching generates assignments between the extracted features, using
feature data from the previous frame, the current frame, and from different
cameras. Its objective is to detect feature-vectors that are identical. As the
probability of having a correct match in a cluttered urban environment is low,
a circular check mechanism is used in order to improve assignment accuracy.

3D Reprojection derives 3D coordinates of a point from different image pro-
jections of that point, given the feature matching from the previous step. A
3D reprojection may be performed for a set of features at a given time, so one
can calculate a set of points in the 3D space at once [33].

Pose Estimation produces the transformation between two camera reference
frames, allowing to determine the ego-motion from that information using
the dead reckoning (odometry integration) or a SLAM (Simultaneous Lo-
calization and Mapping) approach. This estimation is performed using the
RANSAC (RANdom SAmple Consensus) algorithm [15].

Refinement may include some operational tweaks in order to produce the most
accurate position estimate.

4.3 Adaptation Analysis

The StereoNav application requires a high-level of accuracy to maintain an
acceptable quality-of-service (QoS), measured in terms of timely correct nav-
igation information. The overall algorithm must be able to handle certain
problematic situations, such as changes in vehicle speed and availability of
computational resources. Possible failures or application performance degra-
dation are eliminated by a dynamic adaptation of the application, as certain
troublesome situations may lead to significant reduction of service’s quality or
even the complete loss of service altogether [33].

The stereo navigation algorithm includes several operations. The most com-
putationally demanding are the most relevant for adaptation when the exe-
cution time and/or energy savings are the primer objectives. Figure 8 reveals
that (in both setups) the feature extraction and pose estimation operations
are the most time-consuming, on average accounting for 89.3% and 5.6% of
the total execution time, respectively. Analyzing these operations, there are
two main candidate parameters that yield a significant computational impact:
(i) the resolution of the processed images in the feature extraction operation,
and (ii) the number of iterations within the pose estimation operation.
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Fig. 8 Execution time impact of the main operations in StereoNav considering both setups.

4.4 Adjusting the Image Resolution

Changing the image resolution mainly influences the feature extraction, which
is the most computationally-intensive operation. For the purpose of our sce-
narios, we considered the two image resolutions of 640× 480 (high resolution)
and 320× 240 (low resolution). In both setups used, the execution time is on
average above 3 to 4 times greater for the higher than for the lower resolution.

4.4.1 Adapting to the Vehicle Speed

Considering the influence of image resolution in the overall execution time, it is
of interest for the application to have an adaptation strategy that dynamically
reconfigures the resolution according to the current vehicle speed. Decreasing
the image resolution as the vehicle speed increases aids navigation since, the
faster the vehicle moves, the faster the application needs to determine its lo-
cation. Calculating the image resolution in relation to vehicle speed (in km/h)
is performed as follows: 640× 480 if speed ≤ 50; 320× 240 if speed > 50.

Figure 9 shows the change in vehicle speed, the overall algorithm execution
time, and the image resolution over time. In this strategy, when the speed
increases, the image resolution decreases, consequently decreasing the overall
execution time (decreasing resolution from 640 × 480 to 320 × 240 yields a
sixfold computational time decrease).

The DSL code for this adaptation strategy was presented in Figure 2 and
specifies that for each stereoNav step, the vehicle speed is measured and
according to its value, the size of the input images is modified.
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Fig. 9 Adjustments to image resolution and impact on the overall execution time, with
respect to vehicle speed (using setup 1).

4.4.2 Adapting to a Time Constraint

Ensuring the algorithm executes within a time constraint, due to resource con-
straints or imposed deadlines, requires a strategy where if this time constraint
is not satisfied, then the image resolution is decreased for the subsequent
execution, otherwise the image resolution is increased, improving QoS. Exper-
imental results of this strategy considering a time window with variable size
are presented in Figure 10.

Fig. 10 Adjustment of image resolution to a time constraint (using setup 1). Steps 1, 2, 4,
6, 8, 13, 15, 16 use high resolution and steps 3, 5, 7, 9, 10, 11, 12, 14 use low resolution.

