BUILDING A WORKFLOW ENACTMENT SERVICE FOR
TELEWORK CO-ORDINATION

Diogo Ferreira®, Jodo Rei® José M. Mendonca’, J. J. Pinto Ferreira®
*EUP, °FEUP-DEEC / ADI, “FEUP - DEEC / INESC - UESP

Rua José Falcéo 110, 4000 Porto, Portugal
Phone: +35122094300 Fax: +351 220084 87
E-mail: jjpf@fe.up.pt

Electronic Commerce and Internet Business A pplications, Systems Integration: Modelling Concepts and

In its on-going effort to define, pecify and build atelework co-ordination system, theTelework Interest

Group at FEUP - DEEC? has realised the need for aworkflow management system that must be able to
support business processes that rely on geographically distributed co-operative workT elework isan
innovative form of work organisation for decentralised or information-based organisational structures whose
tasks are independent of their location of execution. However, this organisational practice demands an
efficient business process co-ordination or, to be more specific, demands a workflow management system.
The work we intend to present is a prototype of the workflow enactment service which is a core component
of the management system whose construction is the ultimate goal of th& elework Interest Groug. The
workflow enactment service, that is currently being built, is a software service that contains a workflow

Key words:

Information Integration Tools, Project Management
Abstract:

engine capable of creating, managing and executing workflow instances.
1. INTRODUCTION

The Telework Interest Group (GIT) was
formed in September 1997 and since then some
major steps have been taken towards the
construction of a Telework Co-ordination
System. Along this project, the Telework
Interest Group has focused its efforts on the so-
caled "small information-based organisations'
where dl activities are concerned with
information processing and transfer, usually
among sub-contracted teleworkers. In this
scenario, a company would run by managing
severa pardlel processes, maybe severd
instances of the same business process, each
requiring remote task execution by teleworkers.
The GIT promptly recognised the need for a

! Engineering Faculty of Porto University
2 Department of Electrical Engineering and Computers

workflow management system supporting
geographically distributed co-operative work
(telework). That workflow management system
should be implemented through a workflow
enactment service, i.e. a software service
capable of creating, managing and executing
telework-related workflow instances.

The workflow enactment service for
telework co-ordination should comprise the
following components: (1) a modelling tool,
able to provide a computer representation of the
workflow logic which in turn shall drive the
process execution during run time (2) a
workflow engine, providing the run time
execution environment for each process
instance; (3) a messaging system, allowing
asynchronous communication with teleworkers
over a communication infrastructure and (4) a

workflow client application, providing an
interface between the workflow engine and the
teleworker and possibly also some form of
managing the teleworker's obligations. Figure 1
ilustrates the scope and relationships between
these main components [Lawrence, 1997].

Process Mo_ln_jellling
Analysis, ©0
Design and
Definition
77777777777777777777777777 Process
Definition
Process adjustments
Workflow
Engine
A
Process r
Instanciation, [Messaging System oo
Control and b
Monitoring
y
Workflow
Client Application
Application

Figure 1. Scope of the enactment service components

Even though the process definition is what
drives the execution of the workflow, there will
be the need to dynamicaly adjust the process
instance properties either because of missed
deadlines, task re-assignment or other
unpredictable circumstances.

However, since the modelling phase and
execution phases do not overlap, we find it
convenient to merge the modelling tool and the
workflow engine inside the same software
service. In this way, the same computer
representation supports planning and
controlling of the process within the same
environment, therefore making it easier to
adjust the process definition during run time.

Thus, we have reduced our workflow
enactment service to three components: (1) the
enactment service engine, which comprises the
modelling tool and the workflow engine; (2) the
messaging system which, over a

communication infrastructure, allows triggering
and managing the tasks execution and (3) the
workflow client application which provides,
over the messaging system, the interface
between the workflow engine and the
teleworkers or applications; in the case of a
teleworker the workflow client application
should aso provide some means of managing
the teleworker's obligations, as stated before.

