
Securely Storing and Executing
Business Processes in the Cloud

David Martinho1 and Diogo R. Ferreira1

IST – Technical University of Lisbon
{davidmartinho,diogo.ferreira}@ist.utl.pt

Abstract. This paper proposes an architectural solution that allows
organizations to rely on cloud-based services to securely operate their
business processes. The solution is built upon a thick client and thin
server architectural pattern, where security constructs such as public-key
and symmetric cryptographic systems are used to maintain confidential-
ity between the participants while keeping the server unaware of their
participations and business process instances.

Key words: Cloud Computing, Security, BPM, Cryptography Systems

1 Introduction

Given the latest advances in IT, the envisioning of computing as an essential util-
ity for the general community led to the proposal of novel computing paradigms
such as cloud computing. Cloud computing [1] is presented as being able to trans-
form the IT industry by introducing a delivery model of Software as a Service
(SaaS), and shaping the way infrastructural hardware is designed and adopted.
Rather than acquiring expensive Business Process Management System (BPMS)
software licenses, and install and manage the software within a local hardware
infrastructure, an organization signs up to use the application hosted by the
company that develops and sells the software as a service.

However, cloud computing means entrusting data to information systems
managed by external parties on remote servers “in the cloud”. This raises privacy
and confidentiality concerns given that the service provider can access all data,
and accidentally or deliberately leak it or use it for unauthorized purposes [7].
These threats hinder the adoption of cloud-based solutions by organizations.

This paper proposes an architectural solution that enables organizations to
securely store their business processes within cloud-based services, while preserv-
ing zero-knowledge of the service provider concerning their business processes.
To validate such solution, the following requirements must be preserved: (R1)
a process instance must be shared among its participants, allowing concurrent
executions to take place; (R2) the service provider must never have access to the
business process instance content, and (R3) never know which process instances
are associated to which participants; (R4) communication must never be com-
promised by potential eavesdropping; and (R5) a malicious party cannot deprive
authorized process participants to access their business processes.

2 Martinho & Ferreira

2 Architectural Solution

The use of cloud-based services is associated with the client-server architectural
pattern. This architectural pattern allows to centralize the data manipulated
by an application within a server, and distribute the interaction with end-users
through a set of multiple clients that communicate with the centralized server.
The use of this architectural pattern contributes to the fulfillment of the first
requirement (R1) where the process instance must be shared among the process
participants, allowing concurrent executions to take place.

However, this client-server architectural pattern creates problems when se-
curity requirements are introduced. To ensure that (R4) communication is not
compromised by potential eavesdropping, two possible solutions exist: either the
client communicates with the server through Secure Socket Layer (SSL) proto-
cols, ensuring the communication is encrypted, or the client encrypts the business
process before sending it to the server. Considering also that (R2) the service
provider must never have access to the content of business process instances, we
must adopt the latter strategy.

By encrypting data beforehand, it becomes impossible for the server to ac-
tually make domain-specific computations (e.g. execute the process model, com-
pute work allocation, etc...). Hence, we must adopt a particular variant of the
client-server architectural pattern: a thick client and a thin server. With this
variant, all the business logic is essentially present in the client, where the busi-
ness process instance is decrypted and executed, while the server takes the role
of a centralized repository, providing access to encrypted process instances.

Now that we justified the decisions on the main architectural pattern, we will
focus on the security layer that empowers the communication workflow occurring
between the client and server applications. When integrating a cross-cutting
concern such as security into our solution, we must consider the following security
qualities [6]: confidentiality to ensure that the content of a business process
instance is only available to authorized parties; integrity to ensure that the
content of a business process instance has not been tampered and modified by
unauthorized parties; and availability to ensure that authorized parties cannot
be deprived from accessing their business process instances.

In this proposal, we are interested in supporting all three security qualities.
However, in what concerns availability, we will not focus on tackling denial-
of-service attacks, which can be avoided by using generic infrastructure-based
strategies that are outside the scope of this paper. Instead, we are concerned
to ensure (R5) that a malicious party cannot deprive authorized process par-
ticipants to access their business processes, in situations that the service is still
available (e.g. data corruption).

To ensure (R2) that a service provider can never access the business process
instance’s content, and (R3) never know which process instances are associated
to which participants, public-key and symmetric cryptography systems are used.

Depending on whether the encryption or decryption key is publicly shared,
the public-key cryptography system can be used to address either confidentiality
or integrity qualities respectively. In order to achieve both confidentiality and

Securely Storing and Executing Business Processes in the Cloud 3

integrity security requirements, our solution assigns two distinct pairs of asym-
metric keys to each user for each purpose. However, in public-key cryptographic
systems, the security is handled peer-to-peer, meaning that it is not well-suited
for sharing confidential business process instances with more than one partici-
pating party at a time, hindering (R1) the sharing of business process instances
among the process participants, and for concurrent executions to take place.