In each iteration where the algorithm exceeds the time constraint, the
next iteration will have a lower image resolution to satisfy the time con-
straint (e.g., iterations #1 and #2). On the other hand, satisfying the time
constraint causes the next iteration to be executed with higher image resolu-
tion (e.g., iterations #3 and #4). Since only two image resolutions are being
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used, violating the constraint in low resolution or satisfying with high res-
olution, causes the system to maintain the resolution as it cannot decrease
or increase the resolution beyond that. As constraint violations cause subse-
quent delayed executions, the strategy for image resolution adaptation, whose
illustrated results are shown in Figure 10, causes a time violation in approx-
imately 44% of the iterations. In contrast, using a fixed high image resolu-
tion (640 × 480) would cause a percentage of constraint violations around
75%. Using a fixed low image resolution (320× 240) would fail in only 12.5%
of cases. Although using a low resolution results in fewer violations, the average
image quality used would be lower limiting the overall application QoS.

The strategy for adapting image resolution according to a time constraint
is specified in Figure 11. Contrasting with the DSL code from Figure 2, the
vehicle speed function is replaced by a function that outputs the computation
time requirement (line 2) allocated for an iteration of the algorithm. Lines
3–5 define the evaluation location for the rule. Lines 6–16 define a rule that
depends on the DSL infrastructure provided macro, which holds the elapsed
time of the last stereoNav execution. Rule r2 retrieves the time constraint
and if the constraint is greater or equal than execution time of the previous
stereoNav iteration, then the navigation algorithm is parameterized to use the
high image resolution. Otherwise, the low resolution for the images is used.

1 import f unc t i o n s te r eoNav ( i n t r a n s a c I t e r a t i o n s =5000 , i n t
imgWidthRes=640 , i n t imgHeightRes=480) ;

2 import f unc t i o n [ doub l e t ime ] ge tT imeCons t r a i n t ( ) ;

3 ope r a t i o n s {
4 r2 eva l u a t i o n a f t e r s t e r eoNav ;
5 }

6 r u l e s {
7 r2 : eve ry ( s te r eoNav ){
8 i f ( ge tT imeCons t r a i n t ( ) . t ime >= ste r eoNav . e l a p s e d t im e ){
9 s t e r eoNav . imgWidthRes = 640 ;

10 s t e r eoNav . imgHeightRes = 480 ;
11 } e l s e {
12 s t e r eoNav . imgWidthRes = 320 ;
13 s t e r eoNav . imgHeightRes = 240 ;
14 }
15 }
16 }
Fig. 11 DSL code for adapting the image resolution according to a time constraint.

4.5 Adjusting the Number of RANSAC Iterations

The pose estimation operation is implemented by the RANSAC iterative algo-
rithm. The higher the number of algorithm iterations, the higher computation
demand (e.g., execution time) but also the higher the probability of a correct
pose estimation. Therefore, this algorithm is an ideal candidate for run-time
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algorithmic adaptation based on available system resources. As the base ac-
ceptability criteria for pose estimation is 90% [33] we introduce configurations
guaranteeing 90%, 92%, 94%, 96%, and 97%, corresponding to 3900, 4300,
4800, 5500, and 5800 iterations, respectively.

4.5.1 Adapting to the Vehicle Speed

Similarly to the strategy of adapting the image resolution according to ve-
hicle speed, we now consider an adaptation strategy that varies the number
of RANSAC iterations. As the speed of the vehicle increases, the number of
iterations must be reduced causing less computational strain and therefore
less execution time is required for the operation. The adjustment in the num-
ber of RANSAC iterations due to vehicle speed is defined as follows: 5800
if speed < 25; 5500 if 25 ≤ speed < 50; 4800 if 50 ≤ speed < 75; 4300 if
75 ≤ speed < 100; and 3900 if speed ≥ 100. Figure 12 plots the results mea-
sured in one scenario, depicting the number of iterations and execution time
of the RANSAC algorithm as the vehicle speed increases.

Fig. 12 Number of RANSAC iterations and corresponding execution time of pose estima-
tion regarding the variation of vehicle speed (using setup 1).