In the remaining of this paper, we shal
discuss each of these components.

2. THE ENACTMENT
SERVICE ENGINE

2.1. Specifying the Enactment Service Engine

The enactment service engine comprises a
modelling tool and a workflow engine which
drives the execution of the process in
accordance with the process representation that
was achieved using that modelling tool.

A business process is often represented as
an activity network, each activity demanding
the services of one or more functional entities,
e.g. teleworkers, in order to accomplish an
overall business goal. Even though each activity
is to be carried out by an appropriate functional
entity, the process definition refers to
organisationa entities and role functions rather
than specific participants. Each activity in the
activity network of a business process stands
for a particular operation that must be executed
by a single functiona entity and whose
subdivision into smaller activities is of no
interest.

Upon instantiation of the process, each
activity is assigned to a particular functional
entity, i.e. to a particular teleworker, which isto
comply with the activity demands, transforming
an input state into an output state. In figure 2 is
depicted a simple activity network. The
workflow engine is the facility responsible for
managing the execution of all process instances.

The enactment service engine which is
under construction should accomplish a two-
fold purpose: representation of the activity

network concerning the process which is to be
instantiated and managing the execution of that
process instance.

In order to fulfil the first purpose, the
enactment service engine must contain a
process editor alowing the process definition,
i.e. the creation of the actual activity network
and its refinement with the pertinent data of
each activity. On its own, each activity is a self-
contained module or construct that cannot be
dissociated from its data such as: (1) name or
identification number; (2) name or
identification of the process to which it belongs;
(3) launch and deadline dates; (4) entry and exit
criteria; (5) description; (6) input and output
files or data; (7) needed expertise and (8)
assigned teleworker.

activity activity
B c

activity activity 0
Trigger A . E
Event activity

D
Teleworker Te|e_|V1/:rker
T2 — -
eleworker
Teleworker Teleworker
T T3

Figure 2. Representation of a business process

invokes

Activities are to be connected in their order
of precedence between each other.

During its life-cycle, an activity passes
through different states and possibly ends up
completed. We say possibly because there may
be times where, depending on some sort of
condition particular to the business process, the
execution of other activities may be preferred.
For example, if the purpose of one activity is to
caculate a budget, then the execution of the
following activities may be dependent on its
result. These types of conditions are to be part
of the entry and exit criteria of each activity.
For a large number of activities, however, their
entry condition may only depend on the
completion of the preceding ones.

Figure 3 depicts the state diagram or
dynamic model of an activity, using the syntax
of [Rumbaugh, 1991].

The state diagram shows that, when created,
an activity starts in an "inactive”" state waiting
to be assigned to a teleworker. After being
assigned, and even during execution, the
activity may be re-assigned. Before the activity
is put under execution, the possibility of re-
assignment allows negotiation to take place,
although we are not concerned with the nature
of the contract celebrated with the teleworkers;
this means that we're trying to maintain a high
degree of flexibility and organisational structure
independence. Our interest is indeed focused on
the workflow enactment. During execution and
in the presence of adverse circumstances, re-
assignment may be the last resort to employ in
an attempt to complete the activity.

=

Suspended

I
‘ ‘ done and

lire-assign*|
é ' Active I
completion « Delayed
&+ Ruming -conplton +Delayed

passed launch
date and entry

criteria verified

re-assign
abort o
expunge rocess exit criteria

P verified

¥
Expunged (@) Ceased é Complete (@)

Figure 3. Dynamic model of an activity

assign
pusdsns
awnsa.

At any time during the execution of the
activity, the process, or the activity itself, can
be interrupted; in that case, the "suspended"
state becomes the state of the activity which
will remain idle until the process is resumed.
For delayed activities, however, we do not
dlow a date of interruption; because the
activity may be suspended temporarily,
acknowledging an interruption to the teleworker
would serve no purpose other than increasing
the completion delay. We are assuming, of
course, that the teleworker will be notified,
during the predicted period of execution (but
not under delay), if the execution of the activity
is to be interrupted.