The symmetric cryptography system works upon a shared secret strategy,
where two or more parties may exchange confidential (i.e. encrypted) business
process instances because they secretly share the same symmetric key. This
means that a symmetric cryptography system is only valid to support the con-
fidentiality security requirement, since there is no concept of public key with
which other users can verify the authorship and integrity of a message.

Our solution makes use of both these public-key and symmetric cryptographic
systems within a communication workflow between a thick client where business
processes are executed, and a thin server that allows process participants to share
encrypted business process instances while keeping the server, and consequently
the service provider completely unaware of the business processes’ content.

2.1 Client-Server Communication Workflow

Let us assume that we have a participant named Alice, who creates a new busi-
ness process instance and executes the first activity. To do so, she logs in into
the workflow client using her credentials (i.e. username and password). Using
her credentials, the workflow computes her respective symmetric key PK , and
uses her username to retrieve her encrypted passport (see Definition 1) from the
server provider, and decrypts it using the computed symmetric key PK .

Definition 1 (Passport). Given a particular user U working for organization
O, let Oi be the organization identity containing information necessary to com-
municate with the service provider. Let (EKc , DKc) be her pair of asymmetric
keys respecting to confidentiality, and (EKi , DKi) her pair of asymmetric keys
concerning integrity. Let PL be her list of available process instances containing
tuples (process-title, IDR, pk) which refer to the process title, the server’s remote
ID of the encrypted process instance, and the symmetric key used to encrypt the
process instance. Finally, let SK be a symmetric key that is shared with all orga-
nization members. A passport is defined by the 5-tuple (Oi, DKc , EKi , PL, SK).

After Alice logs in, and the workflow client application retrieves her passport
from the server, it uses the first element of her passport tuple, the organization
identity Oi, to fetch the shared organization’s information repository from the
server, which is encrypted with SK . The organization’s information repository
contains the organization’s business process models that can be executed within
the thick workflow client, and the list of employees with their respective public
confidentiality and integrity keys, as well as their organizational roles to allow
the workflow engine to perform work allocation. Then, Alice selects one process
model P from the list of available business processes available according to her
organizational roles, and begins the workflow depicted in Figure 1.

4 Martinho & Ferreira

Alice

ServerClient

store()
3

1
 (p,) = createProcessInstance(P)

5

2= encrypt(p,)pK

4
IDR

r =createPullRequest(,)IDR pK

pK

ep ep

pullRequest(Bob,)
7

e r6
= encrypt(r,)EK

e r

EK= getConfKey(Bob)

Fig. 1. Alice’s Communication Workflow with the Server.

First, (1) Alice creates a new business process instance p from the business
process model P , also generating a new symmetric process key pK to encrypt
that process instance. Then, after executing her workflow task, the workflow
client application decides, based on the model for organizational roles contained
in the organization repository fetched earlier, the process participant that will
execute the next task, which is Bob in this case. Afterwards, (2) the workflow
client, before sending the process to the server, encrypts it using the generated
symmetric key pK , originating an encrypted process instance ep. Then, (3) the
workflow client sends a new storage request to the server so that it stores the
encrypted process instance and (4) respond with the remote identifier IDR that
will be used for future retrievals and re-storages. After the server replies with the
remote identifier, the workflow client application can (5) create a pull request
(see Definition 2) containing the remote identifier IDR and the symmetric key
pK that will be needed to decrypt the process instance. In this step, the workflow
client also adds the process instance information in Alice’s process list PL. The
workflow client application then (6) confidentially addresses the pull request to
Bob by encrypting it with his public encryption key EKc , listed in the previously
fetched organization repository, and signing the content with Alice’s private
integrity key. Finally, the workflow client sends that signed and encrypted pull
request to the server (7).

Definition 2 (Pull Request). Let (IDR, SK) be a tuple containing a remote
identifier IDR that identifies a business process instance encrypted with a sym-
metric key SK . Sending a pull request to user U , consists on encrypting such
tuple with the user’s confidentiality public key EKc and store it in the server,
associating it to the respective user U .

The pull request is encrypted so that (R3) the service provider must never
know which process instances are associated to which process participants. Omit-
ted for the sake of space, the pull request is signed by Alice so that Bob can
verify the authorship of the request and avoid malicious parties outside his orga-
nization to send him pull requests. The communication workflow between Bob’s
client and the server is depicted in Figure 2.