The DSL specification code for this adaptation control strategy is similar
to Figure 2, with the exception of the rules section, which is presented in Fig-
ure 13. The code presented specifies that rule r3 executes before the beginning
of every stereoNav iteration, retrieving the vehicle speed through a function.
Depending on its evaluation through conditions, it assigns the number of it-
erations to be conducted by the RANSAC algorithm. This is performed by
changing the input parameter value of the StereoNav algorithm.
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1 r u l e s {
2 r3 : eve ry ( s te r eoNav ){
3 i n t speed = ge tVeh i c l eSpeed ( ) . speed ;
4 i f ( speed < 25) {
5 s te r eoNav . r a n s a c I t e r a t i o n s = 5800;
6 } e l s e i f ( speed >= 25 && speed < 50) {
7 s te r eoNav . r a n s a c I t e r a t i o n s = 5500;
8 } e l s e i f ( speed >= 50 && speed < 75) {
9 s te r eoNav . r a n s a c I t e r a t i o n s = 4800;

10 } e l s e i f ( speed >= 75 && speed < 100) {
11 s te r eoNav . r a n s a c I t e r a t i o n s = 4300;
12 } e l s e i f ( speed >= 100) {
13 s te r eoNav . r a n s a c I t e r a t i o n s = 3900;
14 }
15 }
16 }
Fig. 13 DSL code for adapting the RANSAC iterations according to vehicle speed.

4.5.2 Adapting to a Time Constraint

Another adaptation strategy of interest is based on a time constraint for the
execution of the pose estimation operation, as proposed in [34]. This strategy
is described as: (i) measure the execution time of the operations that precede
pose estimation (tpre) to verify how much time has already been elapsed;
(ii) get the execution time allowed for the whole StereoNav algorithm (ttotal)
considering the available computational resources; (iii) calculate the execution
time for the pose estimation operation as test = ttotal−tpre (here, the execution
time required for the computation of the refinement operation is assumed to
be negligible, as shown in Figure 8); (iv) select the number of iterations for the
RANSAC algorithm according to the time available for the operation (test),
when the execution times of predefined numbers of iterations are known. If
there is not enough time to perform the operation with the lowest predefined
iteration number, then the time requirement for execution is not satisfied.

The proposed adaptation is possible due to previous knowledge of the aver-
age execution time which the operations require. Knowing the available execu-
tion time, it is possible to perform the highest number of RANSAC iterations
and maintain QoS levels as highest as possible given the time constraint. Fig-
ure 14 depicts the behavior of this adaptation strategy in a testing scenario
where the RANSAC iterations are adjusted to satisfy time constraints. In this
testing scenario, only four iterations missed the constraint (iterations 1, 14, 15,
18 had execution times greater than the available time). The implementation
in the DSL of such strategy is presented in Figure 15, where two new imported
functions (lines 1 and 2) output the control variables needed to assign the it-
eration number. Lines 7 to 22 set the appropriate iteration number according
to the available time for pose estimation.



A DSL for Specifying Run-time Adaptations for Embedded Systems 23

Fig. 14 Time allowed in seconds and corresponding execution time of the pose estimation
operation. The number of iterations used sequentially in each step were: 3900, 3900, 5800,
4800, 5800, 3900, 3900, 5800, 5800, 5800, 4800, 5500, 5800, 3900, 3900, 5500, 5800, 3900,
4800, 3900, 4800, 5800, 5800, 5800, 5800 (using setup 1).

1 import f unc t i o n s te r eoNav ( i n t r a n s a c I t e r a t i o n s =5000 , i n t
imgWidthRes=320 , i n t imgHeightRes=240) ;

2 import f unc t i o n [ doub l e tAnt ] getRansacTimeAnt ( ) ;
3 import f unc t i o n [ doub l e tTo ta l ] getTimeBudget ( ) ;

4 ope r a t i o n s {
5 r4 eva l u a t i o n po int ”beg inRansac ” ; // at the d e f i n e d l a b e l
6 }

7 r u l e s {
8 r4 : eve ry ( s te r eoNav ){
9 budget = getTimeBudget ( ) . tTo ta l − getRansacTimeAnt ( ) . tAnt ;