In generad, the life-cycle of an activity ends
when the teleworker has completed his/her job
and the exit criteria become verified.

Nevertheless, there may be occasions when an
activity is abruptly terminated: the process to
which the activity belongs is aborted — activity
becomes "ceased" — or the activity is smply
expunged from the activity network. The fina
state reflects the cause of such termination.

Although we have taken care to be able to
cope with unpredictable circumstances or with
deviations from the planned course of actions,
we have not yet stated clearly who is in charge
of acting towards solving these problems. A
human co-ordinator will be the one whose
intervention shall be requested in order to solve
the difficulties that may arise. He or she should
be quaified and responsible for decision-
making such as. (1) choosing the teleworker,
based on higher expertise and availability, to
carry out a given activity and assign him/her to
that activity; (2) negotiating with alternative
teleworkers the execution of some activity and
reassign that activity; (3) evauating
complaints of the teleworkers (possibly related
with the work of each other) and taking the
appropriate actions upon that evaluation and (4)
terminating or suspending activities or process
instances.

Just as an activity, a process also has a life-
cycle. In the first place, a process should be
defined by anadysing, identifying and
characterising its different components and by
proposing a plan of action for its execution,
taking into consideration existing constraints.
As soon as the process definition becomes
available, the computer representation of the
process can be constructed using the modelling
tool that is part of the enactment service engine.
To facilitate comprehension and provide some
structure to that representation, the modelling
tool should allow nesting of sub-processes into
processes or other sub-processes in a
hierarchical perspective. As [Kerzner, 1998]
suggests, to further enhance the perspective of
the activity network a Gantt chart should aso
be used to emphasize the temporal relationships
between activities (though [Kerzner, 1998] also
points out the pitfalls of using a Gantt chart).

Upon instanciation, each activity is assigned
to a teleworker and the workflow engine starts

the process execution. A process also has a
"suspended" state which causes all running
activities to be suspended (al but the delayed
ones) and at any time during execution, a
process instance can be terminated which
causes al running activities to be "ceased". A
process is said to be "complete” when there are
no remaining activities left to be executed.

Clearly, the enactment service engine must
rely on some communication infrastructure in
order carry out the execution of each process
instance. The communication needs of the
engine are the following: (1) requesting the
execution of an activity from a teleworker; (2)
receiving an answer from that teleworker
expressing acceptance or rgection; (3)
enquiring teleworkers about work throughput;
(4) issuing aerts for missed deadlines; (5)
receiving complaints from teleworkers; (6)
receiving acknowledgements for completed
activities; (7) requesting correction or revision
of work from a teleworker; (8) exchanging files
and/or other types of data and (9) informal
communication between co-ordinator and
teleworkers.

2.2. Implementing the Enactment Service
Engine?®

To implement the enactment service engine
we chose the Microsoft Windows (95, 98 or
NT) environment and the C++ programming
language with the Microsoft Foundation
Classes for the following reasons. (1) the
enactment service engine would benefit from a
user-friendly, well-established graphic user
interface, for both process editing and
monitoring; (2) Microsoft Windows already
supports workflow applications through its
Messaging APl (MAPI); (3) the Microsoft
Foundation Classes (MFC), which constitute an
extensive set of C++ classes, support all aspects
of Windows programming and provide a fully
object-oriented development framework and (4)
previous knowledge and experience favoured

3 Microsoft, Windows and Visual C++ are registered
trademarks of Microsoft Corporation

the usage of C++; we also had some experience
working with Microsoft Visua C++ and the
MFC.