After Bob logs in into the system, (1) the client also fetches the server for any
new pull requests addressed to Bob. The server will then (2) reply to the client

Securely Storing and Executing Business Processes in the Cloud 5

Bob

ServerClient

getPullRequests()1
3

7

4
= getRemoteID(r)

2

retrieve()
5

e r

= decrypt(,)e r

DK = getMyDecConfKey()
DKr

IDR IDR

6ep= getProcessKey(r)pK

p = decrypt(,)ep pK

store(,)
9

8
= encrypt(p',)pKep' ep'IDR

Fig. 2. Bob’s Communication Workflow with the Server.

with the encrypted pull request er earlier originated from Alice’s task execution.
Then, (3) the client decrypts the request using Bob’s private confidentiality de-
cryption key DKc available in his passport, obtaining the decrypted pull request
r. With the pull request decrypted, (4) the client may use the remote id IDR

to (5) retrieve the encrypted process ep from the server. After the server replies
with the encrypted process (6), the client can (7) use the process symmetric key
pk, also contained in the pull request r, to decrypt the encrypted process ep into
p. Finally, after Bob executes his task, the workflow client application repeats
all the steps, storing the process instance information in Bob’s process list PL,
and (8) re-encrypting the new version of the process instance p′ with the same
encryption key pK , but with the particularity of (9) re-storing it within the
same IDR: this allows previous participants to continually access the business
process instance.

In fact, the server does not overwrite the process instance, it rather creates
a new version of it. We consider versioning for the situation where a malicious
party discovers the remote id IDR, and attempts to overwrite the currently stored
business process instance with the intention of depriving authorized process par-
ticipants to access their business processes. As the server versions the encrypted
business process instances stored under the same IDR, if the workflow client fails
to decrypt the business process instance using the process symmetric key present
in the pull request, the server flags that version and responds with the previous
version, repeating the process until a version is accepted or there are no versions
left. This strategy contributes directly to ensure the delivery of requirement R5.

The solution proposed can be easily extended to support choreographies
among organizations. Nevertheless, such extensibility presumes that the chore-
ography actors, i.e. the organizations, would have compatible business process
models [8], and their workflow clients implementing the same architectural so-
lution proposed here.

3 Related Work

There is previous work [2, 4] focusing on adapting access control and authoriza-
tion techniques used in database and operating systems to the business process

6 Martinho & Ferreira

management scope. Nevertheless, such fields envision security within relatively
narrow applications. Security is often integrated into business process manage-
ment systems in an ad-hoc manner, during the implementation process [3], dis-
regarding the specificities of its domain.

In [5], a novel architecture of cloud-based BPM is proposed and analyzed,
supporting end-user distribution of non-compute-intensive activities and sensi-
tive data. Nevertheless, they do not approach aspects concerning privacy and
confidentiality of business processes in the cloud as proposed in this paper.

4 Conclusions

In this paper, we introduced an architectural solution that establishes a workflow
of interactions between a thick client that executes the business process and a
thin server, subscribed on a cloud-based delivery model, that is confined to
simple services of data storage and retrieval. The solution is based on a client
application that manages both the execution of business process instances and
the participant’s access control lists while leveraging on untrusted data storage
and retrieval cloud services through a well-defined layer of security based on
symmetric and asymmetric cryptographic constructs.

References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud computing.
Communications of the ACM, 53(4):50–58, 2010.

[2] V. Atluri, W. Huang, and E. Bertino. An execution model for multilevel
secure workflows. Database Security, 11:151–165, 1998.

[3] M. Backes, B. Pfitzmann, and M. Waidner. Security in business process
engineering. In Busines Process Management, volume 2678 of LNCS, pages
1019–1019. Springer, 2003.

[4] E. Bertino, E. Ferrari, and V. Atluri. A flexible model supporting the specifi-
cation and enforcement of role-based authorization in workflow management
systems. In 2nd ACM workshop on RBAC, pages 1–12, 1997.

[5] Y.B. Han, J.Y. Sun, G.L. Wang, and H.F. Li. A cloud-based bpm architecture
with user-end distribution of non-compute-intensive activities and sensitive
data. JCST, 25(6):1157–1167, 2010.

[6] P. Herrmann and G. Herrmann. Security requirement analysis of business
processes. Electronic Commerce Research, 6(3):305–335, 2006.

[7] Mark D. Ryan. Cloud computing privacy concerns on our doorstep. Com-
munications of the ACM, 54(1), 2011.

[8] M. Weske. Business process management: concepts, languages, architectures.
Springer, 2010.