10 i f ( budget > 0 . 08 ) {
11 s te r eoNav . r a n s a c I t e r a t i o n s = 5800;
12 } e l s e i f ( budget > 0 .075) {
13 s te r eoNav . r a n s a c I t e r a t i o n s = 5500;
14 } e l s e i f ( budget > 0 . 06 ) {
15 s te r eoNav . r a n s a c I t e r a t i o n s = 4800;
16 } e l s e i f ( budget > 0 . 05 ) {
17 s te r eoNav . r a n s a c I t e r a t i o n s = 4300;
18 } e l s e {
19 s te r eoNav . r a n s a c I t e r a t i o n s = 3900;
20 }
21 }
22 }
Fig. 15 DSL code for the RANSAC iteration adaptation strategy according to an available
time budget for the computation of the algorithm.

4.6 Adjusting Multiple Parameters

For this strategy we use previous knowledge from experiments with the algo-
rithm. Considering the two input parameters that have been used for adapta-
tion, critical to the most time consuming operations, their impact is different
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as the image resolution parameter causes greater impact in the application
than the number of iterations of the RANSAC algorithm. Due to this differ-
ence in impact, the image resolution is used for coarser adjustments and the
number of iterations for finer adjustments.

Since the application provides information for navigation, it must comply
with requirements for frequency of execution. One can devise an overall adap-
tation strategy that adjusts the parameters identified according to the number
of frames per second (FPS) required to maintain a suitable navigation infor-
mation at the presented vehicle speed. Faster speeds reduce the available time
budget for the application to execute and therefore require faster execution
frequency. The strategy is defined as follows: (i) the frequency of computation
is calculated as a function of the vehicle speed; (ii) from the required frequency
of computation, a time budget is defined; (iii) considering the available time
budget, the algorithm configuration for execution must yield the best results
while satisfying the time constraint; (iv) to ensure the time constraint compli-
ance, it should be verified if the algorithm executed within the budget.

The DSL code for this adaptation strategy is presented in Figure 16. The
specification contemplates two imported functions, one function defined inter-
nally and three different rules. Lines 1 to 5 define necessary variables. Lines 6
to 7 specify the necessary imported functions. Lines 8 to 11 specify the oper-
ations section. Rules are specified from lines 12 to 40. Rule r1 computes the
difference between the available time and the elapsed time from the execution
of the stereoNav function. If the elapsed time is less than the available time,
then there is room for improvement and rule r3 is invoked. If the elapsed time
exceeded the available time, then reduction of the execution time must be ac-
complish and therefore rule r2 is invoked. Lines 41 to 43 specify the code for
a C function calcFPStime, which computes the frequency of computation.

1 i n t [ ] [ ] imgRes = {{160 , 120} , {320 , 240} , {400 , 320} , {480 ,
400} , {560 , 480} , {640 , 480}} ;

2 i n t imgResCounter = 1 [ 0 . . 6 ] ; // v a l u e range from 0 to 6
3 i n t [ ] i t e r a t i o n s = {3900 , 4300 , 4800 , 5500 , 5800} ;
4 i n t i t e r C o un t e r = 1 [ 0 . . 4 ] ; // v a l u e range from 0 to 4
5 doub l e d e a d l i n e = 0 ;

6 import f unc t i o n s t e r eoNav ( i n t r a n s a c I t e r a t i o n s=i t e r a t i o n s [
i t e r C ou n t e r ] , i n t imgWidthRes=imgRes [ imgResCounter ] [ 1 ] , i n t
imgHeightRes=imgRes [ imgResCounter ] [ 2 ] ) ;

7 import f unc t i o n [ i n t speed ] g e tVeh i c l eSpeed ( ) ;

8 ope r a t i o n s {
9 r0 eva l u a t i o n be fo re s t e r eoNav ;