Because the enactment service engine relies
heavily on the ability to communicate with the
teleworkers, we must aso decide what
communication infrastructure shall be used and
whether or not the development tool supportsit.
Keeping in mind the intention to reach the
broadest range of teleworkers geographically
distributed and the need to transfer binary data,
we should use a widely accepted asynchronous
communication infrastructure: something just
like the electronic mail. That decision, however,
should not prevent us from using other internet
resources and transferring data through FTP, for
example. In fact, Microsoft Visual C++ offers
extensive support for internet technologies
either by the Windows MAPI, MFC internet
support classes, Winlnet classes or even by
low-level windows sockets. Any teleworker
should be able to choose if he/she wishes to
receive and send higher data through e-mail
attachments or through FTP connection to a
server.

3. THE ENGINE MESSAGING
SYSTEM

3.1. The M essage Format

In the last section we emphasized that the
workflow engine should carry out the execution
of the process instances on its own, requesting
if necessary the intervention of a human co-
ordinator. That is, we are looking forward to
automate the task of putting the various process
instances under execution maintaining,
however, a wide range of aplicability regarding
the business processes which could benefit
from this workflow enactment service. Because
the workflow engine generates and receives e
mail messages automatically, there has to be a
pre-defined message format to convey the
necessary information in both directions. The
following message format has been agreed
upon.

Every message should include a keyword
that identifies its type and possibly its purpose.
The keyword appears on the "subject” field of
the e-mail message, following a unique string
of characters that identifies this message as
being telework-related. That identifying string
is "TLW" (from TeLeWork); after this string
and an arbitrary number of space or tab
characters, the keyword is placed. Figure 4

illustrates the message format.
From: coordinator@somewhere.com
To: teleworker@somewhere.com
Subject: TLW keyword
VoYY Ya Yo% YVa VoYY YaYa Yo% YVaYa %Y YVaYaYaVa
#Company Telework Company Name
#Process Process ID
#Activity Activity ID
#Startdate dd/mm/yy hh:mm
#Finishdate dd/mm/yy hh:mm
#Status Activity Status
HDESCIIPHON ..o
#Inputdata
_FILES filel ; file2; file3; ...
_SITE ftp.com
_USER username
_PASS password
_FILES filed ; file5
_ATTACH
#Outputdata
_FILES filed ; file5
_ATTACH
_FILES filel ; file2 ; file3; ...
_SITE ftp.com
_USER username
_PASS password
HTEXE

Figure 4. Message format

In the body of the message, several tags
(similar in appearance to C/C++ preprocessor
directives) indicate the presence of pertinent
data; its use is self-explanatory. Although figure
4 ligts al possible tags, no message needs to
contain al tags; any tag should be used if and
only if its corresponding data is available and is
of interest. This rudimentary set of tags should
be enough to cover all our needs.

There are gpecial tags (_FILE, _SITE,
_USER, _PASS and _ATTACH) whose

purpose is to deal with file input and output.
The tag _ATTACH means that the preceding
files are included as attachment to this same
message; otherwise the username and password
are specified for download from a given server.
Following the tags #Descritpion and #Text any
text excerpt may appear; in particular, the tag
#Text may be used for any unspecified
communication purpose between co-ordinator
and teleworker or vice versa.

The appearance of some tags is somewhat
related with the keyword on the "subject” field.
M oreover, some keywords are used in messages
from the workflow engine (or co-ordinator)
towards the teleworkers — request, warning and
reply — while others appear in messages that
flow in the opposite direction — accept, reject,
done, status and problem. Some keywords —
complaint and informa — may appear in either
way. The posshble keywords may be
summarized as follows. (1) request: the
workflow engine requests the execution of an
activity from a teleworker; (2) warning: the
workflow engine acknowledges the teleworker
of some change to the properties of the activity
that he/she has been assigned; (3) complaint:
the teleworker expresses dissatisfaction
regarding the work performed by a preceding
colleague; this keyword is also used by the co-
ordinator to inform the preceding teleworkers of
those problems; (4) problem: the teleworker is
experiencing some kind of problem that is not
related with the work of any other colleague;
(5) reply: the co-ordinator informs a teleworker
that the problems have been solved and that
he/she may resume higher work; (6) informal:
used to exchange messages that are not to be
parsed or interpreted and whose contents should
reach the receiver without modification; (7)
accept: the teleworker compromises him/herself
to carry out the requested activity; (8) reject: the
teleworker refuses to assume responsibility for
executing the requested activity; (9) done: the
teleworker reports to the workflow engine or
co-ordinator the completion of higher activity
and finaly (10) status: the teleworker retrieves
information regarding the execution of the
activity.