10 r1 eva l u a t i o n a f t e r s t e r eoNav ;
11 }

12 r u l e s {
13 r0 : eve ry ( s te r eoNav ) {
14 d e a d l i n e = code . c . ca lcFPSt ime ( g e tVeh i c l eSpeed ( ) . speed ) ;
15 }
16 r1 : eve ry ( s te r eoNav ) {
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17 s l a c k = ste reoNav . e l a p s e d t im e − d e a d l i n e ;
18 i f ( s l a c k > 0) { // exceeded the a v a i l a b l e t ime
19 eva l u a t e r2 ;
20 } e l s e { // s a t i s f i e d the d e a d l i n e
21 eva l u a t e r3 ;
22 }
23 }
24 r2 {
25 i f ( s l a c k > 0 . 5 ) { // reduce ex ec . t ime through image

r e s o l u t i o n
26 s te r eoNav . imgWidthRes = imgRes [ imgResCounter −− ] [ 1 ] ;
27 s t e r eoNav . imgHeightRes = imgRes [ imgResCounter −− ] [ 2 ] ;
28 } e l s e { // reduce t ime through ad jus tment i n i t e r a t i o n s
29 s t e r eoNav . r a n s a c I t e r a t i o n s = i t e r a t i o n s [ i t e rCoun t e r −−];
30 }
31 }
32 r3 {
33 i f ( s l a c k < −0.5){ // improve q u a l i t y through image

r e s o l u t i o n
34 s te r eoNav . imgWidthRes = imgRes [ imgResCounter ++] [ 1 ] ;
35 s te r eoNav . imgHeightRes = imgRes [ imgResCounter ++] [2 ] ;
36 } e l s e { // improve q u a l i t y through ad jus tment i n i t e r a t i o n s
37 s t e r eoNav . r a n s a c I t e r a t i o n s = i t e r a t i o n s [ i t e r C ou n t e r ++];
38 }
39 }
40 }

41 code . c{
42 doub l e ca lcFPSt ime ( i n t speed ) { r e t u r n speed /10;} // i n seconds
43 }

Fig. 16 DSL code for the a composed adaptation strategy that adjusts the image resolution
and the number of RANSAC iterations.

4.7 Targeting Different Execution Scenarios

In order to show and to evaluate a possible mapping of the adaptation and
the application codes into different processors, we prototyped an embedded
dual-core system, as described by setup 3.

4.7.1 Execution Scenarios

For execution scenarios, we conduct experiments on the strategies previously
presented considering different options for compilation and weaving. The strate-
gies considered are as follows: (A) adjusting the image resolution according to
vehicle speed; (B) adjusting the image resolution according to time constraints;
(C) adjusting the RANSAC iterations according to vehicle speed; (D) adjust-
ing the RANSAC iterations according to time constraints; (E) combination of
strategies A and C; and (F) combination of strategies B and D.
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Regarding the interface between adaptation and application code, we con-
sider three scenarios: (i) adaptations embedded inline executing in a single
core (1-MB inline); (ii) adaptations integrated as stub functions executed in a
single core (1-MB stubs); and (iii) adaptations integrated as stub functions exe-
cuted in a second core (2-MB stubs). For the multicore architecture, processors
MB0 and MB1 are responsible to execute the application and the adaptations,
respectively. MB0 executes the stereo navigation application code and requests
the adaptations to MB1. MB1 receives the requests from MB0, executes the
adaptation behavior accordingly, and reply, e.g., with parameter values. The
communication between the application and the adaptations (i.e., between
MB0 and MB1) is via the direct communication channels.

4.7.2 Impact on Execution Time

Table 1 presents the comparison for execution time considering the execution
of the generated adaptation-related code according to the different adaptation
strategies and execution platforms, as presented previously. Table 1 shows
that the embedded inline adaptation code is the fastest, on average, mainly
because it neither has the overhead of calling functions nor communication
primitives (around 1.06× speedup regarding 1MB stubs and 1.01× speedup
regarding 2MB stubs). With respect to the adaptation code encapsulated into
stub functions, the version executed on 2MB is faster because although it re-
quires additional communication primitives between the two cores, the adap-
tation strategies are not being executed in the same core, and thus relieve
the application core from additional processing (around 1.05× speedup). Al-
though in this experiment we expected minor performance improvements as
the adaptation strategy is very simple and not computationally intensive, it
reflects an example of a DSL specification with separation of adaptation and
application logic making feasible the generation of different implementations.

Table 1 Execution time (in clock cycles) for different strategies and architectures.