3.2. The M essaging Protocol

In the following discussion, messages will be
referred to by their keyword. When the process
is instantiated, teleworkers will have to be
acquainted with the activities that they have
been assigned; depending on the nature of the
contract celebrated with the teleworkers, it may
follow a negotiation phase or not. In any case,
teleworkers should acknowledge the request
arrival by answering "accept” or "rgect". The
appropriate time to regquest the execution of an
activity may depend on the expected duration of
the execution of the process. To illustrate this,
we have envisaged two possible scenarios: (1)
if the execution of a process instance is
expected to take several months, then maybe it
should be appropriate to request execution of an
activity two weeks before its launch date,
allowing the teleworker to manage his/her
obligations or alowing for some sort of
negotiation; (2) if the execution of a process
instance is to take a couple of days, then maybe
two or three days before launching the process
into execution all teleworkers should be aware
of their duties in order to avoid any execution
delay.

Thus, the co-ordinator must choose the right
time to reguest the execution of each activity,
after which he/she should expect an "accept” or
"rgect” answer from the corresponding
teleworker. In case of a reection, further
requests may be sent to other teleworkers
though, once again, those details do not concern
us, our aim is to provide the most flexible
means to fulfill any co-ordinator's needs.

The co-ordinator may as well define how
regularly a teleworker should report to the
workflow engine the status of execution of
his/her activity.

When an activity becomes delayed, the
teleworker should be reminded of that fact.
Once again, there should be an option on the
enactment service engine allowing the co-
ordinator to specify how regularly the
teleworker should be reminded of the delay.
Notwithstanding, a certain delay — the "dack"
when speaking in terms of PERT/CPM — of

some activities may not compromise the
completion date of the entire process if those
activities do not belong to the critical path of
the process. Here the co-ordinator may choose
between two different policies: (1) letting the
teleworker know the latest time for completion
of his’her activity or (2) letting the teleworker
know only the earliest time for that same
completion; in this case we can afford a delay
no longer than the dack of the activity, if the
preceding activities are to be completed on
time.

The messaging protocol becomes highly
useful when a teleworker issues a complaint
about a colleague's work. With #lnputdata, the
teleworker specifies the offending files and the
workflow engine will forward the complaint
message to the immediately preceding
teleworkers whose activity deat with those
files. The #Text directive and all that follows
after it shall also be forwarded to the preceding
teleworkers, letting them know of the reasons
for dissatisfaction. Those preceding teleworkers
should then answer with a "reply" message that
contains the corrected data which will be
forwarded to the teleworker that issued the
complaint. This sequence of events is depicted
on figure 5 under a Message Sequence Chart
[van der Aalst, 1998].

Workflow

Teleworker T3 Engine Teleworker T2 Teleworker T1

complaint

compit—
I

| reply

L
reply
——Teply |

Figure 5. Sequence of events after a complaint

Thisis a peaceful scenario; teleworkers may
as well start disagreeing about each other's
work. The co-ordinator, however, is withessing
al this dtuation and is free to intervene
whenever appropriate; if not, all the co-

ordinator has to do is to consult the log file that
the workflow engine maintains to be aware of
the situation.

4, THE WORKFLOW CLIENT
APPLICATION

4.1. Specifying the Workflow Client
Application

In the preceding sections, we have defined
the communication infrastructure that we shall
use — e-mail and FTP — and the message format
of the workflow engine. We must not expect,
however, that every time the teleworker wishes
to send a message he/she should choose the
right keyword and include the appropriate tags
and text. In addition, when receiving an
incoming message, the teleworker shouldn't
have to interpret its contents. Although the
message format is quite evident, there should be
some means of interpreting the message and
presenting its contents to the teleworker in a
user-friendly way. Therefore, the workflow
client application is basically an specia purpose
e-mail client that identifies a telework-related
message by looking at its subject field and
interprets, or more precisely, parses its content
S0 asto present it in a meaningful way.