Strategy 1–MB (inline) 1–MB (stubs) 2–MB (stubs)

A 543 680 581
B 801 882 868
C 461 458 331
D 3308 3416 3413
E 880 1041 813
F 4163 4323 4275

Additionally, we performed the same experimental tests with added debug
information to the adaptation strategies. In this case, the strategies are re-
sponsible for printing verbosely the information regarding several aspects of
the adaptation actions being performed. Our objective is to assess the impact
of this additional code complexity added on the execution time considering
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the single and the multicore architecture. Higher complex strategies show how
the different execution scenarios scale regarding the execution time metric.

Figure 17 shows the execution time (clock cycles), regarding the execution
of each strategy when seen by the processor core (MB0) executing the appli-
cation, and according to the different execution scenarios. For each strategy,
Figure 17 considers the initial versions and the newer versions with the added
debug instructions and thus complexity.

(a) 1MB-Inline. (b) 1MB-Stubs.

(c) 2MB-Stubs.

Fig. 17 Execution time in clock cycles of each strategy according to the different execution
scenarios, measured from the main application logic.

Figure 17 shows that with the increase of the complexity of the adapta-
tion strategies, the benefits of the use of two cores is evident, as the execution
time does not increase as it does with the single core versions. In the multi-
core version, as the computation of the strategies is on a dedicated core, the
application overall execution time is almost the same as the adaptations are
computed in parallel. The benefit of this parallelism can thus be achieved at
a higher-level of abstraction and is therefore not dependent on the power of a
compiler to extract this parallelism.

4.7.3 Generated Code Analysis

The code generated, considering the different execution scenarios, is of different
complexity and modularity, and thus also of different comprehension levels.
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Table 2 presents a comparison of the different C code generated consisting of
the application and the adaptation code according to several metrics, measured
using the Source Monitor tool [11].

Table 2 Evaluation metrics for different C code generated regarding the incorporation of
the adaptation code on the application source code (blank lines are ignored).

Code Adaptation 1–MB 1–MB 2–MB
Metric Original Prepared (inline) (stubs) (stubs)

Files 58 58 60 60 61
Lines 13083 13525 14111 14173 14342

Statements 7367 7363 7735 7783 7889
Functions 165 170 185 202 207

Avg. Complexity 8.07 7.82 7.71 7.14 7.03

In the metrics presented, the average complexity represents the arithmetic
average of all complexity values measured for each function, which represent
the number of execution paths through a function, to which the number of
branch statements, boolean logic, loops, and others contribute to [28]. Higher
values of complexity reveal less understandable code.

Table 2 also includes metric values for the version of the application reflect-
ing the preparation of the original source code to be adapted (e.g., changing
some hardcoded values to variables that are of interest for adaptation). From
the results presented for mapping configurations, for the generated code in C,
it is possible to observe that there are many differences between the implemen-
tations. The metrics show that the embedded inline version is more complex
than all the versions involving adaptations encapsulated within stub functions.
Although using stub functions increases the number of lines, statements and
functions, the average values for the complexity metric decrease. The adap-
tations inlined in the application code are less scattered, but are tangled and
with code repetitions, whilst adaptations encapsulated into stub functions are
modular, readable and easier to maintain. Integrating the adaptation code re-
sults in an increase on the number of files, number of lines, statements and
functions. However, the average complexity is lower. The difference in metrics
between the mechanisms for DSL adaptation code generation highlight the
benefits of multiple possible versions and also of the separation of concerns
provided by having the generation options as mapping configurations at the
adaptation logic level.

5 Related Work

Embedded systems are gaining momentum due to active research in topics
such as context-aware computing and ubiquitous computing (e.g., [6], [23]).
Due to the architectural characteristics of such systems, run-time adaptations
of embedded applications are required to achieve performance goals under
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changing operating situations [13]. The concept of adaptation has been com-
monly applied in embedded systems targeting energy concerns, because of their
limited power capability. Examples of such adaptation include energy-efficient
location-aware applications that switch between different sensors (e.g., [41]).

Software adaptation techniques have been addressed in many areas of re-
search and under many forms [24]. As such, adaptations can be defined in a
multitude of ways, however, with different objectives, costs and capabilities.
Adaptation specification and implementation can range from simple condi-
tional expressions to highly complex software architectures. While some sim-
ple solutions incorporated within the application logic can suit more humble
adaptation needs, other more elaborate needs can only be accomplished with
more flexible and independent solutions that separate the application from
the adaptation logic. This separation is beneficial not only in terms of de-
sign, but also because adaptations often go beyond the core functionality of
the application. Also, this separation into layers can express different design
alternatives and configurations of the same software [9]. Specifically, tech-
niques for software adaptations have been tackled through conditional branch-
ing (e.g., [16]), context-oriented programming (e.g., [4], [19]), aspect-oriented
programming (e.g., [26], [40]), feature-oriented programming (e.g., [3]), and
architectures/frameworks (e.g., [16], [17]).

When adding adaptations to software, the use of additional parameters
and conditional expressions are the most commonly seen due to their low-
barrier to initial development. However, although introducing additional cod-
ing segments solves some simple and straightforward adaptation efforts, their
continuous usage introduces clutter, confusion and code comprehension diffi-
culties by mixing adaptation with application functionality. These drawbacks
eventually make software evolution less flexible and more costly.

When concentrating on contextual information, context-oriented program-
ming (COP) approaches (e.g., Subjective-C [19], ContextJ [4]) are relevant to
apply layered operational behavior, dependent on contexts, to certain code sec-
tions. However, although most COP approaches foster some degree of domain
specificity, more than often their end result is similar to hard-coded conditional
statements. Furthermore, their common approach of extending other host lan-
guages lock them to both their host’s benefits and drawbacks, invalidating a
broader and more general solution to adaptation specification.

Alternatively, focusing on cross-cutting concerns, the AOP paradigm [25]
allows the separation of concerns aiming at defining aspects that can spec-
ify behavior to be woven into applications and thus possibly for adapta-
tion (e.g., AspectJ [26], AspectC++ [40]). As AOP defines an approach, it has
several possible implementations, which cause development and design chal-
lenges. Moreover, traditional pointcut mechanisms do not typically include
constructs and semantic for most weaving actions needed by run-time adap-
tation behavior (e.g., program execution points obeying to certain periodic-
ity). Furthermore, being somewhat general for any aspect-weaving necessities,
adaptation-specific abstractions have been somewhat neglected.
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As DSLs are tailored to specific application domains, they offer substan-
tial advantages in expressiveness and ease of use when compared to general-
purpose programming languages (GPLs) [29]. Several DSLs have been pro-
posed for software adaptation (e.g., [1], [22]). For example, in the context of
a video processing application [1] the authors presented an extension to the
BZR language for adaptation control on a mobile phone, where the video dis-
play modes are controlled by the adaptive system according to the status of
computing resources. Unlike our DSL, their adaptive behavior is specified in
terms of hierarchical automata and through contract policies.

Finally, several ad-hoc solutions have been proposed (e.g., [8]), as authors
develop their own specific adaptation approaches tailored to their specific cases
and applications. Although beneficial for the applications they are developing,
these solutions usually lack generality and reusability.

6 Conclusion

This paper presented the feasibility of our DSL-based approach to specify
adaptable behavior for a real-life vehicle navigation application provided by
industry. The experimental results highlight not only the benefits and impact
of the application’s adaptation, but most importantly, our DSL’s advantage
of providing a high-level programmable approach to define such adaptability.

With the DSL described here, adaptation strategies are decoupled from the
applications original code and are easily modified without having to rewrite the
application code. Furthermore, different adaptation strategies can be shared
and deployed to different platforms and target languages thus promoting pro-
grammer and application portability. With the behavior defined in the DSL, it
is possible to see how different strategies are specified and to understand the
impact of adding new rules, including different functions, and evaluating the
differences from one adaptation to another. We also note the degree of simi-
larity between the specifications of different strategies. This aspect facilitates
behavior modifications, thus reducing the complexity of managing DSL code
while allowing for rapid testing and validation of different strategies as for
example, when changing the target vehicle, or when trying to accommodate
other speed ranges.

Our ongoing and future work is focused on DSL extensions and improve-
ments, namely through: additional case studies, extending conflict and trace-
ability analysis, and extending our compiler/weaver support to allow multiple
implementations for the same DSL abstractions in order to take futher advan-
tages of plataform characteristics.
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