The same e-mail client should also provide
the reverse functionality: when a teleworker
wishes to send a message he/she specifies the
type of the message, which is related with the
keyword, and introduces its content
disregarding tags or other format details. The
application will then generate and send the
message with the appropriate keyword and tags,
so that it can be promptly understood by the
workflow engine.

Besides this interface role, the application
should implement some means of managing the
teleworker's tasks, further allowing some kind
of time management facility. That could be
done with an enhanced version of the classic
Gantt chart, of which an example is depicted in
figure 6. The enhancement is the presence of a
bottom row that sums up the hours required to

fulfill the foreseen tasks for a given day (on the
example of figure 6 the teleworker has some
real busy days!). It should be noted that the
various activities depicted on figure 6 may
represent several commitments that the
teleworker has established with different
telework enterprises.

[AdtivityX |
\ Activity Y |
i
S I
|

Activities

Activity W

3‘8‘10‘10‘12‘12‘9‘6‘

hours/ * days

day

Figure 6. Enhanced Gantt chart

4.2. Implementing the Workflow Client
Application *

Because each teleworker might have his/her
preferred working environment, the key issue
about this workflow client application is
platform independence. To implement this
application we decided to use the Java
programming language with the Java
Foundation Classes for the following reasons:
(1) the Java programming language and its
"virtual machine" provide a high degree of
platform independence; (2) the Java Foundation
Classes (JFC), which constitute an extensive set
of Java classes, support several aspects of Java
programming and provide a fully object-
oriented development framework; (3) the Java
Development Kit (JDK), Sun's Java
development tool, is freely available from Sun
Microsystems and the Java 2 (formerly known
as Java 1.2) platform has been released recently
by Sun Microsystems with a complete
implementation of the JFC and (4) dready
some knowledge and experience existed
working with Java and the Java Foundation
Classes.

4 sun and Sun Microsystems are registered trademarks
and Java is atrademark of Sun Microsystems, Inc.

5. CONCLUSION

This paper illustrated our approach to the
construction of a workflow enactment service
supporting the co-ordination of decentralised
activities over the Internet.

We have concluded that the enactment
service comprises three main components — (1)
the enactment service engine, (2) the messaging
system and (3) the workflow client application
— which we have discussed separately though,
as we have shown, they are intimately related.

Although our aim was not to build a
commercial software product, we have
attempted to construct a prototype of an
enactment service flexible enough to apply to
the broadest range of business processes that
involve information processing and transfer.
Hopefully, we shall have the opportunity to
show a glimpse of the enactment service to the
audience of the 1st International Conference on
Enterprise Information Systems.

REFERENCES

van der Aast, W. M. P. 1998, Interorganizational
Workflows, Proceedings of the Tenth International IFIP
WG 5.2/5.3 Conference PROLAMAT 98, Trento, Italy

Kerzner, H. 1998, Project Management: a systems
approach to planning, scheduling, and controlling, Sixth
Edition, Van Nostrand Reinhold, New Y ork

Lawrence, Peter 1997, Workflow Handbook 1997, John
Wiley & Sons, ISBN 0-471-96947-8

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F,
Lorensen, W. 1991, Object-Oriented Modeling and
Design, Prentice-Hall International Inc., Englewood
Cliffs, New Jersey

Silva, J. A. & Ferreira, J. J. Pinto 1998, From Telework
Project Planning to Project Co-ordination, An integrated
Approach, IFIP International Conference PROLAMAT
'98, Trento, Italy

Vernadat, F. B. 1996, Enterpriss Modelling and
Integration, Principles and Applications, Chapman &
Hall, London

